Note di Matematica 27, n. 2, 2007, 121–130.

Generalized torsion of elastic cylinders with microstructure

Dorin Ieşan

Department of Mathematics, "Al.I. Cuza" University, Bd. Carol I, No 11, 700506 Iaşi, Romania, iesan@uaic.ro

Received: 13/06/2006; accepted: 15/07/2006.

Abstract. In this paper we use the method established by Day [1] to solve Truesdell's problem rephrased for the torsion of elastic cylinders with microstructure.

Keywords: torsion, generalized twist, bodies with microstructure

MSC 2000 classification: primary 74G65, secondary 74A35

1 Introduction

Let K denote the set of all displacement fields that correspond to the solutions of the torsion problem. Truesdell [7-9] proposed the following problem: for an isotropic linearly elastic cylinder subject to end tractions equipolent to a torque M, define a functional $\tau(\cdot)$ on K such that $M = D\tau(\mathbf{u})$, for each $\mathbf{u} \in K$, where D depends only on the cross section and elasticity field. In [1], Day established an elegant solution of Truesdell's problem and called $\tau(\mathbf{u})$ the generalized twist at \mathbf{u} . Truesdell's problem can be set for the torsion of elastic cylinders with microstructure. The theory of media with microstructure was developed in various works (see [2-4,6]). The torsion problem for elastic cylinders with microstructure has been investigated in [5]. In this paper we use the method established by Day [1] to solve Truesdell's problem for inhomogeneous and anisotropic bodies with microstructure.

2 Basic Equations

Throughout this paper B denotes a bounded regular region of three-dimensional Euclidean space. We call ∂B the boundary of B, and designate by **n** the outward unit normal of ∂B . Throughout this paper a rectangular Cartesian coordinate system $Ox_k(k = 1, 2, 3)$ is used. Letters in boldface stand for tensors of an order $p \ge 1$, and if **v** has the order p, we write $v_{ij\dots kl}$ (p subscripts) for the components of **v** in the rectangular Cartesian coordinate frame. We shall employ the usual summation and differentiation conventions: Greek subscripts are understood to range over the integers (1, 2), where Latin subscripts-unless otherwise specified-are confined to the range (1, 2, 3); summation over repeated subscripts is implied and subscripts preceded by a comma denote partial differentiation with respect to the corresponding Cartesian coordinate.

Assume that B is occupied by a linearly elastic material with microstructure. Let u_i denote the components of the displacement vector field, and let φ_{ij} denote the components of the microdeformation tensor. We introduce the twelve-dimensional vector $u = (u_1, u_2, u_3, \varphi_{11}, \varphi_{22}, \ldots, \varphi_{13}) = (u_i, \varphi_{jk})$. The strain measures associated with u are defined by

$$e_{ij}(u) = \frac{1}{2}(u_{i,j} + u_{j,i}), \quad \gamma_{ij}(u) = u_{j,i} - \varphi_{ij}, \quad \kappa_{ijk}(u) = \varphi_{jk,i}, \tag{1}$$

where e_{ij} is the macrostrain tensor, γ_{ij} is the relative deformation tensor and κ_{ijk} is the microdeformation gradient tensor [3,6]. The constitutive equations appropriate to the linearized theory of elasticity are

$$\tau_{ij}(u) = C_{ijrs}e_{rs}(u) + G_{rsij}\gamma_{rs}(u) + F_{pqrij}\kappa_{pqr}(u),$$

$$\sigma_{ij}(u) = G_{ijrs}e_{rs}(u) + B_{rsij}\gamma_{rs}(u) + D_{ijpqr}\kappa_{pqr}(u),$$

$$\mu_{ijk}(u) = F_{ijkrs}e_{rs}(u) + D_{rsijk}\gamma_{rs}(u) + A_{ijkpqr}\kappa_{pqr}(u),$$

(2)

where $\tau_{ij}(u)$ denotes the stress tensor, $\sigma_{ij}(u)$ means the relative stress tensor, $\mu_{ijk}(u)$ is the double stress tensor associated with u, and $A_{ijkpqr}, B_{ijrs}, \ldots, G_{ijrs}$ are constitutive coefficients.

