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Abstract. We construct linear operators S, T mapping the Schwartz space S into its dual
S′, such that any operator R ∈ L(S, S′) may be obtained as factorization product S ◦ T .
More precisely, given R ∈ L(S, S′), there exists a Hilbert space HR such that S ⊂ HR ⊂ S′,
the embeddings S →֒ HR and HR →֒ S′ are continuous, S is dense in HR, T (S) ⊂ HR, and

S has a continuous extension eS : HR → S′ such that eS(Tϕ) = Rϕ for all ϕ ∈ S.
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1 Introduction

There exist several approaches to partial multiplications in spaces of linear
operators connected with Gelfand triples D ⊂ H ⊂ D+, e.g. products of op-
erators on nested Hilbert spaces or on PIP-spaces [1, 5], partial ∗-algebras [3],
quasi-algebras, quasi-∗-algebras [10,11], and partial multiplications on L(D,D+)
[2,4,6,7,14]. It is known that such products may depend on the choice of factoriz-
ing spaces needed to define the products. Hence, in order to obtain a well-defined
factorization product, it is necessary to be careful and restrictive in the choice
of spaces which are allowed to serve as factorizing spaces. Since partially defined
products are a useful tool as well in theoretical investigations as in applications,
it is of interest to know to what extent the product may depend on the choice
of the factorizing space. In [7–9] pairs of operators were constructed for which
products with respect to different factorizing spaces differ just by a rank-one op-
erator. Here we present a modified approach of [12] which shows that there exist
two linear operators defined on the Schwartz space S with the property that
their factorization product can deliver any operator R ∈ L(S,S′) depending
on the factorizing space chosen.
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2 Preliminaries

First of all we introduce some notations and definitions. For locally convex
spaces E and F , E′ denotes the strong dual, and L(E,F ) denotes the space of
all continuous linear operators from E into F . Given an index set J ⊂ Z

n, a
family (xι)ι∈J of complex numbers, and s ∈ Z, we set

ps

(
(xι)ι∈J

)
=


 ∑

ι=(j1,j2,...,jn)∈J

(
n∏

l=1

(|jl|+ 2)2s

)
|xι|2




1/2

,

s(J) =
{

(xι)ι∈J ∈ C
J | ps

(
(xι)ι∈J

)
<∞ for all s ∈ N

}
.

The locally convex topology of s(J) is generated by the seminorms ps, s ∈ N0.
There are natural embeddings s(J) ⊂ l2(J) ⊂ s′(J). By using the coordinate
basis (ϕι)ι∈J , the element (xι)ι∈J of C

J may be written as
∑

ι∈J xι ϕι.
In the following we will use spaces defined for the index sets N and (the from

now on fixed) J = N×N×{ 1, 2, 3, 4 }×Z×N. The space s = s(N) is the Schwartz
space of rapidly decreasing sequences. By constructing a suitable bijection of
index sets it is easy to see that the spaces s(J) and s are isomorphic. It is also
well-known that they are isomorphic to the Schwartz space S(Rn), which is also
denoted by S. Using a basis consisting of products of Hermite functions, one
can construct an isomorphism of S(Rn) onto s(N0

n) that may be extended to
an isometric isomorphism of L2(Rn) onto l2(N0

n) (cf., e.g., [13]).
Hilbert spaces will often be defined as domainsD(A) of self-adjoint operators

A endowed with their graph norms defined by ‖ϕ‖A =
√
‖ϕ‖2 + ‖Aϕ‖2.

For locally convex spaces E, F such that S ⊂ E and F ⊂ S′, where the
embeddings are linear, continuous, and have dense ranges, we define

C(E,F ) = {T ∈ L(S,S′) | There exists S ∈ L(E,F )

such that Sϕ = Tϕ for all ϕ ∈ S }.

