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Abstract. Let R be a commutative unitary ring of prime characteristic p and let G' be an
Abelian group. We calculate only in terms of R and G (and their sections) Warfield p-invariants
of the quotient group V(RG)/G, that is, the group of all normalized units V (RG) in the group
ring RG modulo G. This supplies recent results of ours in (Extr. Math., 2005), (Collect. Math.,
2008) and (J. Algebra Appl., 2008).
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1 Introduction

Throughout the present article, suppose that R is a commutative unitary
ring of prime characteristic p, fixed for the duration, and G is an Abelian group,
written multiplicatively as is customary when discussing group rings, with p-
primary component G, and torsion part Gy. As usual, RG denotes the group
ring of G over R with group of normalized invertible elements V(RG) and its
p-component of torsion V,(RG). Moreover, let we define inductively, G = G,
GP" = (GP"")P when a is isolated and GP" = ﬂ5<aGPB when « is limit. By
analogy R?" = R, RP" = (R”")? when « is isolated and RP" = N, R?’ when
o is limit. We shall say that the ring R is perfect if R = RP. For any set M,
we let | M| designate its cardinality, and (4 designate the primitive d-th root of
unity whenever d is a positive integer.

All other unexplained explicitly notations and notions are standard and
follow essentially the classical ones stated in ([5], [6] and [8]).

The goal of this paper, that we pursue, is to calculate only in terms of R
and G Warfield p-invariants of V(RG)/G, defined for an arbitrary multiplicative
Abelian group A in the following way (compare with [9]):

a1

Wap(A) = rank(AP" /(AP AP")),
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where « is an ordinal.

It easily follows that We,,(A) = [AP” /(AP AE™)| when | AP" /(AP
Rg or Wap(A) = logp|Apa/(ApaHA£a)| otherwise.

Our calculations illustrated in the sequel naturally arise for applicable pur-
poses and are helpful for the isomorphism description of the factor-group
V(RG)/G. In fact, Warfield p-invariants, together with Ulm-Kaplansky invari-
ants, determine, up to isomorphism, p-mixed Warfield groups (e.g., [7]).

Tt is worthwhile noticing that in [1]-[4] we have computed Warfield p-invari-
ants of V(RG) under various restrictions on R and G. These computations will
be used here because as it will be proved below, we can restrict in some instances
Warfield p-invariants of V(RG)/G to the Warfield p-invariants of V(RG).

a+1

AP >

2 Preliminaries

Before stating and proving our main result, we need some preparatory ma-
chineries.

1 Lemma. For every ordinal number o, the following two identities hold:
(a) GNVP(RG) = GP*;
(b) (V(RG)/G)P" = VP (RG)G/G.

PRrOOF. (a) Since it is straightforward that VP*(RG) = V(RP*GP"), the
equality now follows without any difficulty.

(b) Tt suffices to show that Nga(V?’(RG)G) = [Ng<a(V?' (RG))G =
VP (RG)G for each limit a. In fact, take x € ﬂﬁ<a(VpB(RG)G) = ﬂ5<a(V(Rpﬁ
GP")G), hence © = (riay + - + rsas)g = (fibi + -~ + fsbs)h = -+, where
ri € R a; € G f; € RV b € G i € [1,5],8 < v < a;9,h € G. Now,
we obtain that r; = f; and ga; = hb;, whence al-aj_1 = bibj_1 € GP". Writing
x = gay(ry + - +rsasa; ), we observe that z € GV(RP'GP) = GVP (RG).

Since the support is finite whereas the number of equalities is not because
« is infinite being limit, we may assume that all relations are of the above type.
That is why, z € (Ny<o VP (RG))G = VP*(RG)G as required.

The next assertion appeared in ([1], Lemma 2). Nevertheless, for the reader’s
convenience and for the completeness of the exposition we shall provide a proof.

2 Lemma. For each ordinal number « the following equality holds:

o a1 o a1 a
& A (v (RGP (RG)) = a7 G



Warfield Invariants of V(RG)/G 215

PROOF. Since it is routinely checked that VP*(RG) = V(RP"GP"), we may
write g = wv, where g € GP",u € VpaJrl(RG’) = V(R”(XHGPQH) and v €
Vi (RG) = V,(RP"GP"). Therefore, g(ria; + -+ + r5as) = fiby + -+ + fsbs
and r; = f; with ga; = b;, for each i € [1,s], where 7; € RP”+1,ai c GP"" and
fi € RP" b, € GP°. Since fib1+-- -+ fsbs € V,(RP*GP"), there is an index, say j,
such that b; € G} . Thus ga; = b; secures that g = bja; ' € G} GP"".

The next statement may be found in ([5], p. 157, Exercise 14) as well.

3 Lemma. [Diab] Let A be an Abelian multiplicative group with finite rank
and B < A. Then B is neat in A (i.e., BN pA = pB) if and only if r(A) =
r(B) +r(A/B).

The following corresponding claim is also useful.

4 Corollary. [[5], p. 105, Exercise 4] If A is a multiplicative Abelian group
and B < A is a direct factor of A, then r(A) =r(B) +r(A/B).

3 Main Results

We are now in a position to prove the following

5 Theorem. Suppose G is an Abelian group and R is a commutative unitary
ring of prime characteristic p without zero divisors. Then, for each ordinal «,
the following holds:

(1) Wap(V(RG)/G) = Wap(V(RG)) = Wayp(G)
when Wo,(V(RG)/G) < Rg. Thus
(1) Wap(V(RG)/G) = 2ay1c./6,) @) Wap(G/ L1z, Gi) = Wap(G)

where a(d) = |{g € G¢/G, : order(g) = d}|/(R(¢q) : R) provided that R is a
perfect field.