We call a vector field $u = (u_i, \varphi_{jk})$ an equilibrium vector field for B if $u_i, \varphi_{jk} \in C^1(\overline{B}) \cap C^2(B)$ and

$$[\tau_{ij}(u) + \sigma_{ij}(u)]_{,i} = 0, \quad (\mu_{ijk}(u))_{,i} + \sigma_{jk}(u) = 0, \tag{3}$$

hold on B. The traction and the double-traction at regular points of ∂B corresponding to u are defined by

$$T_i(u) = (\tau_{ji}(u) + \sigma_{ji}(u))n_j, \ M_{ij}(u) = \mu_{rij}(u)n_r.$$
(4)

The strain energy density per unit volume corresponding to u is given by

$$\varepsilon(u) = \frac{1}{2}C_{ijrs}e_{ij}(u)e_{rs}(u) + \frac{1}{2}B_{ijrs}\gamma_{ij}(u)\gamma_{rs}(u) + + \frac{1}{2}A_{ijkrmn}\kappa_{ijk}(u)\kappa_{rmn}(u) + D_{ijkrm}\gamma_{ij}(u)\kappa_{krm}(u) + + F_{ijkrm}\kappa_{ijk}(u)e_{rm}(u) + G_{ijkr}\gamma_{ij}(u)e_{kr}(u),$$
(5)

where $A_{ijkrmn}, B_{ijrs}, C_{ijrs}, D_{ijkrm}, F_{ijkrm}$ and G_{ijkr} are smooth functions on \overline{B} such that

$$A_{ijkrmn} = A_{rmnijk}, \quad B_{ijrs} = B_{rsij}, \quad C_{ijrs} = C_{rsij},$$

$$F_{ijkrs} = F_{ijksr}, \quad G_{ijrs} = G_{ijsr}.$$
(6)

Generalized torsion of elastic cylinders

We assume that the strain energy density is a positive definite quadratic form in the components of the strain measures.

The strain energy E(u) corresponding to a smooth vector field u on B is

$$E(u) = \int_{B} \varepsilon(u) dv.$$
⁽⁷⁾

The functional $E(\cdot)$ generates the bilinear functional

$$E(u,v) = \frac{1}{2} \int_{B} \{C_{ijrs} e_{ij}(u) e_{rs}(v) + B_{ijrs} \gamma_{ij}(u) \gamma_{rs}(v) + A_{ijkrmn} \kappa_{ijk}(u) \kappa_{rmn}(v) + D_{ijkrs} [\gamma_{ij}(u) \kappa_{krm}(v) + \gamma_{ij}(v) \kappa_{krm}(u)] + F_{ijkrm} [\kappa_{ijk}(u) e_{rm}(v) + \kappa_{ijk}(v) e_{rm}(u)] + G_{ijkr} [\gamma_{ij}(u) e_{kr}(v) + \gamma_{ij}(v) e_{kr}(u)] \} dv.$$

$$(8)$$

We introduce the notations

$$\langle u, v \rangle = 2E(u, v), \quad ||u||_e^2 = \langle u, u \rangle.$$
 (9)

For any equilibrium vector fields $u = (u_i, \varphi_{jk})$ and $v = (v_i, \psi_{jk})$ one has

$$\langle u, v \rangle = \int_{\partial B} [v_i T_i(u) + \psi_{jk} M_{jk}(u)] da, \qquad (10)$$

and

$$\int_{\partial B} [u_i T_i(v) + \varphi_{jk} M_{jk}(v)] da = \int_{\partial B} [v_i T_i(u) + \psi_{jk} M_{jk}(u)] da.$$
(11)

Following [1], for any given equilibrium vector fields $u, v^{(1)}, v^{(2)}, v^{(3)}$ and $v^{(4)}$ we define the real function f of the variables ξ_1, ξ_2, ξ_3 and ξ_4 by

$$f = \|u - \sum_{s=1}^{4} \xi_s v^{(s)}\|_e^2.$$
(12)

In the following section the vector field u will be a solution of a certain boundaryvalue problem and the equilibrium vector fields $v^{(s)}$, (s = 1, 2, 3, 4), will be prescribed. We have

$$f = \sum_{r,s=1}^{4} A_{rs} \xi_r \xi_s - 2 \sum_{s=1}^{4} \xi_s < u, v^{(s)} > + \|u\|_e^2,$$
(13)

where

$$A_{rs} = \langle v^{(r)}, v^{(s)} \rangle, \quad (r, s = 1, 2, 3, 4).$$
 (14)

D. Ieşan

Since the matrix (A_{rs}) is positive definite, f will be a minimum at $(\alpha_1(u), \alpha_2(u), \alpha_3(u), \alpha_4(u))$ if and only if $\alpha_1(u), \alpha_2(u), \alpha_3(u)$ and $\alpha_4(u)$ satisfy the equations

$$\sum_{s=1}^{4} A_{rs} \alpha_s(u) = \langle u, v^{(r)} \rangle, \quad (r = 1, 2, 3, 4).$$
(15)

In order to extend the result of [1] to the case of bodies with microstructure, we rephrase Truesdell's problem in the following manner: for a linearly elastic cylinder subject to end tractions equipolent to a torque M, define the quantities τ_s , (s = 1, 2, 3, 4), in such a way that

$$M\delta_{r4} = \sum_{s=1}^{4} D_{rs}\tau_s, \quad (r = 1, 2, 3, 4), \tag{16}$$

where δ_{pq} is the Kronecker delta, and D_{rs} , (r, s = 1, 2, 3, 4), depend only the cross section and the constitutive coefficients.

