Generalized torsion of elastic cylinders with microstructure

Dorin Ieşan
Department of Mathematics, "Al.I. Cuza" University, Bd. Carol I, No 11, 700506 Iaşi, Romania, iesan@uaic.ro

Received: 13/06/2006; accepted: 15/07/2006.

Abstract

In this paper we use the method established by Day [1] to solve Truesdell's problem rephrased for the torsion of elastic cylinders with microstructure.

Keywords: torsion, generalized twist, bodies with microstructure
MSC 2000 classification: primary 74G65, secondary 74A35

1 Introduction

Let K denote the set of all displacement fields that correspond to the solutions of the torsion problem. Truesdell [7-9] proposed the following problem: for an isotropic linearly elastic cylinder subject to end tractions equipolent to a torque M, define a functional $\tau(\cdot)$ on K such that $M=D \tau(\mathbf{u})$, for each $\mathbf{u} \in K$, where D depends only on the cross section and elasticity field. In [1], Day established an elegant solution of Truesdell's problem and called $\tau(\mathbf{u})$ the generalized twist at \mathbf{u}. Truesdell's problem can be set for the torsion of elastic cylinders with microstructure. The theory of media with microstructure was developed in various works (see $[2-4,6]$). The torsion problem for elastic cylinders with microstructure has been investigated in [5]. In this paper we use the method established by Day [1] to solve Truesdell's problem for inhomogeneous and anisotropic bodies with microstructure.

2 Basic Equations

Throughout this paper B denotes a bounded regular region of three-dimensional Euclidean space. We call ∂B the boundary of B, and designate by \mathbf{n} the outward unit normal of ∂B. Throughout this paper a rectangular Cartesian coordinate system $O x_{k}(k=1,2,3)$ is used. Letters in boldface stand for tensors of an order $p \geq 1$, and if \mathbf{v} has the order p, we write $v_{i j \ldots k l}$ (p subscripts) for the components of \mathbf{v} in the rectangular Cartesian coordinate frame. We shall employ the usual summation and differentiation conventions: Greek subscripts
are understood to range over the integers $(1,2)$, where Latin subscripts-unless otherwise specified-are confined to the range $(1,2,3)$; summation over repeated subscripts is implied and subscripts preceded by a comma denote partial differentiation with respect to the corresponding Cartesian coordinate.

Assume that B is occupied by a linearly elastic material with microstructure. Let u_{i} denote the components of the displacement vector field, and let $\varphi_{i j}$ denote the components of the microdeformation tensor. We introduce the twelve-dimensional vector $u=\left(u_{1}, u_{2}, u_{3}, \varphi_{11}, \varphi_{22}, \ldots, \varphi_{13}\right)=\left(u_{i}, \varphi_{j k}\right)$. The strain measures associated with u are defined by

$$
\begin{equation*}
e_{i j}(u)=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right), \quad \gamma_{i j}(u)=u_{j, i}-\varphi_{i j}, \quad \kappa_{i j k}(u)=\varphi_{j k, i} \tag{1}
\end{equation*}
$$

where $e_{i j}$ is the macrostrain tensor, $\gamma_{i j}$ is the relative deformation tensor and $\kappa_{i j k}$ is the microdeformation gradient tensor [3,6]. The constitutive equations appropriate to the linearized theory of elasticity are

$$
\begin{align*}
\tau_{i j}(u) & =C_{i j r s} e_{r s}(u)+G_{r s i j} \gamma_{r s}(u)+F_{p q r i j} \kappa_{p q r}(u) \\
\sigma_{i j}(u) & =G_{i j r s} e_{r s}(u)+B_{r s i j} \gamma_{r s}(u)+D_{i j p q r} \kappa_{p q r}(u) \tag{2}\\
\mu_{i j k}(u) & =F_{i j k r s} e_{r s}(u)+D_{r s i j k} \gamma_{r s}(u)+A_{i j k p q r} \kappa_{p q r}(u)
\end{align*}
$$

where $\tau_{i j}(u)$ denotes the stress tensor, $\sigma_{i j}(u)$ means the relative stress tensor, $\mu_{i j k}(u)$ is the double stress tensor associated with u, and $A_{i j k p q r}, B_{i j r s}, \ldots$, $G_{i j r s}$ are constitutive coefficients.