(2) Wap(V(RG)/G) = Wa,(V(RG))
when Wop(V(RG)/G) > Ng. Thus
(2°) Wa,p(V(RG)/G) = |Gt/Gp|Wa,p(G)

provided that R is perfect.
PRrROOF. By definition we write

Wa,p = rank((V(RG)/G)"" /(V(RG)/GY" " (V(RG)/G)L")).
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But according to Lemma 1 we may write

(V(RG)/G)" = (VP"(RG)G)/G,

a+1

(V(RG)/G)P"™ = (v*""(RG)G)/G

and (V(RG)/Q)5" = (V" (RG)G)/G. Therefore, using the modular law from
(5], we obtain

a+1

(V(RG)/G)" /(V(RG)/G)*"" (V(RG)/G)")
= (V*"(RG)G)/G/(V""" (RG)V}" (RG)G)/G
= (VP"(RG)G)/(V?"" (RG)VP" (RG)G)
= V" (RG)/(V**(RG) N [GV*"" (RG)VP" (RG)))
= VP (RG)/[v*""" (RG)VP"(RG)(G N VP (RG))]
= VP (RG)/(V*"" (RG)VY" (RG)G™")
= V7" (RG)/ (V""" (RG)V" (RG))
/(P (RG)VET(RG)GP") ) (VP (RG)VE™ (RG)).

o

But

a+1

(V7" (RG)VE (RG)G™) | (VP (RG)VE” (RG))
= @7 J[GP" n (VP (RG)VE (RG))] = G /(GP

a+1 o
+ Gg )
by using Lemma 2.

Furthermore, since V¥ (RG)/(V*"" (RG)VF" (RG)GP") is an epimorphic
image of the quotient group V»*(RG)/(V?*"' (RG)VF" (RG)), we observe that
Wa(V(RG)/G) < Wap(V (RG)).

Next, we shall show that W, ,(V(RG)/G) > Wa,(G) whenever Gy # Gp.
In fact, we consider the element e = (1/|C|) > . rec € RC < RGy C RGP
for any t € IN, where |C| < Rg; clearly |C| inverts in R since char(R) = p. It
is not hard to verify that e is an idempotent, i.e., €2 = e. Let g, h € GP" with
9GP GY # hGP" T GY . Construct the elements z, = eg + (1 — e) and x, =
eh+ (1 —e). Apparently, z,, 2, € V(RG). We claim that z,G** V"™ (RG)V;"
(RG) # th’p&VpaH(RG)V},pa(RG). If not, xgx;1 = zgzp-1 = (eg + (1 —
e)(eh ™t +(1—e) =egh™ ' +(1—e) = ea+ (1—e) € GV (RG)V" (RG),
where we denote a = gh™! ¢ G”"HG’ga. By our assumption there exists a
natural k such that (ea + (1 — €))?" = ea? + (1 —¢) € G*"""VP*"" ' (RG) =

Gpa+kV(Rpa+k+lea+k+l). Writing e = Y . fec, we obtain that > fcca’”’c +
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a+k

1-3 ccfeceGP V(R Gr; £, € R. Furthermore, Yo feca?" +

1-— ZCEC fec = " Zvecpa fvv”k+1 = Zvecpa fvclpkvpkﬂ7 where f, € R and
d € GP". Thus, P e ¢ - GP*™™ for some v € GP", and hence " e
Grt Therefore, ca?” € GP"™" and so a?" € GP*™ because ¢ € GP"T
Now, a?* = bP*"" with b € GP* | i.e., (ab P)?" = 1and ab™? € G . Consequently,
a €GP GE” which is the desired contradiction.

Since V¥ (RG)/ (V"™ (RG)VF" (RG)) is a group bounded by p, all its sub-
groups are pure and so they are direct factors (see, for example, [5], Theo-
rem 27.5). That is why, by what we have just shown above, we may write
VI (RG)/ (V" (RG)VE" (RG)) = (G /(G*GY)) x ((V(RG)/G)™"/
J((V(RG)/G¥" " (V(RG)/G)E")). Consequently, employing Lemma 3 and
Corollary 4 (see also [5], p. 157, Exercise 14 and p. 105, Exercise 4), we de-
duce that

rank(V?" (RG)/(VP"" (RG)VF" (RG))) = rank(G*" /GP" "' GI" )+

rank((V (RG)/G)"" /(V(RG)/G)""" (V(RG)/G)E™)),

ie., Wap(V(RG)) = Wap(G) + Wap(V(RG)/G). By what we have already
shown above when Gy # Gp, if W, ,(V(RG)/G) is finite, then W, ,(G) is finite,
whence Wy ,(V(RG)) is finite and thus W, ,(V(RG)/G) = Wa,p(V(RG)) —
W p(G) whenever Gy # Gp. Note that when Gy = G, we know via [1] that
Wap(V(RG)) = Wap(G) and that W, ,(V(RG)/G) = 0. So, the same formula
is true even in this case. Further, we apply [3] and [4] to complete point (1’).
Let us now W, ,(V(RG)/G) be infinite; thus G; # Gp. By virtue of the
inequality Wo,(V(RG)/G) > Wap(G) established above we obtain that
Wap(V(RG)/G) = W p(V(RG)). Finally, we can apply [2] and [3] to conclude

that point (27) is valid. QED
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