3 Generalized Torsion

Assume that the region B from here on refers to the interior of a right cylinder of length h with the open cross section Σ and the lateral boundary Π . We denote by L the boundary of the generic cross section Σ . The rectangular Cartesian coordinate is chosen such that the x_3 axis is parallel to the generators of B and the x_1Ox_2 plane contains one of the terminal cross sections. We denote by Σ_1 and Σ_2 , respectively, the cross section located at $x_3 = 0$ and $x_3 = h$. In view of the foregoing agreements we have

$$B = \{ \mathbf{x} | (x_1, x_2) \in \Sigma, 0 < x_3 < h \}, \quad \Pi = \{ \mathbf{x} | (x_1, x_2) \in L, 0 \le x_3 \le h \}, \\ \Sigma_1 = \{ \mathbf{x} | (x_1, x_2) \in \Sigma, x_3 = 0 \}, \quad \Sigma_2 = \{ \mathbf{x} | (x_1, x_2) \in \Sigma, x_3 = h \},$$

where $\mathbf{x} = (x_1, x_2, x_3)$.

We assume for the remainder of this paper that the functions A_{ijkrmn} , $B_{ijrs}, C_{ijrs}, D_{ijkrs}, F_{ijkrm}, G_{ijrs}$ are independent of the axial coordinate and belong to $C^{\infty}(\overline{\Sigma}_1)$. Moreover, we assume that Σ_1 is C^{∞} -smooth.

We denote by $\mathbf{R}(u)$ and $\mathbf{H}(u)$, respectively, the resultant force and the resultant moment about O of the tractions associated with u, acting on Σ_2 , i.e.,

$$R_{i}(u) = \int_{\Sigma_{2}} [\tau_{3i}(u) + \sigma_{3i}(u)] da,$$

$$H_{\alpha}(u) = \int_{\Sigma_{2}} \varepsilon_{\alpha\beta} \{ x_{\beta} [\tau_{33}(u) + \sigma_{33}(u)] + \mu_{3\beta3}(u) - \mu_{33\beta}(u) \} da, \qquad (17)$$

$$H_{3}(u) = \int_{\Sigma_{2}} \varepsilon_{\alpha\beta} \{ x_{\alpha} [\tau_{3\beta}(u) + \sigma_{3\beta}(u)] + \mu_{3\alpha\beta}(u) \} da,$$

Generalized torsion of elastic cylinders

where $\varepsilon_{\alpha\beta}$ is the two-dimensional alternating symbol.

By a solution of the generalized torsion problem we mean an equilibrium vector field u that satisfies the conditions

$$[\tau_{\alpha i}(u) + \sigma_{\alpha i}(u)]n_{\alpha} = 0, \quad \mu_{\alpha i j}(u)n_{\alpha} = 0 \text{ on } \Pi,$$
(18)

$$\begin{bmatrix} \tau_{\alpha i}(u) + \sigma_{\alpha i}(u) \end{bmatrix} n_{\alpha} = 0, \quad \mu_{\alpha i j}(u) n_{\alpha} = 0 \quad \text{on II}, \tag{18}$$
$$R_{i}(u) = 0, \quad H_{\alpha}(u) = 0, \quad H_{3}(u) = M, \tag{19}$$
$$\begin{bmatrix} \tau_{3j}(u) + \sigma_{3j}(u) \end{bmatrix} (x_{1}, x_{2}, 0) = [\tau_{3j}(u) + \sigma_{3j}(u)] (x_{1}, x_{2}, h), \tag{20}$$

$$\tau_{3j}(u) + \sigma_{3j}(u)](x_1, x_2, 0) = [\tau_{3j}(u) + \sigma_{3j}(u)](x_1, x_2, h), [\mu_{3jk}(u)](x_1, x_2, 0) = [\mu_{3jk}(u)](x_1, x_2, h),$$
(20)

where M is a prescribed constant.

Let Q denote the set of all equilibrium vector fields u that satisfy the conditions (18)-(20).