We call a vector field $u=\left(u_{i}, \varphi_{j k}\right)$ an equilibrium vector field for B if $u_{i}, \varphi_{j k} \in C^{1}(\bar{B}) \cap C^{2}(B)$ and

$$
\begin{equation*}
\left[\tau_{i j}(u)+\sigma_{i j}(u)\right]_{, i}=0, \quad\left(\mu_{i j k}(u)\right)_{, i}+\sigma_{j k}(u)=0 \tag{3}
\end{equation*}
$$

hold on B. The traction and the double-traction at regular points of ∂B corresponding to u are defined by

$$
\begin{equation*}
T_{i}(u)=\left(\tau_{j i}(u)+\sigma_{j i}(u)\right) n_{j}, \quad M_{i j}(u)=\mu_{r i j}(u) n_{r} \tag{4}
\end{equation*}
$$

The strain energy density per unit volume corresponding to u is given by

$$
\begin{align*}
\varepsilon(u)= & \frac{1}{2} C_{i j r s} e_{i j}(u) e_{r s}(u)+\frac{1}{2} B_{i j r s} \gamma_{i j}(u) \gamma_{r s}(u)+ \\
& +\frac{1}{2} A_{i j k r m n} \kappa_{i j k}(u) \kappa_{r m n}(u)+D_{i j k r m} \gamma_{i j}(u) \kappa_{k r m}(u)+ \tag{5}\\
& +F_{i j k r m} \kappa_{i j k}(u) e_{r m}(u)+G_{i j k r} \gamma_{i j}(u) e_{k r}(u)
\end{align*}
$$

where $A_{i j k r m n}, B_{i j r s}, C_{i j r s}, D_{i j k r m}, F_{i j k r m}$ and $G_{i j k r}$ are smooth functions on \bar{B} such that

$$
\begin{align*}
& A_{i j k r m n}=A_{r m n i j k}, \quad B_{i j r s}=B_{r s i j}, \quad C_{i j r s}=C_{r s i j} \tag{6}\\
& F_{i j k r s}=F_{i j k s r}, \quad G_{i j r s}=G_{i j s r}
\end{align*}
$$

We assume that the strain energy density is a positive definite quadratic form in the components of the strain measures.

The strain energy $E(u)$ corresponding to a smooth vector field u on B is

$$
\begin{equation*}
E(u)=\int_{B} \varepsilon(u) d v \tag{7}
\end{equation*}
$$

The functional $E(\cdot)$ generates the bilinear functional

$$
\begin{align*}
E(u, v)= & \frac{1}{2} \int_{B}\left\{C_{i j r s} e_{i j}(u) e_{r s}(v)+B_{i j r s} \gamma_{i j}(u) \gamma_{r s}(v)+\right. \\
& +A_{i j k r m n} \kappa_{i j k}(u) \kappa_{r m n}(v)+D_{i j k r s}\left[\gamma_{i j}(u) \kappa_{k r m}(v)+\right. \tag{8}\\
& \left.+\gamma_{i j}(v) \kappa_{k r m}(u)\right]+F_{i j k r m}\left[\kappa_{i j k}(u) e_{r m}(v)+\right. \\
& \left.\left.+\kappa_{i j k}(v) e_{r m}(u)\right]+G_{i j k r}\left[\gamma_{i j}(u) e_{k r}(v)+\gamma_{i j}(v) e_{k r}(u)\right]\right\} d v .
\end{align*}
$$

We introduce the notations

$$
\begin{equation*}
<u, v>=2 E(u, v), \quad\|u\|_{e}^{2}=<u, u>. \tag{9}
\end{equation*}
$$

For any equilibrium vector fields $u=\left(u_{i}, \varphi_{j k}\right)$ and $v=\left(v_{i}, \psi_{j k}\right)$ one has

$$
\begin{equation*}
<u, v>=\int_{\partial B}\left[v_{i} T_{i}(u)+\psi_{j k} M_{j k}(u)\right] d a, \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\partial B}\left[u_{i} T_{i}(v)+\varphi_{j k} M_{j k}(v)\right] d a=\int_{\partial B}\left[v_{i} T_{i}(u)+\psi_{j k} M_{j k}(u)\right] d a \tag{11}
\end{equation*}
$$

Following [1], for any given equilibrium vector fields $u, v^{(1)}, v^{(2)}, v^{(3)}$ and $v^{(4)}$ we define the real function f of the variables $\xi_{1}, \xi_{2}, \xi_{3}$ and ξ_{4} by

$$
\begin{equation*}
f=\left\|u-\sum_{s=1}^{4} \xi_{s} v^{(s)}\right\|_{e}^{2} \tag{12}
\end{equation*}
$$

In the following section the vector field u will be a solution of a certain boundaryvalue problem and the equilibrium vector fields $v^{(s)},(s=1,2,3,4)$, will be prescribed. We have

$$
\begin{equation*}
f=\sum_{r, s=1}^{4} A_{r s} \xi_{r} \xi_{s}-2 \sum_{s}^{4} \xi_{s}<u, v^{(s)}>+\|u\|_{e}^{2} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{r s}=\left\langle v^{(r)}, v^{(s)}\right\rangle, \quad(r, s=1,2,3,4) . \tag{14}
\end{equation*}
$$

