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1 Introduction

Let K denote the set of all displacement fields that correspond to the so-
lutions of the torsion problem. Truesdell [7-9] proposed the following problem:
for an isotropic linearly elastic cylinder subject to end tractions equipolent to
a torque M, define a functional 7(-) on K such that M = Dr(u), for each
u € K, where D depends only on the cross section and elasticity field. In [1],
Day established an elegant solution of Truesdell’s problem and called 7(u) the
generalized twist at u. Truesdell’s problem can be set for the torsion of elastic
cylinders with microstructure. The theory of media with microstructure was
developed in various works (see [2-4,6]). The torsion problem for elastic cylin-
ders with microstructure has been investigated in [5]. In this paper we use the
method established by Day [1] to solve Truesdell’s problem for inhomogeneous
and anisotropic bodies with microstructure.

2 Basic Equations

Throughout this paper B denotes a bounded regular region of three-di-
mensional Euclidean space. We call 0B the boundary of B, and designate by n
the outward unit normal of dB. Throughout this paper a rectangular Cartesian
coordinate system Ox(k = 1,2, 3) is used. Letters in boldface stand for tensors
of an order p > 1, and if v has the order p, we write v;;_ (p subscripts) for
the components of v in the rectangular Cartesian coordinate frame. We shall
employ the usual summation and differentiation conventions: Greek subscripts
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are understood to range over the integers (1,2), where Latin subscripts-unless
otherwise specified-are confined to the range (1,2, 3); summation over repeated
subscripts is implied and subscripts preceded by a comma denote partial differ-
entiation with respect to the corresponding Cartesian coordinate.

Assume that B is occupied by a linearly elastic material with microstruc-
ture. Let u; denote the components of the displacement vector field, and let
@i; denote the components of the microdeformation tensor. We introduce the

twelve-dimensional vector u = (u1,u2,us, P11, 922,---,%13) = (U, pjk). The
strain measures associated with u are defined by
1
eij(u) = 5 (uij +uji), vii(w) = wjg = @ij, Kige(u) = G, (1)

where e;; is the macrostrain tensor, v;; is the relative deformation tensor and
Kiji is the microdeformation gradient tensor [3,6]. The constitutive equations
appropriate to the linearized theory of elasticity are

Tij (u) = Cijrsers (u) + Grsij'}’rs (u) + qurij’ipqr (u)7
Uij(”) = Gisters (U) + Brsz’j’}’rs(u) + Diqurﬁpqr(u)a (2)
pije(w) = Fijrrsers(w) + Drsijiyrs (W) + Aijkpgrfpgr (1),

where 7;;(u) denotes the stress tensor, o;;(u) means the relative stress tensor,
tijk(u) is the double stress tensor associated with w, and A;jkpgr, Bijrs, - - -
Gijrs are constitutive coefficients.

We call a vector field v = (u;,pjx) an equilibrium vector field for B if
u;, i € CY(B) N C*(B) and

[7ij(u) + o35 (u)] i = 0, (pijr(u))i + ojr(u) =0, (3)

hold on B. The traction and the double-traction at regular points of 9B corre-
sponding to u are defined by

Ti(u) = (15i(u) + oji(u))ng, Mi(u) = pirij(u)n,. (4)
The strain energy density per unit volume corresponding to u is given by
1 1
€(u) = iCijrseij(u)ers(u) + §Bijr5%j(u)’yrs(u)+
1 (5)

+ iAijkrmnK/ijk(u)/irmn(u) + DijkrmVij(u)ﬁkrm(u)+
+ Eijirmbijh (W) erm (u) + Gijrryij(uw)epr (w),

where Ajjirmn, Bijrss Cijrss Dijkrm, Fijkrm and Giji, are smooth functions on B
such that
Aijkrmn = Armm’jka Bijrs = Brsij’ Oijrs = CT‘Sij) (6)
Ejkrs = Fijksra Gijrs = Gijsr-
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We assume that the strain energy density is a positive definite quadratic
form in the components of the strain measures.
The strain energy E(u) corresponding to a smooth vector field u on B is

Blu) = /B () dv. (1)

The functional E(-) generates the bilinear functional

E(u,v) = ;/B{Cijrseij(u)ers(v) + Bijrsij(w)yrs(v)+

+ Aijkrmn’iijk (u)’irmn (U) + Dijkrs [’Yij (U)Kkrm (U)+ (8)
+ 7ij (V) Kgrm (u)] + E’jkrm[ﬂijk(u)erm (v)+
+ Kk (V) erm(W)] + Gijkr [Yij (w)err (v) 4+ vij(v)exy (u)] fdv.

