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Abstract. In this paper, we present the structural properties of middle graph of central
graph of cycles Cn, star graphs K1,n and paths Pn denoted by M(C(Cn)), M(C(K1,n)) and
M(C(Pn)) respectively. We mainly have our discussion on the harmonious chromatic number
of M(C(Cn)), M(C(K1,n)) and M(C(Pn)).
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Introduction

For a given graph G = (V,E) we do an operation on G, by subdividing each
edge exactly once and joining all the non-adjacent vertices of G. The graph
obtained by this process is called central graph [1, 29, 31–35] of G denoted by
C(G).

The middle graph [6] of G, is defined with the vertex set V (G)∪E(G) where
two vertices are adjacent iff they are either adjacent edges of G or one is a vertex
and the other is an edge incident with it and it is denoted by M(G). Additional
graph theory terminology used in this paper can be seen in [3, 15].

A harmonious coloring [2, 7, 8, 10–14, 16–28, 36, 37, 39] of a simple graph G
is proper vertex coloring such that each pair of colors appears together on at
most one edge. Formally, a harmonious coloring [4, 5, 9] is a function c from a
color set C to the set V (G) of vertices of G such that for any edge e of G, with
end points x, y say c(x) �= c(y), and for any pair of distinct edges e, e′ with
end points x, y and x′, y′ respectively, then {c(x), c(y)} �= {c(x′), c(y′)}. The
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harmonious chromatic number χH(G) is the least number of colors in such a
coloring.

The first paper on harmonious graph coloring was published in 1982 by
Frank Harary and M. J. Plantholt [16]. However, the proper definition of this
notion is due to J. E. Hopcroft and M. S. Krishnamoorthy [18] in 1983. S.Lee
and John Mitchum [22], published a paper consisting of the upper bound for
the harmonious chromatic number of graphs in 1987.

In 1988, Z. Miller and D. Pritikin, [26] worked on harmonious coloring and
gave the harmonious chromatic number of graphs, in the Proceedings of 250th
Anniversary Conference on Graph Theory (Fort Wayne, Indiana, 1986) (eds. K.
S. Bagga et al.), Congressus Numerantium. D.G. Beane, N.L.Biggs and B.J. Wil-
son, studied the growth rate of harmonious chromatic number in 1989. Again Z.
Miller and D. Pritikin published a paper on the topic the harmonious colouring
number of a graph in 1991.

In 1991 C. J. H. McDiarmid and Luo Xinhua [25] gave the Upper bounds
for harmonious colorings. Zhikang Lu [38] gave a published work on the har-
monious chromatic number of a complete binary and trinary tree, in 1993. He
also published a paper on Estimates of the harmonious chromatic numbers of
some classes of graphs (Chinese), Journal of Systems Science and Mathematical
Sciences, 13 (1993).

A combined work by L. R. Casse, C. M. ÓKeefe and B. J. Wilson [5] gave
us the Minimal harmoniously colorable designs in 1994. In the same year, I.
Krasikov and Y. Roditty [21] gave a paper on bounds for the harmonious chro-
matic number of a graph.

Zhikang Lu [40], in 1995, published a paper on the harmonious chromatic
number of a complete 4-ary tree. Also K. J. Edwards [7] worked and gave results
on the harmonious chromatic number of almost all trees. In the next year (1996)
he investigated on the harmonious chromatic number of bounded degree trees
[8].

John P. Georges [20] published a paper on the harmonious colorings on
collection of graphs in 1995. In 1996, a paper on the harmonious chromatic
number of quasistars, was given by I. Havel and J.M. Laborde Manuscript,
Prague and Grenoble, 1996.

In 1997, K. J. Edwards, [9] continued his work on the harmonious chro-
matic number of bounded degree graphs, and also published papers relating
harmonious coloring and achromatic number.

Zhikang Lu [41,42] published a paper on the exact value of the harmonious
chromatic number of a complete binary tree in 1997 and trinary tree in 1998.