Since the matrix $\left(A_{r s}\right)$ is positive definite, f will be a minimum at $\left(\alpha_{1}(u)\right.$, $\left.\alpha_{2}(u), \alpha_{3}(u), \alpha_{4}(u)\right)$ if and only if $\alpha_{1}(u), \alpha_{2}(u), \alpha_{3}(u)$ and $\alpha_{4}(u)$ satisfy the equations

$$
\begin{equation*}
\sum_{s=1}^{4} A_{r s} \alpha_{s}(u)=<u, v^{(r)}>, \quad(r=1,2,3,4) \tag{15}
\end{equation*}
$$

In order to extend the result of [1] to the case of bodies with microstructure, we rephrase Truesdell's problem in the following manner: for a linearly elastic cylinder subject to end tractions equipolent to a torque M, define the quantities $\tau_{s},(s=1,2,3,4)$, in such a way that

$$
\begin{equation*}
M \delta_{r 4}=\sum_{s=1}^{4} D_{r s} \tau_{s}, \quad(r=1,2,3,4) \tag{16}
\end{equation*}
$$

where $\delta_{p q}$ is the Kronecker delta, and $D_{r s},(r, s=1,2,3,4)$, depend only the cross section and the constitutive coefficients.

3 Generalized Torsion

Assume that the region B from here on refers to the interior of a right cylinder of length h with the open cross section Σ and the lateral boundary Π. We denote by L the boundary of the generic cross section Σ. The rectangular Cartesian coordinate is chosen such that the x_{3} axis is parallel to the generators of B and the $x_{1} O x_{2}$ plane contains one of the terminal cross sections. We denote by Σ_{1} and Σ_{2}, respectively, the cross section located at $x_{3}=0$ and $x_{3}=h$. In view of the foregoing agreements we have

$$
\begin{gathered}
B=\left\{\mathbf{x} \mid\left(x_{1}, x_{2}\right) \in \Sigma, 0<x_{3}<h\right\}, \quad \Pi=\left\{\mathbf{x} \mid\left(x_{1}, x_{2}\right) \in L, 0 \leq x_{3} \leq h\right\} \\
\Sigma_{1}=\left\{\mathbf{x} \mid\left(x_{1}, x_{2}\right) \in \Sigma, x_{3}=0\right\}, \quad \Sigma_{2}=\left\{\mathbf{x} \mid\left(x_{1}, x_{2}\right) \in \Sigma, x_{3}=h\right\}
\end{gathered}
$$

where $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$.
We assume for the remainder of this paper that the functions $A_{i j k r m n}$, $B_{i j r s}, C_{i j r s}, D_{i j k r s}, F_{i j k r m}, G_{i j r s}$ are independent of the axial coordinate and belong to $C^{\infty}\left(\bar{\Sigma}_{1}\right)$. Moreover, we assume that Σ_{1} is C^{∞}-smooth.

We denote by $\mathbf{R}(u)$ and $\mathbf{H}(u)$, respectively, the resultant force and the resultant moment about O of the tractions associated with u, acting on Σ_{2}, i.e.,

$$
\begin{align*}
R_{i}(u) & =\int_{\Sigma_{2}}\left[\tau_{3 i}(u)+\sigma_{3 i}(u)\right] d a, \\
H_{\alpha}(u) & =\int_{\Sigma_{2}} \varepsilon_{\alpha \beta}\left\{x_{\beta}\left[\tau_{33}(u)+\sigma_{33}(u)\right]+\mu_{3 \beta 3}(u)-\mu_{33 \beta}(u)\right\} d a, \tag{17}\\
H_{3}(u) & =\int_{\Sigma_{2}} \varepsilon_{\alpha \beta}\left\{x_{\alpha}\left[\tau_{3 \beta}(u)+\sigma_{3 \beta}(u)\right]+\mu_{3 \alpha \beta}(u)\right\} d a,
\end{align*}
$$

where $\varepsilon_{\alpha \beta}$ is the two-dimensional alternating symbol.
By a solution of the generalized torsion problem we mean an equilibrium vector field u that satisfies the conditions

$$
\begin{gather*}
{\left[\tau_{\alpha i}(u)+\sigma_{\alpha i}(u)\right] n_{\alpha}=0, \quad \mu_{\alpha i j}(u) n_{\alpha}=0 \text { on } \Pi,} \tag{18}\\
R_{i}(u)=0, \quad H_{\alpha}(u)=0, \quad H_{3}(u)=M \tag{19}\\
{\left[\tau_{3 j}(u)+\sigma_{3 j}(u)\right]\left(x_{1}, x_{2}, 0\right)=\left[\tau_{3 j}(u)+\sigma_{3 j}(u)\right]\left(x_{1}, x_{2}, h\right)} \\
{\left[\mu_{3 j k}(u)\right]\left(x_{1}, x_{2}, 0\right)=\left[\mu_{3 j k}(u)\right]\left(x_{1}, x_{2}, h\right),} \tag{20}
\end{gather*}
$$

where M is a prescribed constant.
Let Q denote the set of all equilibrium vector fields u that satisfy the conditions (18)-(20).