We introduce the notations
<u,v>=2F(u,v), |ull?=<u,u>. 9)

For any equilibrium vector fields v = (u;, p;i) and v = (v;, 1j%) one has

<u,v>= / 0T (u) + Vi Mjr(u)]da, (10)
OB
and
/ Ty (0) + 056 My (v)]da = / i) + b Mis(w)lda. (1)
oB oB

Following [1], for any given equilibrium vector fields u, v, v v®) and v
we define the real function f of the variables &1, &2, &3 and &4 by

4
f=lu=Y &2 (12)
s=1

In the following section the vector field u will be a solution of a certain boundary-
value problem and the equilibrium vector fields v(*), (s = 1,2,3,4), will be
prescribed. We have

4 4
f= Z Arsgrfs - 2255 < u, U(S) > +HUH§7 (13)

r,s=1 s

where
Aps =<0 00 > (r;5=1,2,3,4). (14)
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Since the matrix (A,s) is positive definite, f will be a minimum at (aj(u),
ag(u), as(u), ayg(w)) if and only if ay (u), ae(u), az(u) and ag(u) satisfy the equa-
tions

4
ZArsas(u) =< u,o" > (r=1,2,3,4). (15)
s=1

In order to extend the result of [1] to the case of bodies with microstructure,
we rephrase Truesdell’s problem in the following manner: for a linearly elastic
cylinder subject to end tractions equipolent to a torque M, define the quantities
Ts, (s = 1,2,3,4), in such a way that

4
M6y = Drers, (r=1,2,3,4), (16)
s=1
where 0p, is the Kronecker delta, and D, (r,s = 1,2,3,4), depend only the
cross section and the constitutive coefficients.

3 Generalized Torsion

Assume that the region B from here on refers to the interior of a right
cylinder of length h with the open cross section X and the lateral boundary II.
We denote by L the boundary of the generic cross section X. The rectangular
Cartesian coordinate is chosen such that the xs axis is parallel to the generators
of B and the z10z9 plane contains one of the terminal cross sections. We denote
by Y1 and X9, respectively, the cross section located at x3 = 0 and z3 = h. In
view of the foregoing agreements we have

B = {x|(z1,22) € £,0 < zg < h}, I ={x|(z1,22) € L,0<z3<h},
X = {X|(5L‘13$2) € an?) = 0}7 Yo = {X|(I1,$2) € Eax3 = h}7

where x = (z1, z2, x3).

We assume for the remainder of this paper that the functions A;jkrmmn,
Bijrs, Cijrss Dijkrs, Fijkrm, Gijrs are independent of the axial coordinate and be-
long to C*°(¥1). Moreover, we assume that ¥; is C°°-smooth.

We denote by R(u) and H(u), respectively, the resultant force and the re-

sultant moment about O of the tractions associated with u, acting on >, i.e.,
Ri(u) = / [13i(u) + o3i(u)]da,
P
Ho(w) = | capfeplma(e) + osa(w)] + pam(u) ~ pa()}de, (1)
P

H3<u) = \/E 5aﬁ{xa [TSB(U) + Ugg(U)] + MSaﬁ(u)}daa
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where €,3 is the two-dimensional alternating symbol.
By a solution of the generalized torsion problem we mean an equilibrium
vector field u that satisfies the conditions

[Tai(w) + 0ai(w)]ng =0,  fraij(u)ng =0 onlI, (18)
Ri(u) =0, Ha(u) =0, Hs(u)=M, (19)
[735(w) 4 o35(w)] (21, 22, 0) = [73(u) + 03 (u)] (21, 2, h),
sk (w)] (@1, 22,0) = [pgjr(u)] (@1, 32, h),
where M is a prescribed constant.
Let @ denote the set of all equilibrium vector fields u that satisfy the con-
ditions (18)-(20).
In what follows we will have occasion to use some results concerning the

generalized plane strain problem for bodies with microstructure [5].
The state of generalized plane strain of B is characterized by

u; = ui(r1,22),  ©jk = @jp(r1,v2), (T1,72) € X1. (21)
It follows from (1) and (21) that es3(u) = 0, k3;,(u) = 0 and

1 1
eaﬂ(u) = i(ua,ﬁ + U,G,oz)v 6&3(“) = 5“3,047 (22)