1 Definition. Suppose that K is a set of locally convex spaces G which
are linear subspaces of S′ containing S such that the embeddings S →֒ G and
G →֒ S′ are continuous and such that for any pair (E,F ) of elements of K, S

is dense in E ∩ F w.r.t. the topology generated by the union of the topologies
induced by E and F . The product Tn◦· · ·◦T1 of elements of L(S,S′) is said to be
defined w.r.t. K if there are spaces E0, . . . , En ∈ K such that Tj ∈ C(Ej−1, Ej) for
j ∈ {1, . . ., n}. If Sj ∈ L(Ej−1, Ej) is the unique extension of Tj , the factorization
product Tn ◦ · · · ◦ T1 is defined by

Tn ◦ · · · ◦ T1 ϕ = Sn (. . .(S1ϕ). . .) (ϕ ∈ S).
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2 Remark. The only difference between Definition 1 and the definition
given in [6, 7] in a more general situation consists in the use of the dual space
S′ here instead of the space S+ of continuous conjugate linear functionals in
the general case. Using the conjugate linear bijection between S′ and S+ given
by complex conjugation, one obtains easily the equivalence of both definitions.
In particular, the operator Tn ◦ · · · ◦ T1 defined in Definition 1 does not depend
on the special choice of the spaces Ej in K such that Tj ∈ C(Ej−1, Ej).

The following construction is essentially taken from [6]. However some of
the statements needed here were not formulated explicitely there. For the con-
venience of the reader we include this construction here.

3 Proposition. There exist self-adjoint operators A0, A1 on l2, an element
η of D(A0) ∩D(A1) and linear functionals f0, f1 on D(A0) and D(A1), resp.,
such that the following assertions are satisfied:
i) fr(η) = r (r ∈ { 0, 1 }),
ii) |fr(ϕ)| ≤ 2 ‖Ar ϕ‖ (r ∈ { 0, 1 }, ϕ ∈ D(Ar)),
iii) ‖Ar η‖ = r (r ∈ { 0, 1 }),
iv) s is a dense linear subspace of D(A1) and of D(A2),
v) f(ϕ) = f0(ϕ) = f1(ϕ) for all ϕ ∈ s.

Proof. We define orthogonal sequences (ψr,p)p∈N, r ∈ { 0, 1 }, in l2 by

ψ0,p = (2p − 1)ϕ2p−1 − 2pϕ2p,

ψ1,1 = ϕ1, ψ1,p+1 = −2pϕ2p + (2p + 1)ϕ2p+1.

Then we set

η =

(
1

p

)

p∈N

,

D(Ar) =



ϕ ∈ l2

∣∣∣∣∣
∑

p∈N

|〈ϕ,ψr,p〉|2 ‖ψr,p‖2 <∞



 ,

Arϕ =
∑

p∈N

〈ϕ,ψr,p〉ψr,p,

fr : D(Ar) ∋ ϕ 7→
∑

p∈N

〈ϕ,ψr,p〉 ,

f : s ∋ ϕ 7→
∑

p∈N

(−1)p−1 · p · 〈ϕ,ϕp〉 .

Hence

|fr(ϕ)| ≤


∑

p∈N

|〈ϕ,ψr,p〉|2 ‖ψr,p‖2



1
2

∑

p∈N

1

‖ψr,p‖2




1
2

≤


∑

p∈N

1

p2




1
2

‖Arϕ‖ ,
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which implies ii).

It is easy to see that s ⊂ D(Ar) and that already the linear span of {ϕp}p∈N

is dense in D(Ar). Hence iv) is satisfied. Statements i), iii) and v) are immediate
consequences of the construction of Ar, fr, and f , which completes the proof.

QED

3 Statement of the result

4 Proposition. There exist operators S, T ∈ L(S,S′) satisfying the fol-
lowing assertion:
Given R ∈ L(S,S′), there exists a self-adjoint operator AR on L2(Rn) such
that T ∈ L(S,D(AR)), S has a continuous extension S̃ ∈ L(D(AR),S′) and
S̃(Tϕ) = Rϕ for all ϕ ∈ S.

5 Corollary. The operators S, T of Proposition 4 satisfy also the following
assertion:
Given R ∈ L(S,S′), there exists a Hilbert space HR such that the factorization
product w.r.t. K = {S,HR,S

′ } of S and T exists in the sense of Definition 1
and satisfies S ◦ T = R.

4 Construction of operators

In this section we prove Proposition 4 by constructing the corresponding
operators. Having in mind the isomorphisms mentioned before, the operators S
and T will be constructed as elements of L(s(J), s′) and L(s, l2(J)), respectively.
The operator R will be assumed to be an element of L(s, s′) and AR will be a
self-adjoint operator on l2(J).