In what follows we will have occasion to use some results concerning the generalized plane strain problem for bodies with microstructure [5].

The state of generalized plane strain of B is characterized by

$$
\begin{equation*}
u_{i}=u_{i}\left(x_{1}, x_{2}\right), \quad \varphi_{j k}=\varphi_{j k}\left(x_{1}, x_{2}\right), \quad\left(x_{1}, x_{2}\right) \in \Sigma_{1} \tag{21}
\end{equation*}
$$

It follows from (1) and (21) that $e_{33}(u)=0, \kappa_{3 j k}(u)=0$ and

$$
\begin{gather*}
e_{\alpha \beta}(u)=\frac{1}{2}\left(u_{\alpha, \beta}+u_{\beta, \alpha}\right), \quad e_{\alpha 3}(u)=\frac{1}{2} u_{3, \alpha} \tag{22}\\
\gamma_{\alpha i}(u)=u_{i, \alpha}-\varphi_{\alpha i}, \quad \gamma_{3 i}(u)=-\varphi_{3 i}, \quad \kappa_{\alpha j k}(u)=\varphi_{j k, \alpha}
\end{gather*}
$$

By (2) and (22),

$$
\begin{align*}
\tau_{\alpha i}(u) & =C_{\alpha i j \beta} e_{j \beta}(u)+G_{k j \alpha i} \gamma_{k j}(u)+F_{\beta r s \alpha i} \kappa_{\beta r s}(u) \\
\sigma_{i j}(u) & =G_{i j r \beta} e_{r \beta}(u)+B_{k r i j} \gamma_{k r}(u)+D_{i j \beta r s} \kappa_{\beta r s}(u) \tag{23}\\
\mu_{\alpha i j}(u) & =F_{\alpha i j r \beta} e_{r \beta}(u)+D_{r s \alpha i j} \gamma_{r s}(u)+A_{\alpha i j \beta r s} \kappa_{\beta r s}(u)
\end{align*}
$$

The equations of equilibrium (3), in the presence of the body force f_{i} and body double-force $L_{i j}$, take the form

$$
\begin{equation*}
\left(\tau_{\alpha j}(u)+\sigma_{\alpha j}(u)\right)_{, \alpha}+f_{i}=0, \quad\left(\mu_{\alpha i j}(u)\right)_{, \alpha}+\sigma_{i j}(u)+L_{i j}=0 \tag{24}
\end{equation*}
$$

We assume that on the lateral boundary we have the conditions

$$
\begin{equation*}
\left(\tau_{\alpha i}(u)+\sigma_{\alpha i}(u)\right) n_{\alpha}=P_{i}, \quad \mu_{\alpha i j}(u) n_{\alpha}=Q_{i j} \tag{25}
\end{equation*}
$$

where P_{i} and $Q_{i j}$ are prescribed functions.
Clearly, the state of generalized plane strain demands that $f_{i}, L_{i j}, P_{i}$ and $Q_{i j}$ be independent of the axial coordinate.

The generalized plane strain problem consists in finding a vector field $u \in$ $C^{1}\left(\bar{\Sigma}_{1}\right) \cap C^{2}\left(\Sigma_{1}\right)$ which satisfies the equations (24) on Σ_{1} and the boundary conditions (25) on Γ.

The functions $\tau_{3 i}(u)$ and $\mu_{3 i j}(u)$ can be calculated after the determination of u.

The conditions of equilibrium for the cylinder B are

$$
\begin{align*}
& \int_{\Sigma_{1}} f_{i} d a+\int_{\Gamma} P_{i} d s=0 \\
& \int_{\Sigma_{1}} \varepsilon_{\alpha \beta}\left(x_{\alpha} f_{\beta}+L_{\alpha \beta}\right) d a+\int_{\Gamma} \varepsilon_{\alpha \beta}\left(x_{\alpha} P_{\beta}+Q_{\alpha \beta}\right) d s=0 \tag{26}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{\Sigma_{1}}\left(x_{2} f_{3}+L_{23}-L_{32}\right) d a+\int_{\Gamma}\left(x_{2} P_{3}+Q_{23}-Q_{32}\right) d s- \\
& \quad-\int_{\Sigma_{1}}\left(\tau_{32}(u)+\sigma_{32}(u)\right) d a=0 \\
& \int_{\Sigma_{1}}\left(x_{1} f_{3}+L_{13}-L_{31}\right) d a+\int_{\Gamma}\left(x_{1} P_{3}+Q_{13}-Q_{31}\right) d s- \tag{27}\\
& \quad-\int_{\Sigma_{1}}\left(\tau_{31}(u)+\sigma_{31}(u)\right) d a=0
\end{align*}
$$