'Yai(u) = Uj,a0 — Povis ’731'(“) = —¥3i, Kajk(u) = Pjk,o-
By (2) and (22),

Toi (u) = Oﬂjﬁejﬁ (u) + ijoai'}/kj (u) + Fﬁrsai”ﬂrs ('LL),
Oij (u) = zgr,@erﬁ(u) + Bkrij’}/kr(u) + DijBTsK/BT‘S(u)? (23)
Mg (U) = Fon]rﬁerﬁ(u) + Drsaz’j’)’rs (u) + Aaijﬁrs’fﬁrs (u)

The equations of equilibrium (3), in the presence of the body force f; and
body double-force L;;, take the form

(Taj (1) + 00j(u) .o+ fi = 0, (Haij(u) o + 0ij(u) + Lij = 0. (24)
We assume that on the lateral boundary we have the conditions
(Tai(w) + 0ai(w))na = Piy paij(u)na = Qij, (25)

where P; and @);; are prescribed functions.
Clearly, the state of generalized plane strain demands that f;, L;;, P; and
Q;; be independent of the axial coordinate.
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The generalized plane strain problem consists in finding a vector field u €
C(31) N C%(X;) which satisfies the equations (24) on X; and the boundary
conditions (25) on I'.

The functions 73;(u) and psg;;(u) can be calculated after the determination
of u.

The conditions of equilibrium for the cylinder B are

fida + / Pids =0,
1 r

(26)
/ €a5($afg + Lag)da + / Eag(xapg + Qag)ds =0
ol r
and
/ (w2 fs + Loz — Lag)da + /(902133 + Q23 — Q32)ds—
ol r
— / (132(u) + o32(u))da = 0,
s (27)

/ (x1f3+ L1z — Lz1)da + /(901133 + Q13 — Q31)ds—
ol r

- / (131(u) + 031(u))da = 0.
¥

The conditions (27) are identically satisfied on the basis of (24) and (25).
Indeed, we have

/E () + () = /E () + 0250 + 0321 — 025w =
= /E [T23(w) 4+ o23(w) + z2{Ta3(1) o + 0az(w) o + f3}+
¥ Loy — L + (na2s(u) — poa(u) Jda =
= [ Aot + sl o + 22 + Lo
— L3o + (pa23(u) — pas2(u)) o tda =
= /F(x2P3 + Q23 — Q32)ds + / (z2f3 4 Lag — L32)da.

¥

In a similar way we can prove that the second condition from (27) is satisfied.

It is known that [5] the boundary-value problem (24), (25) has a solution
belonging to C*°(X;) if and only if the C* functions f;, L;j, P; and Q;; satisfy
the conditions (26).
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In what follows we will use four special problems A®), (s = 1,2,3,4), of
generalized plane strain for the domain ¥;. The problem A®) corresponds to

the system of loading { fi(s), L Pi(s), QS)} where

1]

fz‘(ﬂ) = [(Caizs + G33ai + Gaiss + B33ai)ep®y + (Daismn + F3mnai)Emns),a;
11 = [(Caips + Gpai + Gaigs + Bapai)espts + (Daispw + Fapai)pu]
I = (Cuiss + Gsai + Gaizs + B3sai)
Lz(?) = [(Faij33 + D33aij)€6uTy + AaijzmnEmnsl,a + (Gijaz + B33ij)ep, v+

+ Dij3mnEmns;
LS')) = [(Faijps + D3paij)€8pT3 + Aaijanpenplia + (Bsaij + Gijas)egatpt

+ D;j30888as

LE;.L) = (Fuijss + D33aij) 0 + Gijss + Bssij)
Pi(ﬁ) = [(Caizs + G33ai + Gaiss + B33ai)evs®y + (Daismn + Fmnai)€nms)Nas
P = [(Caips + G3pai + Gaips + Bspai)epsts + (Daisp + Fopvai)evplna,
PY = —(Cuiss + Gs30i + Gaiss + Bssai)a,

Qz(f) [(Faijzs + Dssaij)evs@y + Aaijsmnenmp]na

3
QE]-) = [(Faijps + D3paij)epsts + Aaijspvvplnias

QE}” = —(Fij33 + D33aij)Na,
(28)

where €;;1, is the alternating symbol. It is a simple matter to verify that the nec-
essary and sufficient conditions (26) for the existence of a solution are satisfied
for each boundary-value problem A(®).