In what follows we will have occasion to use some results concerning the generalized plane strain problem for bodies with microstructure [5].

The state of generalized plane strain of B is characterized by

$$u_i = u_i(x_1, x_2), \quad \varphi_{jk} = \varphi_{jk}(x_1, x_2), \quad (x_1, x_2) \in \Sigma_1.$$
 (21)

It follows from (1) and (21) that $e_{33}(u) = 0$, $\kappa_{3jk}(u) = 0$ and

$$e_{\alpha\beta}(u) = \frac{1}{2}(u_{\alpha,\beta} + u_{\beta,\alpha}), \quad e_{\alpha3}(u) = \frac{1}{2}u_{3,\alpha},$$

$$\gamma_{\alpha i}(u) = u_{i,\alpha} - \varphi_{\alpha i}, \quad \gamma_{3i}(u) = -\varphi_{3i}, \quad \kappa_{\alpha jk}(u) = \varphi_{jk,\alpha}.$$
(22)

By (2) and (22),

$$\tau_{\alpha i}(u) = C_{\alpha i j \beta} e_{j \beta}(u) + G_{k j \alpha i} \gamma_{k j}(u) + F_{\beta r s \alpha i} \kappa_{\beta r s}(u),$$

$$\sigma_{i j}(u) = G_{i j r \beta} e_{r \beta}(u) + B_{k r i j} \gamma_{k r}(u) + D_{i j \beta r s} \kappa_{\beta r s}(u),$$

$$\mu_{\alpha i j}(u) = F_{\alpha i j r \beta} e_{r \beta}(u) + D_{r s \alpha i j} \gamma_{r s}(u) + A_{\alpha i j \beta r s} \kappa_{\beta r s}(u).$$
(23)

The equations of equilibrium (3), in the presence of the body force f_i and body double-force L_{ij} , take the form

$$(\tau_{\alpha j}(u) + \sigma_{\alpha j}(u))_{,\alpha} + f_i = 0, \quad (\mu_{\alpha i j}(u))_{,\alpha} + \sigma_{i j}(u) + L_{i j} = 0.$$
(24)

We assume that on the lateral boundary we have the conditions

$$(\tau_{\alpha i}(u) + \sigma_{\alpha i}(u))n_{\alpha} = P_i, \quad \mu_{\alpha i j}(u)n_{\alpha} = Q_{ij}, \tag{25}$$

where P_i and Q_{ij} are prescribed functions.

Clearly, the state of generalized plane strain demands that f_i, L_{ij}, P_i and Q_{ij} be independent of the axial coordinate.

The generalized plane strain problem consists in finding a vector field $u \in C^1(\overline{\Sigma}_1) \cap C^2(\Sigma_1)$ which satisfies the equations (24) on Σ_1 and the boundary conditions (25) on Γ .

The functions $\tau_{3i}(u)$ and $\mu_{3ij}(u)$ can be calculated after the determination of u.

The conditions of equilibrium for the cylinder ${\cal B}$ are

$$\int_{\Sigma_1} f_i da + \int_{\Gamma} P_i ds = 0,$$

$$\int_{\Sigma_1} \varepsilon_{\alpha\beta} (x_\alpha f_\beta + L_{\alpha\beta}) da + \int_{\Gamma} \varepsilon_{\alpha\beta} (x_\alpha P_\beta + Q_{\alpha\beta}) ds = 0$$
(26)

and

$$\int_{\Sigma_{1}} (x_{2}f_{3} + L_{23} - L_{32})da + \int_{\Gamma} (x_{2}P_{3} + Q_{23} - Q_{32})ds - \\ - \int_{\Sigma_{1}} (\tau_{32}(u) + \sigma_{32}(u))da = 0, \\ \int_{\Sigma_{1}} (x_{1}f_{3} + L_{13} - L_{31})da + \int_{\Gamma} (x_{1}P_{3} + Q_{13} - Q_{31})ds - \\ - \int_{\Sigma_{1}} (\tau_{31}(u) + \sigma_{31}(u))da = 0.$$

$$(27)$$

The conditions (27) are identically satisfied on the basis of (24) and (25). Indeed, we have