The conditions (27) are identically satisfied on the basis of (24) and (25). Indeed, we have

$$
\begin{aligned}
& \int_{\Sigma_{1}}\left(\tau_{32}(u)+\sigma_{32}(u)\right) d a=\int_{\Sigma_{1}}\left[\tau_{23}(u)+\sigma_{23}(u)+\sigma_{32}(u)-\sigma_{23}(u)\right] d a= \\
&= \int_{\Sigma_{1}}\left[\tau_{23}(u)+\sigma_{23}(u)+x_{2}\left\{\tau_{\alpha 3}(u)_{, \alpha}+\sigma_{\alpha 3}(u)_{, \alpha}+f_{3}\right\}+\right. \\
&\left.\quad+L_{23}-L_{32}+\left(\mu_{\alpha 23}(u)-\mu_{\alpha 32}(u)\right)_{, \alpha}\right] d a= \\
&= \int_{\Sigma}\left\{\left[x_{2}\left(\tau_{\alpha 3}(u)+\sigma_{\alpha 3}(u)\right)\right]_{, \alpha}+x_{2} f_{3}+L_{23}-\right. \\
&\left.\quad-L_{32}+\left(\mu_{\alpha 23}(u)-\mu_{\alpha 32}(u)\right)_{, \alpha}\right\} d a= \\
&= \int_{\Gamma}\left(x_{2} P_{3}+Q_{23}-Q_{32}\right) d s+\int_{\Sigma_{1}}\left(x_{2} f_{3}+L_{23}-L_{32}\right) d a
\end{aligned}
$$

In a similar way we can prove that the second condition from (27) is satisfied.
It is known that [5] the boundary-value problem $(24),(25)$ has a solution belonging to $C^{\infty}\left(\bar{\Sigma}_{1}\right)$ if and only if the C^{∞} functions $f_{i}, L_{i j}, P_{i}$ and $Q_{i j}$ satisfy the conditions (26).

In what follows we will use four special problems $A^{(s)},(s=1,2,3,4)$, of generalized plane strain for the domain Σ_{1}. The problem $A^{(s)}$ corresponds to the system of loading $\left\{f_{i}^{(s)}, L_{i j}^{(s)}, P_{i}^{(s)}, Q_{i j}^{(s)}\right\}$ where

$$
\begin{align*}
f_{i}^{(\beta)} & =\left[\left(C_{\alpha i 33}+G_{33 \alpha i}+G_{\alpha i 33}+B_{33 \alpha i}\right) \varepsilon_{\beta \nu} x_{\nu}+\left(D_{\alpha i 3 m n}+F_{3 m n \alpha i}\right) \varepsilon_{m n \beta}\right]_{, \alpha}, \\
f_{i}^{(3)} & =\left[\left(C_{\alpha i \rho 3}+G_{3 \rho \alpha i}+G_{\alpha i \rho 3}+B_{3 \rho \alpha i}\right) \varepsilon_{\beta \rho} x_{\beta}+\left(D_{\alpha i 3 \rho \nu}+F_{3 \rho \nu \alpha i}\right) \varepsilon_{\rho \nu}\right]_{, \alpha}, \\
f_{i}^{(4)} & =\left(C_{\alpha i 33}+G_{33 \alpha i}+G_{\alpha i 33}+B_{33 \alpha i}\right)_{, \alpha}, \\
L_{i j}^{(\beta)} & =\left[\left(F_{\alpha i j 33}+D_{33 \alpha i j}\right) \varepsilon_{\beta \nu} x_{\nu}+A_{\alpha i j 3 m n} \varepsilon_{m n \beta}\right]_{, \alpha}+\left(G_{i j 33}+B_{33 i j}\right) \varepsilon_{\beta \nu} x_{\nu}+ \\
& +D_{i j 3 m n} \varepsilon_{m n \beta}, \\
L_{i j}^{(3)} & =\left[\left(F_{\alpha i j \rho 3}+D_{3 \rho \alpha i j}\right) \varepsilon_{\beta \rho} x_{\beta}+A_{\alpha i j 3 \eta \rho} \varepsilon_{\eta \rho}\right]_{, \alpha}+\left(B_{3 \alpha i j}+G_{i j \alpha 3}\right) \varepsilon_{\beta \alpha} x_{\beta}+ \\
& +D_{i j 3 \alpha \beta} \varepsilon_{\beta \alpha}, \\
L_{i j}^{(4)} & =\left(F_{\alpha i j 33}+D_{33 \alpha i j}\right)_{, \alpha}+G_{i j 33}+B_{33 i j}, \\
P_{i}^{(\beta)} & =\left[\left(C_{\alpha i 33}+G_{33 \alpha i}+G_{\alpha i 33}+B_{33 \alpha i}\right) \varepsilon_{\nu \beta} x_{\nu}+\left(D_{\alpha i 3 m n}+F_{3 m n \alpha i}\right) \varepsilon_{n m \beta}\right] n_{\alpha}, \\
P_{i}^{(3)} & =\left[\left(C_{\alpha i \rho 3}+G_{3 \rho \alpha i}+G_{\alpha i \rho 3}+B_{3 \rho \alpha i}\right) \varepsilon_{\rho \beta} x_{\beta}+\left(D_{\alpha i 3 \rho \nu}+F_{3 \rho \nu \alpha i}\right) \varepsilon_{\nu \rho}\right] n_{\alpha}, \\
P_{i}^{(4)} & =-\left(C_{\alpha i 33}+G_{33 \alpha i}+G_{\alpha i 33}+B_{33 \alpha i}\right) n_{\alpha}, \\
Q_{i j}^{(\beta)} & =\left[\left(F_{\alpha i j 33}+D_{33 \alpha i j}\right) \varepsilon_{\nu \beta} x_{\nu}+A_{\alpha i j 3 m n} \varepsilon_{n m \beta}\right] n_{\alpha}, \\
Q_{i j}^{(3)} & =\left[\left(F_{\alpha i j \rho 3}+D_{3 \rho \alpha i j}\right) \varepsilon_{\rho \beta} x_{\beta}+A_{\alpha i j 3 \rho \nu} \varepsilon_{\nu \rho}\right] n_{\alpha}, \\
Q_{i j}^{(4)} & =-\left(F_{\alpha i j 33}+D_{33 \alpha i j}\right) n_{\alpha}, \tag{28}
\end{align*}
$$