We denote by w(®) = (wgs), ws)) the solution of the problem A®). Thus, the
vector fields w(®), (s = 1,2,3,4), are characterized by

[rag () + 00 ()] .o+ 117 = 0,
(1aij (@) + 035(w®) + L = 0 on 5y, (29)
[Tm-(w(s)) + Uai(w(s))]na = PZ-(S), Lo (w(s))na = ij) onT.

In what follows we assume that the vector fields w(®), (s =1,2,3,4) are known.
We note that w® depend only on the domain ¥; and the constitutive coeffi-
cients.
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We define the vector fields v(®) = (vfs),z/fj(.i)) on B, (s =1,2,3,4), by

(8) (ﬂ)

(ﬁ) 55 aBT3 —i—w(m V3 = €BaLal3 + W3
3 3
—eagzprs +wl, of) =wl®, (30)

4) _ w(4) v:(;l) =x3+ w§4),

%(Z EjksT3 + w;}?: ¢](i) = wj(i)

It follows from (2) and (30) that

Tij ('U(ﬁ)) = (Cij33 + G33i5)€ Ty + Famnij€mns + Tij(w (ﬁ))’
Tij (U(S)) = (Cijas + G3aij)€pas + Fapuijepy + Tij(w (3))7
Tij (U(4)) = Cjjaz + G33i5 + 75 (w “ ))a
7ij(0?) = (Gijss + Bssij)epvry + Dijsmnemng + 0ij(w!?),
Oij (U(g)) (Bsaij + Gijas)€paTs + Dijspvepy + o (w (3)), (31)
Oij (0(4)) = Giijaz + Bssij + 0i5(w (4))a
i (V) = (Fijias + Dasijr)esutn + Aijiamnemns + pijr(w'®),
1ijk (V) = (Fijkas + D3aijr)ega®s + Aijkspepw + pijr(w®),
pijr (V) = Fijras + Dagij + pijr(w™).

On the basis of (29) we find that the vector fields v(*), (s = 1,2, 3,4) satisfy the
equations

735 (0) + 03 (0] = 0, [ije(©)] + o(0) =0, (32)
on B, and the conditions
[Tai(v(s)) + Uai(v(s))]na =0, um-j(v(s))na =0 onI. (33)

In view of (32) and (33), we get
[ male) + 02 (0))dv =0, (34)
P!
The first of (34) follows from the relations

/(731-1-031)61&:/ (r13 + 013 + 031 — 013)da =
22 E2

= / [T13 + 013 + 21(Tas,0 + Tas,a + 33,3 + 033,3) + fi13.: — Hiz1,i)da =
Yo

= /[xl(fag + 0a3)Na + (fa13 — Ha31)Nalds = 0.
r
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In a similar way we can prove the second relation of (34). Let u = (u;, pji) € Q.
By (9), (10), (18)-(20) and (30), we get

<u, v > = / [vz(a)Ti(u) + wj(z)Mjk(u)]da =
0B
= /. {0l [r3i (u) + o34(w)] + ) 3 (w) yda—
2

- /2 {08 [r3i(u) + o34(w)] + ) pau(w) yda = heasHp(u) = 0,

<u,v® > = hH3(u), <u,v™ >=hR3(u)=0.

(35)
On the other hand, by (11), (4), (31) and (33) we find that
< u, v® >= / [UiTi(U(g)) + SOjijk(U(3))]da = E(u), (36)
oB
where
E(u) = / {75 (0®) + 03 (V)] + @k puajn (0P yda—
2 (37)
— | Auilrsi(®) + 05 (0] + pjipzgn () }da.
P
We introduce the notations
Los = / {zal33(v)) + 0330 + p3as () — p33a () }da,
3
Ly — / [733(0) + 033(0)]da, (38)
]
Lie = [ calzalra(o) + 035 (0)] + paaalo)) de.
1
It follows from (10), (11) and (30) that
<ol ) = heagLlgs, < v® () >= hL,, (39)
<o® v >= hL,..
In this case, by (35)-(37) and (39), the system (15) becomes
4
> Lete = E(u)dr, (r=1,2,3,4). (40)
s=1

We note that L,s, (r,s = 1,2,3,4), depend only on the cross section and the
constitutive coefficients. The system (40) defines 7;(-), (j = 1,2, 3,4), on the set
of all equilibrium vector fields that satisfy the conditions (18)-(20).
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