In 1998, K. J. Edwards [10] published a work emphasizing a new upper
bound for the harmonious chromatic number, and in 1999 on the harmonious
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chromatic number of complete r−ary trees.
J. Mitchem and E. Schmeichel, published a paper the harmonious chromatic

number of deep and wide complete n-ary trees, in The Ninth Quadrennial Inter-
national Conference on Graph Theory, Combinatorics, Algorithms and Appli-
cations (Kalamazoo, Michigan, 2000) (eds. Y. Alavi, D. Jones, D. R. Lick and
Jiuqiang Liu), Electronic Notes in Discrete Mathematics, 11 (2002).

A work on the harmonious chromatic number of P (α, Kn), P (α, K1,n) and
P (α, Km,n), was published by M. F.Mammana [24] in 2003.

D. Campbell and K. J.Edwards [4] again gave a new lower bound for the
harmonious chromatic number in 2004.

In 2007, Vernold Vivin.J in his Ph.D thesis [35] had a detailed study on the
harmonious chromatic number of central graph families.

Vernold Vivin.J et al. [32] published a paper on the harmonious coloring of
central graph in 2008. For some background on this topic, see [29–35].

1 Structural properties of M(C(Cn))

In M(C(Cn)), there are n vertices of degree 2, n vertices of degree (n− 1),

2n vertices of degree (n+ 1) and n2−3n
2 vertices of degree 2(n− 1).

Therefore

• The number of vertices ,pM(C(Cn)) =
n2 + 5n

2
.

• The number of edges, qM(C(Cn)) =
n3 − n2 + 6n

2
.

• Δ = 2(n− 1).

2 Harmonious coloring of M(C(Cn))

1 Theorem. The harmonious chromatic number of middle graph of central

graph of cycles Cn, χH(M(C(Cn))) =

⌈
n2 + 5

2

⌉
.

Proof. Let V (C(Cn)) = {v1, v2, . . . , vn}. On the process of centralization
of Cn, let ui be the vertex of subdivision of the edge vivi+1(1 ≤ i ≤ n). Also let
uivi = ei(1 ≤ i ≤ n) and uivi+1 = e′i(1 ≤ i ≤ n−1) and unv1 = e′n. Also for non-
adjacent vertices vi and vj of Cn, let eij = vivj . Since we consider only undirected
graphs eij = eji. Middle graph of C(Cn) has the vertex set V (C(Cn))∪E(C(Cn))
= {v1, v2, . . . , vn, e1, e2, . . . , en, e′1, e′2, . . . , e′n, e13, e15, . . . , e24, e25, . . .}. Each vi is
incident with the edges ei, e

′
i−1, eij(i �= j) and (2 ≤ i ≤ n). Also v1 is inci-

dent with e1, e
′
n, e13, e15, . . . , e1(n−1). i.e., Total number of incident edges with
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Figure 1. Central Graph of Cycles Cn

vi is (n − 1)∀ (i = 1, 2, . . . , n). By the definition of middle graph the edges
incident with vi together with the vertex vi induces a clique of n vertices in
M(C(Cn)) (1 ≤ i ≤ n).

Let K
(i)
n be the cliques in M(C(Cn))(i = 1, 2, . . . , n.) Since eij = eji, each

K
(i)
n shares their exactly (n− 3) vertices with the remaining cliques. Therefore

in each clique, the harmonious coloring is performed by distinct n colors. K
(1)
n

is assigned n colors, where as since K
(2)
n shares one vertex with K

(1)
n , it needs

distinct (n− 1) colors which are distinct from the set of colors assigned to K
(1)
n .

Since K
(3)
n shares one vertex with K

(1)
n and one with K

(2)
n , it needs only (n− 2)

colors and so on. Now we turn our proof in the direction of induction.

Case (i)

If n is odd, for n = 3, C(C3) is C6 and for its middle graph the harmonious

chromatic number is n2+5
2 = 7. Therefore the result is trivial for n = 3. Now we

assume that the result is valid for Cn, when n is odd. i.e.,χH(M(C(Cn))) =
n2+5
2 .