where $\varepsilon_{i j k}$ is the alternating symbol. It is a simple matter to verify that the necessary and sufficient conditions (26) for the existence of a solution are satisfied for each boundary-value problem $A^{(s)}$.

We denote by $w^{(s)}=\left(w_{i}^{(s)}, \omega_{i j}^{(s)}\right)$ the solution of the problem $A^{(s)}$. Thus, the vector fields $w^{(s)},(s=1,2,3,4)$, are characterized by

$$
\begin{align*}
& {\left[\tau_{\alpha j}\left(w^{(s)}\right)+\sigma_{\alpha j}\left(w^{(s)}\right)\right]_{, \alpha}+f_{i}^{(s)}=0,} \\
& \left(\mu_{\alpha i j}\left(w^{(s)}\right)\right)_{, \alpha}+\sigma_{i j}\left(w^{(s)}\right)+L_{i j}^{(s)}=0 \text { on } \Sigma_{1}, \tag{29}\\
& {\left[\tau_{\alpha i}\left(w^{(s)}\right)+\sigma_{\alpha i}\left(w^{(s)}\right)\right] n_{\alpha}=P_{i}^{(s)}, \mu_{\alpha i j}\left(w^{(s)}\right) n_{\alpha}=Q_{i j}^{(s)} \text { on } \Gamma .}
\end{align*}
$$

In what follows we assume that the vector fields $w^{(s)},(s=1,2,3,4)$ are known. We note that $w^{(s)}$ depend only on the domain Σ_{1} and the constitutive coefficients.

We define the vector fields $v^{(s)}=\left(v_{i}^{(s)}, \psi_{j k}^{(s)}\right)$ on $B,(s=1,2,3,4)$, by

$$
\begin{gather*}
v_{\alpha}^{(\beta)}=\frac{1}{2} \varepsilon_{\alpha \beta} x_{3}^{2}+w_{\alpha}^{(\beta)}, \quad v_{3}^{(\beta)}=\varepsilon_{\beta \alpha} x_{\alpha} x_{3}+w_{3}^{(\beta)}, \\
v_{\alpha}^{(3)}=-\varepsilon_{\alpha \beta} x_{\beta} x_{3}+w_{\alpha}^{(3)}, \quad v_{3}^{(3)}=w_{3}^{(3)}, \tag{30}\\
v_{\alpha}^{(4)}=w_{\alpha}^{(4)}, \quad v_{3}^{(4)}=x_{3}+w_{3}^{(4)}, \\
\psi_{j k}^{(s)}=\varepsilon_{j k s} x_{3}+\omega_{j k}^{(s)}, \quad \psi_{j k}^{(4)}=\omega_{j k}^{(4)} .
\end{gather*}
$$