$$\begin{split} \int_{\Sigma_1} (\tau_{32}(u) + \sigma_{32}(u)) da &= \int_{\Sigma_1} [\tau_{23}(u) + \sigma_{23}(u) + \sigma_{32}(u) - \sigma_{23}(u)] da = \\ &= \int_{\Sigma_1} [\tau_{23}(u) + \sigma_{23}(u) + x_2 \{\tau_{\alpha 3}(u)_{,\alpha} + \sigma_{\alpha 3}(u)_{,\alpha} + f_3\} + \\ &+ L_{23} - L_{32} + (\mu_{\alpha 23}(u) - \mu_{\alpha 32}(u))_{,\alpha}] da = \\ &= \int_{\Sigma} \{ [x_2(\tau_{\alpha 3}(u) + \sigma_{\alpha 3}(u))]_{,\alpha} + x_2 f_3 + L_{23} - \\ &- L_{32} + (\mu_{\alpha 23}(u) - \mu_{\alpha 32}(u))_{,\alpha} \} da = \\ &= \int_{\Gamma} (x_2 P_3 + Q_{23} - Q_{32}) ds + \int_{\Sigma_1} (x_2 f_3 + L_{23} - L_{32}) da. \end{split}$$

In a similar way we can prove that the second condition from (27) is satisfied.

It is known that [5] the boundary-value problem (24), (25) has a solution belonging to $C^{\infty}(\overline{\Sigma}_1)$ if and only if the C^{∞} functions f_i, L_{ij}, P_i and Q_{ij} satisfy the conditions (26).

126

Generalized torsion of elastic cylinders

In what follows we will use four special problems $A^{(s)}$, (s = 1, 2, 3, 4), of generalized plane strain for the domain Σ_1 . The problem $A^{(s)}$ corresponds to the system of loading $\{f_i^{(s)}, L_{ij}^{(s)}, P_i^{(s)}, Q_{ij}^{(s)}\}$ where

$$\begin{split} f_{i}^{(\beta)} &= [(C_{\alpha i 3 3} + G_{3 3 \alpha i} + G_{\alpha i 3 3} + B_{3 3 \alpha i})\varepsilon_{\beta\nu}x_{\nu} + (D_{\alpha i 3 m n} + F_{3 m n \alpha i})\varepsilon_{m n \beta}]_{,\alpha}, \\ f_{i}^{(3)} &= [(C_{\alpha i \rho 3} + G_{3 \rho \alpha i} + G_{\alpha i \rho 3} + B_{3 \rho \alpha i})\varepsilon_{\beta\rho}x_{\beta} + (D_{\alpha i 3 \rho \nu} + F_{3 \rho \nu \alpha i})\varepsilon_{\rho\nu}]_{,\alpha}, \\ f_{i}^{(4)} &= (C_{\alpha i 3 3} + G_{3 3 \alpha i} + G_{\alpha i 3 3} + B_{3 3 \alpha i})_{,\alpha}, \\ L_{ij}^{(\beta)} &= [(F_{\alpha i j 3 3} + D_{3 3 \alpha i j})\varepsilon_{\beta\nu}x_{\nu} + A_{\alpha i j 3 m n}\varepsilon_{m n \beta}]_{,\alpha} + (G_{i j 3 3} + B_{3 3 i j})\varepsilon_{\beta\nu}x_{\nu} + \\ &+ D_{i j 3 m n}\varepsilon_{m n \beta}, \\ L_{ij}^{(3)} &= [(F_{\alpha i j \rho 3} + D_{3 \rho \alpha i j})\varepsilon_{\beta\rho}x_{\beta} + A_{\alpha i j 3 \eta \rho}\varepsilon_{\eta\rho}]_{,\alpha} + (B_{3 \alpha i j} + G_{i j \alpha 3})\varepsilon_{\beta\alpha}x_{\beta} + \\ &+ D_{i j 3 \alpha \beta}\varepsilon_{\beta\alpha}, \\ L_{ij}^{(4)} &= (F_{\alpha i j 3 3} + D_{3 3 \alpha i j})_{,\alpha} + G_{i j 3 3} + B_{3 3 i j}, \\ P_{i}^{(\beta)} &= [(C_{\alpha i 3 3} + G_{3 3 \alpha i} + G_{\alpha i 3 3} + B_{3 3 \alpha i})\varepsilon_{\nu\beta}x_{\nu} + (D_{\alpha i 3 m n} + F_{3 m n \alpha i})\varepsilon_{n m \beta}]n_{\alpha}, \\ P_{i}^{(4)} &= -(C_{\alpha i 3 3} + G_{3 3 \alpha i} + G_{\alpha i 3 3} + B_{3 3 \alpha i})\varepsilon_{\rho}x_{\beta} + (D_{\alpha i 3 \rho \nu} + F_{3 \rho \nu \alpha i})\varepsilon_{\nu\rho}]n_{\alpha}, \\ P_{i}^{(4)} &= -(C_{\alpha i 3 3} + G_{3 3 \alpha i} + G_{\alpha i 3 3} + B_{3 3 \alpha i})n_{\alpha}, \\ Q_{ij}^{(\beta)} &= [(F_{\alpha i j 3 3} + D_{3 3 \alpha i j})\varepsilon_{\nu\beta}x_{\nu} + A_{\alpha i j 3 m n}\varepsilon_{n m \beta}]n_{\alpha}, \\ Q_{ij}^{(3)} &= [(F_{\alpha i j 3 3} + D_{3 3 \alpha i j})\varepsilon_{\rho\beta}x_{\beta} + A_{\alpha i j 3 \rho \nu}\varepsilon_{\nu\rho}]n_{\alpha}, \\ Q_{ij}^{(3)} &= [(F_{\alpha i j 3 3} + D_{3 \alpha i j})\varepsilon_{\rho\beta}x_{\beta} + A_{\alpha i j 3 \rho \nu}\varepsilon_{\nu\rho}]n_{\alpha}, \\ Q_{ij}^{(4)} &= -(C_{\alpha i 3 3} + B_{3 \alpha i j})\varepsilon_{\rho\beta}x_{\beta} + A_{\alpha i j 3 \rho \nu}\varepsilon_{\nu\rho}]n_{\alpha}, \\ Q_{ij}^{(4)} &= -(F_{\alpha i j 3 3} + D_{3 \rho \alpha i j})\varepsilon_{\rho\beta}x_{\beta} + A_{\alpha i j 3 \rho \nu}\varepsilon_{\nu\rho}]n_{\alpha}, \\ Q_{ij}^{(4)} &= -(F_{\alpha i j 3 3} + D_{3 \rho \alpha i j})\varepsilon_{\rho\beta}x_{\beta} + A_{\alpha i j 3 \rho \nu}\varepsilon_{\nu\rho}]n_{\alpha}, \\ Q_{ij}^{(4)} &= -(F_{\alpha i j 3 3} + D_{3 \alpha i j})\varepsilon_{\rho\beta}x_{\beta} + A_{\alpha i j 3 \rho \nu}\varepsilon_{\nu\rho}]n_{\alpha}, \end{aligned}$$