Now consider Cn+2 by introducing two new vertices vn+1 and vn+2. Consider
the incident edges of vn+1 and vn+2 in C(Cn+2). These edges together with the
vertices vn+1 and vn+2 induces two more cliques of order n + 2 in M(C(Cn)).
The vertices vn+1, vn+2, en+1, en+2, un+1, un+2, e′n+1, e

′
n+2 are assigned by 8

colors and the cliques K
(n+1)
n+2 and K

(n+2)
n+2 are assigned by (n − 3) + (n − 3) =

(2n − 6) colors. Therefore χH(M(C(Cn+2))) = n2+5
2 + 2n − 6 + 8 = n2+5

2 +

(2n+2). Hence χH(M(C(Cn+2))) =
(n+2)2+5

2 . Therefore by induction hypothesis

χH(M(C(Cn))) =
n2+5
2 , if n is odd.

Case (ii)
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Figure 2. Middle Graph of Central Graph of Cycles Cn

If n is even, we prove that, χH(M(C(Cn))) =
n2+6
2 . For n = 4, the harmo-

nious chromatic number of the middle graph of C(C4) is n2+6
2 = 11. Now we

assume that the result is valid for n, when n is even. i.e., χH(M(C(Cn))) =
n2+6
2 .

Now consider Cn+2 by introducing two new vertices vn+1 and vn+2. Consider
the incident edges of vn+1 and vn+2 in C(Cn+2). These edges together with the
vertices vn+1 and vn+2 induces two more cliques of order n+ 2 in M(C(Cn)).

The vertices vn+1, vn+2, en+1, en+2, un+1, un+2, e
′
n+1, e

′
n+2 are assigned by 8

colors and the cliques K
(n+1)
n+2 and K

(n+2)
n+2 are assigned by (n − 3) + (n − 3) =

(2n − 6) colors. Therefore χH(M(C(Cn+2))) = n2+6
2 + 2n − 6 + 8 = n2+6

2 +

2n+2. Hence χH(M(C(Cn+2))) =
(n+2)2+6

2 . Therefore by induction hypothesis

χH(M(C(Cn))) = n2+6
2 , if n is even . If n is odd then n2+5

2 =
⌈
n2+5
2

⌉
, if n

is even then n2+6
2 =

⌈
n2+5
2

⌉
. Therefore in both the cases, χH(M(C(Cn))) =⌈

n2+5
2

⌉
. QED

3 Structural properties of M(C(K1,n)) and M(C(Pn))

In M(C(K1,n)) and M(C(Pn)) there are n vertices of degree 2, n+1 vertices

of degree n, 2n vertices of degree (n+ 2) and n2−n
2 vertices having degree 2n.

Therefore

• The number of vertices, pM(C(Pn)) =
n2 + 7n+ 2

2
.

• The number of edges, qM(C(Pn)) =
n3 + 2n2 + 7n

2
.
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Figure 3. Middle Graph of Central Graph of Cycle C5 χH(M(C(C5))) =⌈
52 + 5

2

⌉
= 15.

• Δ = 2n.

• We infer that M(C(K1,n)) and M(C(Pn)) are isomorphic graphs.

4 Harmonious coloring of M(C(K1,n)) and M(C(Pn))

The harmonious chromatic number of M(C(K1,n)) and M(C(Pn)) are equal
since they are isomorphic graphs.

2 Theorem. The harmonious chromatic number of middle graph of central

graph of star graphs K1,n, χH(M(C(K1,n))) =
⌈
n2+2n+5

2

⌉
.

Proof. Let V (K1,n) = {v, v1, v2 . . . , vn} where deg v = n. On the process of
centralization of K1,n, let us denote the vertices of subdivision by u1, u2, · · · , un.
i.e., vvi is subdivided by ui(1 ≤ i ≤ n). Let ei = viui and e′i = vui(1 ≤ i ≤ n).
i.e., V (C(K1,n)) = {v, v1, v2, . . . , vn, u1, u2, . . . un}, E(C(K1,n)) = {e1, e2, . . . , en,
e′1, e

′
2, . . . ., e

′
n,e12, e13, . . . , e1n,e23, . . . , e2n, . . . , e(n−1)n}. By the definition of mid-

dle graph, V (M(C(K1,n))) = V (C(K1,n)) ∪ E(C(K1,n)). The structure is
described below. The vertices v1, e1, e2, . . . , en induces a clique of order (n+ 1)
in its middle graph. The vertices ui is adjacent to ei and e′i(1 ≤ i ≤ n). Let
Si = {eij : j = 1, 2, . . . i − 1, i + 1, . . . , n}, (1 ≤ i ≤ n). Clearly Si ∩ Sj = {eij}
if i �= j and let S(n) = ∪n

i=1Si. Clearly |S(n)| = (
n
2

)
. Now the vertices vi and

e′i together with vertices of Si induces a clique of order (n + 1), (1 ≤ i ≤ n).
Therefore M(C(K1,n)) contains n + 1 clique of order (n + 1). Now we prove

that the harmonious chromatic number of this graph is
⌈
n2+2n+5

2

⌉
by induction
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Figure 4. Central Graph of Star Graphs K1,n

method.