It follows from (2) and (30) that

$$
\begin{align*}
\tau_{i j}\left(v^{(\beta)}\right) & =\left(C_{i j 33}+G_{33 i j}\right) \varepsilon_{\beta \nu} x_{\nu}+F_{3 m n i j} \varepsilon_{m n \beta}+\tau_{i j}\left(w^{(\beta)}\right), \\
\tau_{i j}\left(v^{(3)}\right) & =\left(C_{i j \alpha 3}+G_{3 \alpha i j}\right) \varepsilon_{\beta \alpha} x_{\beta}+F_{3 \rho \nu i j} \varepsilon_{\rho \nu}+\tau_{i j}\left(w^{(3)}\right), \\
\tau_{i j}\left(v^{(4)}\right) & =C_{i j 33}+G_{33 i j}+\tau_{i j}\left(w^{(4)}\right), \\
\sigma_{i j}\left(v^{(\beta)}\right) & =\left(G_{i j 33}+B_{33 i j}\right) \varepsilon_{\beta \nu} x_{\nu}+D_{i j 3 m n} \varepsilon_{m n \beta}+\sigma_{i j}\left(w^{(\beta)}\right), \\
\sigma_{i j}\left(v^{(3)}\right) & =\left(B_{3 \alpha i j}+G_{i j \alpha 3}\right) \varepsilon_{\beta \alpha} x_{\beta}+D_{i j 3 \rho \nu} \varepsilon_{\rho \nu}+\sigma_{i j}\left(w^{(3)}\right), \tag{31}\\
\sigma_{i j}\left(v^{(4)}\right) & =G_{i \alpha 33}+B_{33 i j}+\sigma_{i j}\left(w^{(4)}\right), \\
\mu_{i j k}\left(v^{(\beta)}\right) & =\left(F_{i j k 33}+D_{33 i j k}\right) \varepsilon_{\beta \nu} x_{\nu}+A_{i j k 3 m n} \varepsilon_{m n \beta}+\mu_{i j k}\left(w^{(\beta)}\right), \\
\mu_{i j k}\left(v^{(3)}\right) & =\left(F_{i j k \alpha 3}+D_{3 \alpha i j k}\right) \varepsilon_{\beta \alpha} x_{\beta}+A_{i j k 3 \rho \nu} \varepsilon_{\rho \nu}+\mu_{i j k}\left(w^{(3)}\right), \\
\mu_{i j k}\left(v^{(4)}\right) & =F_{i j k 33}+D_{33 i j k}+\mu_{i j k}\left(w^{(4)}\right) .
\end{align*}
$$

On the basis of (29) we find that the vector fields $v^{(s)},(s=1,2,3,4)$ satisfy the equations

$$
\begin{equation*}
\left[\tau_{i j}\left(v^{(s)}\right)+\sigma_{i j}\left(v^{(s)}\right)\right]_{, i}=0, \quad\left[\mu_{i j k}\left(v^{(s)}\right)\right]_{, i}+\sigma_{j k}\left(v^{(s)}\right)=0, \tag{32}
\end{equation*}
$$

on B, and the conditions

$$
\begin{equation*}
\left[\tau_{\alpha i}\left(v^{(s)}\right)+\sigma_{\alpha i}\left(v^{(s)}\right)\right] n_{\alpha}=0, \quad \mu_{\alpha i j}\left(v^{(s)}\right) n_{\alpha}=0 \text { on } \Gamma . \tag{33}
\end{equation*}
$$

In view of (32) and (33), we get

$$
\begin{equation*}
\int_{\Sigma_{2}}\left[\tau_{3 \alpha}\left(v^{(s)}\right)+\sigma_{3 \alpha}\left(v^{(s)}\right)\right] d v=0 . \tag{34}
\end{equation*}
$$

The first of (34) follows from the relations

$$
\begin{aligned}
& \int_{\Sigma_{2}}\left(\tau_{31}+\sigma_{31}\right) d a=\int_{\Sigma_{2}}\left(\tau_{13}+\sigma_{13}+\sigma_{31}-\sigma_{13}\right) d a= \\
& \quad=\int_{\Sigma_{2}}\left[\tau_{13}+\sigma_{13}+x_{1}\left(\tau_{\alpha 3, \alpha}+\sigma_{\alpha 3, \alpha}+\tau_{33,3}+\sigma_{33,3}\right)+\mu_{i 13, i}-\mu_{i 31, i}\right] d a= \\
& \quad=\int_{\Gamma}\left[x_{1}\left(\tau_{\alpha 3}+\sigma_{\alpha 3}\right) n_{\alpha}+\left(\mu_{\alpha 13}-\mu_{\alpha 31}\right) n_{\alpha}\right] d s=0 .
\end{aligned}
$$

In a similar way we can prove the second relation of (34). Let $u=\left(u_{i}, \varphi_{j k}\right) \in Q$. By (9), (10), (18)-(20) and (30), we get

$$
\begin{align*}
<u, v^{(\alpha)}>= & \int_{\partial B}\left[v_{i}^{(\alpha)} T_{i}(u)+\psi_{j k}^{(\alpha)} M_{j k}(u)\right] d a= \\
= & \int_{\Sigma_{2}}\left\{v_{i}^{(\alpha)}\left[\tau_{3 i}(u)+\sigma_{3 i}(u)\right]+\psi_{j k}^{(\alpha)} \mu_{3 j k}(u)\right\} d a- \\
& \quad-\int_{\Sigma_{1}}\left\{v_{i}^{(\alpha)}\left[\tau_{3 i}(u)+\sigma_{3 i}(u)\right]+\psi_{j k}^{(\alpha)} \mu_{3 j k}(u)\right\} d a=h \varepsilon_{\alpha \beta} H_{\beta}(u)=0 \\
<u, v^{(3)}>= & h H_{3}(u), \quad<u, v^{(4)}>=h R_{3}(u)=0 . \tag{35}
\end{align*}
$$