where ε_{ijk} is the alternating symbol. It is a simple matter to verify that the necessary and sufficient conditions (26) for the existence of a solution are satisfied for each boundary-value problem $A^{(s)}$.

We denote by $w^{(s)} = (w_i^{(s)}, \omega_{ij}^{(s)})$ the solution of the problem $A^{(s)}$. Thus, the vector fields $w^{(s)}$, (s = 1, 2, 3, 4), are characterized by

$$[\tau_{\alpha j}(w^{(s)}) + \sigma_{\alpha j}(w^{(s)})]_{,\alpha} + f_i^{(s)} = 0, (\mu_{\alpha i j}(w^{(s)}))_{,\alpha} + \sigma_{i j}(w^{(s)}) + L_{i j}^{(s)} = 0 \text{ on } \Sigma_1, [\tau_{\alpha i}(w^{(s)}) + \sigma_{\alpha i}(w^{(s)})]n_\alpha = P_i^{(s)}, \ \mu_{\alpha i j}(w^{(s)})n_\alpha = Q_{i j}^{(s)} \text{ on } \Gamma.$$
(29)

In what follows we assume that the vector fields $w^{(s)}$, (s = 1, 2, 3, 4) are known. We note that $w^{(s)}$ depend only on the domain Σ_1 and the constitutive coefficients.

D. Ieşan

We define the vector fields $v^{(s)} = (v^{(s)}_i, \psi^{(s)}_{jk})$ on B, (s = 1, 2, 3, 4), by

$$v_{\alpha}^{(\beta)} = \frac{1}{2} \varepsilon_{\alpha\beta} x_{3}^{2} + w_{\alpha}^{(\beta)}, \quad v_{3}^{(\beta)} = \varepsilon_{\beta\alpha} x_{\alpha} x_{3} + w_{3}^{(\beta)}, v_{\alpha}^{(3)} = -\varepsilon_{\alpha\beta} x_{\beta} x_{3} + w_{\alpha}^{(3)}, \quad v_{3}^{(3)} = w_{3}^{(3)}, v_{\alpha}^{(4)} = w_{\alpha}^{(4)}, \quad v_{3}^{(4)} = x_{3} + w_{3}^{(4)}, \psi_{jk}^{(s)} = \varepsilon_{jks} x_{3} + \omega_{jk}^{(s)}, \quad \psi_{jk}^{(4)} = \omega_{jk}^{(4)}.$$
(30)