Besides the index set J = N × N × { 1, 2, 3, 4 } × Z × N we also use the set
I = N × N × { 1, 2, 3, 4 } × Z. If ι = (j, k, l,m) ∈ I or ι = (j, k, l,m, p) ∈ J we
will also write j = jι, k = kι, . . . . The following maps are defined on C

J or C
N,

but they can be interpreted also as linear operators between subspaces:

M : C
N ∋ (xn)n∈N 7→ ((n+ 2) · xn)n∈N ∈ C

N,

P(j,k,l,m) : C
J ∋ (xι)ι∈J 7→

∑

n∈N

x(j,k,l,m,n)ϕn ∈ C
N ((j, k, l,m) ∈ I),

Q(j,k,l,m) : C
N ∋ (xn)n∈N 7→

∑

n∈N

xn ϕ(j,k,l,m,n) ∈ C
J ((j, k, l,m) ∈ I).
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The operators S ∈ L(s(J), s′) and T ∈ L(s, l2(J)) are defined by

S(ψ) =
∑

(j,k,l,m)∈I

il (j + 2)(|m| + 2) f
(
P(j,k,l,m)ψ

)
ϕj ,

T ((xk)k∈N) =
∑

(j,k,l,m)∈I

xk

(j + 2)(|m| + 2)
2−m+ Q(j,k,l,m)η,

where η is the vector constructed in Proposition 3 and m+ = max{ 0,m } is the
positive part of m.

Let us now fix an operator R ∈ L(s, s′) and consider its matrix elements
(aj,k)j,k∈N. This means that R((xk)k∈N

) =
(∑

k∈N
aj,kxk

)
ϕj . Since the bilinear

form s× s ∋ (ϕ1, ϕ2)→ (Rϕ1)(ϕ2) is jointly continuous, there exists s ∈ N such
that |aj,k| ≤ (j+2)s ·(k+2)s for all j, k ∈ N. Writing the real and imaginary parts
of aj,k as differences of their positive and negative parts, resp., and representing
these nonnegative reals as sums of values 1 (as often as integer part requires)
and an element of [0, 1), that we decomposit into its binary digits, we assign to
R a fixed number s ∈ N and a family (rι)ι∈I ∈ { 0, 1 }I such that r(j,k,l,m) = 0
whenever m < −(j + 2)s · (k + 2)s and that

aj,k =
4∑

l=1

∞∑

m=−∞
il 2−m+ r(j,k,l,m).

Now using the operators A0 and A1 from Proposition 3 the formulas

D(AR) =

{
ψ ∈ l2(J)

∣∣∣∣∣
∑

ι∈I

(kι + 2)2(jι + 2)−8s(|mι|+ 2)4‖ArιPιψ‖2 <∞
}
,

ARψ =
∑

ι∈I

(kι + 2)(jι + 2)−4s(|mι|+ 2)2QιArιPιψ

define a self-adjoint operator AR on l2(J).
Given ψ ∈ D(AR), we set furthermore

BRψ =
∑

ι∈I

il (jι + 2)−4s (|mι|+ 2) frι(Pιψ)ϕjι ,

SRψ = M4s+1BRψ.

The next proposition collects the properties of these operators, needed to
prove Proposition 4.

6 Proposition. The operators S, T , AR, BR, and SR constructed obove
satisfy the following assertions:
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i) T ∈ L(s,D(AR)),
ii) BR ∈ L(D(AR), l2),
iii) SR ∈ L(D(AR), s′),
iv) SRψ = Sψ for all ψ ∈ s(J),
v) SRTϕ = Rϕ for all ϕ ∈ s.