Case (i)

If n is odd

We prove χH(M(C(K1,n))) =
n2+2n+5

2 . If n = 3, then C (K1,3) has 7 vertices
and its middle graph is shown in figure 6.

Clearly χH(M(C(K1,3))) = n2+2n+5
2 = 10. Therefore the result is true for

n = 3. Assume that the result is true for any integer n and we prove the same
for n+2. i.e., χH(M(C(K1,n))) =

n2+2n+5
2 . Let vn+1, vn+2 be two non-adjacent

vertices introduced in K1,n which are adjacent to v. Let un+1 and un+2 be the
vertices of subdivision in its centralization. Clearly by the structure given in
figure 5, the middle graph C(K1,n+2) has the following structural property. (i)

There are (n + 3) cliques K
(1)
n+3,K

(2)
n+3, . . . ,K

(n+3)
n+3 of order (n + 3). (ii) The

vertices ui is adjacent with ei and e′i (1 ≤ i ≤ n + 2). (iii) Each K
(i)
n+3 has

exactly one vertex common with K
(j)
n+3 where (2 ≤ i ≤ n + 3), (2 ≤ j ≤ n + 3)

and i �= j. By induction hypothesis the minimum number of colors for the
harmonious coloring in C(K1,n) is n2+2n+5

2 . By the above said structure of

M(C(K1,n)), |S(n)| = |S1∪S2∪· · ·∪Sn| =
(
n
2

)
= n(n−1)

2 . Also in M(C(K1,n+2)),

|S(n+2)| = |S1 ∪ S2 ∪ · · · ∪ Sn+2|=
(
n+2
2

)
= (n+2)(n+1)

2 , also we have new ver-
tices en+1, en+2, un+1, un+2, e

′
n+1, e

′
n+2, vn+1, vn+2 in M(C(K1,n+2)). Therefore

the total number of added vertices in M(C(K1,n+2)) = (n+2)(n+1)
2 − n(n−1)

2 +
8 = 2n + 1 + 8 = 2n + 9. Now we find the minimal harmonious coloring in
M(C(K1,n+2)) as below. By the induction hypothesis C(K1,n) has harmonious

coloring with the minimum number of n2+2n+5
2 colors. With this same colors

assigned to the vertices of M(C(K1,n+2)), we assign some new colors to the
remaining vertices as below. The vertices un+1 and un+2 are assigned the same
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Figure 5. Middle Graph of Central Graph of Star Graph K1,n

color as in ui(1 ≤ i ≤ n). Then all the en+1 vertices of S(n+2) are assigned
(2n+ 1) new colors. Also, among the remaining vertices en+1, en+2, e

′
n+1, e

′
n+2,

vn+1 and vn+2, (en+1, en+2, ) (e
′
n+1, vn+1) (e

′
n+2, vn+2) ∈ E(M(C(K1,n+2))), we

use three distinct colors to color these vertices. Clearly the above said new col-
oring is a minimal harmonious coloring. Here we use 2n+1+3 = 2n+4 colors.

Therefore χH(M(C(K1,n+2))) =
n2+2n+5

2 +2n+4 = (n+2)2+2(n+2)+5
2 . Hence by

induction hypothesis the result follows, χH(M(C(K1,n))) =
n2+2n+5

2 .
Case (ii)

If n is even, we prove χH(M(C(K1,n))) = n2+2n+6
2 by induction method,

following the same procedure as above , n2+2n+5
2 =

⌈
n2+2n+5

2

⌉
and n2+2n+6

2 =⌈
n2+2n+5

2

⌉
∀n. Therefore χH(M(C(K1,n)))=

⌈
n2+2n+5

2

⌉
. QED
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