It follows from (2) and (30) that

$$\begin{aligned} \tau_{ij}(v^{(\beta)}) &= (C_{ij33} + G_{33ij})\varepsilon_{\beta\nu}x_{\nu} + F_{3mnij}\varepsilon_{mn\beta} + \tau_{ij}(w^{(\beta)}), \\ \tau_{ij}(v^{(3)}) &= (C_{ij\alpha3} + G_{3\alpha ij})\varepsilon_{\beta\alpha}x_{\beta} + F_{3\rho\nu ij}\varepsilon_{\rho\nu} + \tau_{ij}(w^{(3)}), \\ \tau_{ij}(v^{(4)}) &= C_{ij33} + G_{33ij} + \tau_{ij}(w^{(4)}), \\ \sigma_{ij}(v^{(\beta)}) &= (G_{ij33} + B_{33ij})\varepsilon_{\beta\nu}x_{\nu} + D_{ij3mn}\varepsilon_{mn\beta} + \sigma_{ij}(w^{(\beta)}), \\ \sigma_{ij}(v^{(3)}) &= (B_{3\alpha ij} + G_{ij\alpha3})\varepsilon_{\beta\alpha}x_{\beta} + D_{ij3\rho\nu}\varepsilon_{\rho\nu} + \sigma_{ij}(w^{(3)}), \\ \sigma_{ij}(v^{(4)}) &= G_{ij33} + B_{33ij} + \sigma_{ij}(w^{(4)}), \\ \mu_{ijk}(v^{(\beta)}) &= (F_{ijk33} + D_{33ijk})\varepsilon_{\beta\nu}x_{\nu} + A_{ijk3mn}\varepsilon_{mn\beta} + \mu_{ijk}(w^{(\beta)}), \\ \mu_{ijk}(v^{(3)}) &= (F_{ijk\alpha3} + D_{3\alpha ijk})\varepsilon_{\beta\alpha}x_{\beta} + A_{ijk3\rho\nu}\varepsilon_{\rho\nu} + \mu_{ijk}(w^{(3)}), \\ \mu_{ijk}(v^{(4)}) &= F_{ijk33} + D_{33ijk} + \mu_{ijk}(w^{(4)}). \end{aligned}$$

On the basis of (29) we find that the vector fields $v^{(s)}$, (s = 1, 2, 3, 4) satisfy the equations

$$[\tau_{ij}(v^{(s)}) + \sigma_{ij}(v^{(s)})]_{,i} = 0, \quad [\mu_{ijk}(v^{(s)})]_{,i} + \sigma_{jk}(v^{(s)}) = 0, \tag{32}$$

on B, and the conditions

$$[\tau_{\alpha i}(v^{(s)}) + \sigma_{\alpha i}(v^{(s)})]n_{\alpha} = 0, \quad \mu_{\alpha i j}(v^{(s)})n_{\alpha} = 0 \text{ on } \Gamma.$$
(33)

In view of (32) and (33), we get

$$\int_{\Sigma_2} [\tau_{3\alpha}(v^{(s)}) + \sigma_{3\alpha}(v^{(s)})] dv = 0.$$
(34)

The first of (34) follows from the relations

$$\begin{split} &\int_{\Sigma_2} (\tau_{31} + \sigma_{31}) da = \int_{\Sigma_2} (\tau_{13} + \sigma_{13} + \sigma_{31} - \sigma_{13}) da = \\ &= \int_{\Sigma_2} [\tau_{13} + \sigma_{13} + x_1 (\tau_{\alpha 3, \alpha} + \sigma_{\alpha 3, \alpha} + \tau_{33, 3} + \sigma_{33, 3}) + \mu_{i13, i} - \mu_{i31, i}] da = \\ &= \int_{\Gamma} [x_1 (\tau_{\alpha 3} + \sigma_{\alpha 3}) n_\alpha + (\mu_{\alpha 13} - \mu_{\alpha 31}) n_\alpha] ds = 0. \end{split}$$

128

In a similar way we can prove the second relation of (34). Let $u = (u_i, \varphi_{jk}) \in Q$. By (9), (10), (18)-(20) and (30), we get

$$< u, v^{(\alpha)} > = \int_{\partial B} [v_i^{(\alpha)} T_i(u) + \psi_{jk}^{(\alpha)} M_{jk}(u)] da =$$