Proof.

i) Note that (m+2)4 2−2m+ ≤ (m+2)4e−m ≤ 26 for m ≥ 0 and (|m|+2)4 ≤
((j + 2)s+1 · (k + 1)s+1)4 ≤ (j + 2)8s(k + 2)8s for −(j + 2)s(k + 2)s ≤ m < 0.
Consequently, given (xk)k∈N ∈ s, we obtain the estimate

∑

ι∈I

(kι + 2)2(jι + 2)−8s(|mι|+ 2)4‖ArιPιT ((xk)k∈N)‖2

=
∑

ι∈I

(kι + 2)2(jι + 2)−8s(|mι|+ 2)4
|xkι |2

(jι + 2)2(|mι|+ 2)2
2−2mι+‖Arιη‖2

≤
∞∑

j,k=1

4∑

l=1

∑

m≥−(j+2)s(k+2)s

(k + 2)2(j + 2)−8s−2(|m|+ 2)−2(|m|+ 2)4 2−2m+ |xk|2

≤
∑

ι∈I

1

(jι + 2)2(|mι|+ 2)2
(kι + 2)8s+2|xkι |2

≤



∞∑

j=1

4∑

l=1

∞∑

m=−∞

1

(j + 2)2(|m|+ 2)2


 (p4s+1((xk)k∈N))2 .

Together with T ∈ L(s, l2(J)) this yields T (s) ⊂ D(AR) and T ∈ L(s,D(AR)).

ii) We estimate

‖BRψ‖2 ≤
∞∑

j=1

( ∞∑

k=1

4∑

l=1

∞∑

m=−∞
(j + 2)−4s(|m|+ 2)−1(k + 2)−1·

· (k + 2)(|m| + 2)2 2
∥∥∥Ar(j,k,l,m)

P(j,k,l,m)(ψ)
∥∥∥
)2

≤
( ∞∑

k=1

4∑

l=1

∞∑

m=−∞
(|m|+ 2)−2(k + 2)−2

)
·

·
∑

(j,k,l,m)∈I

(j + 2)−8s(k + 2)2(|m|+ 2)4
∥∥∥Ar(j,k,l,m)

P(j,k,l,m)(ψ)
∥∥∥

2
,

the last sum being ‖ARψ‖2. So the series defining BRψ converges in l2 and we
have BR ∈ L(D(AR), l2).
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iii) is an immediate consequence of ii) and the definition of SR.
v) We evaluate SR T on (xk)k∈N:

SR(T ((xk)k∈N)) =
∑

(j,k,l,m)∈I

il(j + 2)4s+1(j + 2)−4s(|m|+ 2)·

· fr(j,k,l,m)

(
xk

(j + 2)(|m| + 2)
2−m+η

)
ϕj

=
∑

(j,k,l,m)∈I

il 2−m+ r(j,k,l,m)xkϕj

=

∞∑

k,l=1

aj,kxkϕj = R((xk)).

Since iv) is an immediate consequence of the definitions of S and SR the proof
is complete. QED

As noted in Section 2, it is possible to define explicit isomorphisms

U0 : S(Rn)→ s(N0
n),

V0 : s(N0
n)→ s,

W0 : s→ s(J)

which admit unitary extensions U ∈ L(L2(Rn), l2(N0
n)), V ∈ L(l2(N0

n), l2),
and W ∈ L(l2, l2(J)) as well as continuous extensions U1 ∈ L(S′(Rn), s′(N0

n)),
V1 ∈ L(s′(N0

n), s′), and W1 ∈ L(s′, s′(J)) which are isomorpisms. Using these
isomorphisms, one can construct explicitly the operators needed to prove Propo-
sition 4. To do so, we define S′, T ′ ∈ L(S,S′) by S′ϕ = U−1

1 V −1
1 SW0V0U0ϕ and

T ′ϕ = U−1V −1W−1TV0U0ϕ, where S, T are the operators constructed above.
Given R′ ∈ L(S,S′), we apply the construction described in the present section
to the operator R ∈ L(s, s′) defined by Rϕ = V1U1R

′U−1
0 V −1

0 ϕ. In particular,
we obtain a self-adjoint operator AR and operators BR and SR such that the as-
sertions of Proposition 6 are satisfied. Setting finally A′R = (WV U)−1ARWV U

and S̃′ϕ = U−1
1 V −1

1 SRWVUϕ (ϕ ∈ D(A′R) = (WV U)−1D(AR)), all asser-

tions of Proposition 4 are satisfied for S′, T ′, R′, A′R, S̃′ in place of S, T , R,

AR, S̃.
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