On the other hand, by $(11),(4),(31)$ and (33) we find that

$$
\begin{equation*}
<u, v^{(3)}>=\int_{\partial B}\left[u_{i} T_{i}\left(v^{(3)}\right)+\varphi_{j k} M_{j k}\left(v^{(3)}\right)\right] d a=E(u) \tag{36}
\end{equation*}
$$

where

$$
\begin{align*}
E(u)= & \int_{\Sigma_{2}}\left\{u_{i}\left[\tau_{3 i}\left(v^{(3)}\right)+\sigma_{3 i}\left(v^{(3)}\right)\right]+\varphi_{j k} \mu_{3 j k}\left(v^{(3)}\right)\right\} d a- \tag{37}\\
& -\int_{\Sigma_{1}}\left\{u_{i}\left[\tau_{3 i}\left(v^{(3)}\right)+\sigma_{3 i}\left(v^{(3)}\right)\right]+\varphi_{j k} \mu_{3 j k}\left(v^{(3)}\right)\right\} d a
\end{align*}
$$

We introduce the notations

$$
\begin{align*}
L_{\alpha s} & =\int_{\Sigma_{1}}\left\{x_{\alpha}\left[\tau_{33}\left(v^{(s)}\right)+\sigma_{33}\left(v^{(s)}\right)\right]+\mu_{3 \alpha 3}\left(v^{(s)}\right)-\mu_{33 \alpha}\left(v^{(s)}\right)\right\} d a \\
L_{3 s} & =\int_{\Sigma_{1}}\left[\tau_{33}\left(v^{(s)}\right)+\sigma_{33}\left(v^{(s)}\right)\right] d a \tag{38}\\
L_{4 s} & =\int_{\Sigma_{1}} \varepsilon_{\alpha \beta}\left\{x_{\alpha}\left[\tau_{3 \beta}\left(v^{(s)}\right)+\sigma_{3 \beta}\left(v^{(s)}\right)\right]+\mu_{3 \alpha \beta}\left(v^{(s)}\right)\right\} d a
\end{align*}
$$

It follows from (10), (11) and (30) that

$$
\begin{align*}
<v^{(\alpha)}, v^{(s)}> & =h \varepsilon_{\alpha \beta} L_{\beta s}, \quad<v^{(3)}, v^{(s)}>=h L_{4 s} \tag{39}\\
& <v^{(4)}, v^{(s)}>=h L_{3 s}
\end{align*}
$$

In this case, by (35)-(37) and (39), the system (15) becomes

$$
\begin{equation*}
\sum_{s=1}^{4} L_{r s} \tau_{s}=E(u) \delta_{r 4}, \quad(r=1,2,3,4) \tag{40}
\end{equation*}
$$

We note that $L_{r s},(r, s=1,2,3,4)$, depend only on the cross section and the constitutive coefficients. The system (40) defines $\tau_{j}(\cdot),(j=1,2,3,4)$, on the set of all equilibrium vector fields that satisfy the conditions (18)-(20).

References

[1] W. A. DAY: Generalized torsion: The solution of a problem of Truesdell's, Arch. Rational Mech. Anal., 76(1981), 283-288.
[2] A. C. ERINGEN, E. S. SUHUBI: Nonlinear theory of simple microelastic solids, Int. J. Engng. Sci., 2(1964), I: 189-203; II: 389-404.
[3] A. C. ERINGEN: Microcontinuum Field Theories I. Foundations and Solids, SpringerVerlag, New York, Berlin, Heidelberg, 1999.
[4] A. E. GREEN, R. S. RIVLIN: Multipolar continuum mechanics, Arch. Rational Mech. Anal., 17(1964), 113-147.
[5] D. IESAN: Saint-Venant's problem for inhomogeneous and anisotropic elastic solids with microstructure, Arch. Mechanics, 29(1977), 419-430.
[6] R. D. MINDLIN: Microstructure in linear elasticity, Arch. Rational Mech. Anal., 16(1964), 51-77.
[7] C. TRUESDELL: The rational mechanics of materials-past present, future, Appl. Mech. Reviews, 12(1959), 75-80.
[8] C. TRUESDELL: The rational mechanics of materials-past, present, future (Corrected and modified reprint of [7]), pp. 225-236 of Applied Mechanics Surveys, Spartan Books, 1966.
[9] C. TRUESDELL: Some challenges offered to analysis by rational thermomechanics, pp. 495-603 of Contemporary Developments in Continuum Mechanics and Partial Differential Equations, G.M. de la Penha \& L.A. Medeiros, Eds., North-Holland, 1978.