=
$$\int_{\Sigma_2} \{ v_i^{(\alpha)} [\tau_{3i}(u) + \sigma_{3i}(u)] + \psi_{jk}^{(\alpha)} \mu_{3jk}(u) \} da -$$

$$- \int_{\Sigma_1} \{ v_i^{(\alpha)} [\tau_{3i}(u) + \sigma_{3i}(u)] + \psi_{jk}^{(\alpha)} \mu_{3jk}(u) \} da = h \varepsilon_{\alpha\beta} H_{\beta}(u) = 0,$$

$$< u, v^{(3)} > = h H_3(u), \quad < u, v^{(4)} > = h R_3(u) = 0.$$

(35)

On the other hand, by (11), (4), (31) and (33) we find that

$$\langle u, v^{(3)} \rangle = \int_{\partial B} [u_i T_i(v^{(3)}) + \varphi_{jk} M_{jk}(v^{(3)})] da = E(u),$$
 (36)

where

$$E(u) = \int_{\Sigma_2} \{ u_i[\tau_{3i}(v^{(3)}) + \sigma_{3i}(v^{(3)})] + \varphi_{jk}\mu_{3jk}(v^{(3)}) \} da - \int_{\Sigma_1} \{ u_i[\tau_{3i}(v^{(3)}) + \sigma_{3i}(v^{(3)})] + \varphi_{jk}\mu_{3jk}(v^{(3)}) \} da.$$
(37)

We introduce the notations

$$L_{\alpha s} = \int_{\Sigma_{1}} \{ x_{\alpha} [\tau_{33}(v^{(s)}) + \sigma_{33}(v^{(s)})] + \mu_{3\alpha 3}(v^{(s)}) - \mu_{33\alpha}(v^{(s)}) \} da,$$

$$L_{3s} = \int_{\Sigma_{1}} [\tau_{33}(v^{(s)}) + \sigma_{33}(v^{(s)})] da,$$

$$L_{4s} = \int_{\Sigma_{1}} \varepsilon_{\alpha\beta} \{ x_{\alpha} [\tau_{3\beta}(v^{(s)}) + \sigma_{3\beta}(v^{(s)})] + \mu_{3\alpha\beta}(v^{(s)}) \} da.$$
(38)

It follows from (10), (11) and (30) that

$$\langle v^{(\alpha)}, v^{(s)} \rangle = h \varepsilon_{\alpha\beta} L_{\beta s}, \quad \langle v^{(3)}, v^{(s)} \rangle = h L_{4s},$$

 $\langle v^{(4)}, v^{(s)} \rangle = h L_{3s}.$ (39)

In this case, by (35)-(37) and (39), the system (15) becomes

$$\sum_{s=1}^{4} L_{rs} \tau_s = E(u) \delta_{r4}, \quad (r = 1, 2, 3, 4).$$
(40)

We note that L_{rs} , (r, s = 1, 2, 3, 4), depend only on the cross section and the constitutive coefficients. The system (40) defines $\tau_j(\cdot)$, (j = 1, 2, 3, 4), on the set of all equilibrium vector fields that satisfy the conditions (18)-(20).

References

- W. A. DAY: Generalized torsion: The solution of a problem of Truesdell's, Arch. Rational Mech. Anal., 76(1981), 283–288.
- [2] A. C. ERINGEN, E. S. SUHUBI: Nonlinear theory of simple microelastic solids, Int. J. Engng. Sci., 2(1964), I: 189–203; II: 389–404.
- [3] A. C. ERINGEN: Microcontinuum Field Theories I. Foundations and Solids, Springer-Verlag, New York, Berlin, Heidelberg, 1999.
- [4] A. E. GREEN, R. S. RIVLIN: *Multipolar continuum mechanics*, Arch. Rational Mech. Anal., 17(1964), 113–147.
- [5] D. IEŞAN: Saint-Venant's problem for inhomogeneous and anisotropic elastic solids with microstructure, Arch. Mechanics, 29(1977), 419–430.
- [6] R. D. MINDLIN: *Microstructure in linear elasticity*, Arch. Rational Mech. Anal., 16(1964), 51–77.
- [7] C. TRUESDELL: The rational mechanics of materials-past present, future, Appl. Mech. Reviews, 12(1959), 75–80.
- [8] C. TRUESDELL: The rational mechanics of materials-past, present, future (Corrected and modified reprint of [7]), pp. 225–236 of Applied Mechanics Surveys, Spartan Books, 1966.
- [9] C. TRUESDELL: Some challenges offered to analysis by rational thermomechanics, pp. 495–603 of Contemporary Developments in Continuum Mechanics and Partial Differential Equations, G.M. de la Penha & L.A. Medeiros, Eds., North-Holland, 1978.

130