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Abstract. This article, written in two parts, concerns partitions of finite vector spaces of
dimension t + k by one subspace of dimension t (the ‘focus’) and the remaining subspaces
of dimension k; a ‘focal-spread of type (t, k)’. Focal-spreads of type (k + 1, k) also produce
2− (qk+1, q, 1)-designs, and various other double and triple-spreads. There are three different
methods given to construct focal-spreads, one of which is due to Beutelspacher. In this Part I,
we shall also provide a coordinate method for their construction analogous to matrix spread
sets for translation planes. In Part II, we shall give a new construction that we term ”going
up,” which also allows a specification of certain subplanes of the focal-spread. Additive focal-
spreads are shown to be equivalent to additive partial spreads. Various applications are given
relative to additive partial spreads and semifield planes admitting exotic subplanes. Finally,
also in Part II, , the developments of focal-spreads may be applied to construct a variety of
new subgeometry partitions of projective spaces.
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1 Introduction

This article is concerned with partitions of finite vector spaces by vector
subspaces not necessarily of the same dimension. Although there are a num-
ber of examples of such partitions, it is difficult to develop much of a theory.
It is well known that to construct a finite translation plane of order qt, one
needs only to construct a t-spread of a vector space of dimension 2t over GF (q),
that is, a partition of the vector space by a set of qt + 1, mutually disjoint, t-
dimensional vector subspaces. More generally, a translation Sperner space may

iThe authors are grateful to the referees of the original version of this article for many
helpful suggestions on content and style.
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be constructed by relaxing the dimension of the vector space to kt-dimensional
over GF (q) and finding a partition of t-dimensional subspaces, this time re-
quiring (qkt − 1)/(qt − 1) such subspaces. We shall call such partitions ‘Sperner
t-spreads’ for arbitrary dimension kt (leading to translation Sperner spaces)
and ‘planar t-spreads’ (leading to translation planes), when k = 2. We call the
t-dimensional subspaces ‘components’ in either situation.

However, more generally, it is possible to consider arbitrary partitions of a
finite vector space by mutually disjoint subspaces of various dimensions. One
manner of constructing different partitions of a vector space is to start with a
Sperner t-spread and further partition or refine a component. For example, one
may take a given component and partition into 1-dimensional GF (q)-subspaces.
In this article, we are more interested in the partitions of vector spaces that can-
not arise by such refinements of a given Sperner t-spread. In the ‘Handbook of
Finite Translation Planes’ [6], it is mentioned that there are not very many
known partitions of vector spaces, in the sense that the partitions are not re-
finements of Sperner t-spreads.

The existence of such partitions has been established by Beutelspacher [2],
who proves if the dimension of the vector space is n and it is required to find
a partition, where the dimensions of the subspaces are {t1, t2, . . . , tk}, where
ti < ti+1, then if gcd{t1, t2, . . . , tk} = d and n > 2t1([tk/(d · k)] + t2 + · · ·+ tk),
a partition may be constructed with various subspaces of dimension ti.

One of the first questions that might be considered is whether there are
partitions of vector spaces that contain one subspace of dimension t and the
remaining subspaces of dimension k �= t, so that there is a partial Sperner k-
spread and also what can be said theoretically of such partitions. The short
answer is that there many of these partitions, due to a construction of Beu-
telspacher [2], which arise from t-spreads corresponding to translation planes
and which we call ‘k-cuts’ in this paper and are in vector spaces of dimension
t+ k. In this article, we introduce ideas of translation planes for the analysis of
such partitions. In general, we call any partition a ‘focal-spread of type (t, k)’,
where the unique subspace of dimension t is called the ‘focus’ of the partition.
The main thrust of this paper is that by the use of ideas and theory of finite
translation planes, there is a way to consider a theory of certain partitions that
are not t-spreads.

The nature of our study involves a substantial number of new areas of re-
search and so this paper is written in two parts. In this first paper, Part I, we
shall give the basic material. In the second article, Part II, we shall develop two
important themes. First we consider a new construction technique for focal-
spreads, which we term ”going up,” and second, we give a complete analysis
of how to use focal-spreads for the construction of subgeometry partitions of
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projective spaces and provide a variety of new examples.

Given a k-cut, of course, there is a corresponding spread for a translation
plane that produces it. It is a central and potentially important question to ask
if every focal-spread is a k-cut; if it can ‘extended’ to a spread for a transla-
tion plane. In a previous article [8], we have given a very general construction
procedure that produces k-spreads in vector spaces of dimension sk over a field
isomorphic to GF (q), using a set of translation planes of order qk. In Part II,
we may use similar constructions to construct from a sk-vector space a variety
of focal-spreads with focus of dimension k(s− 1) = t, by the going up process.
If such focal spreads then are k-cuts, or rather arise from translation planes of
order qt and their associated t-spreads, then our methods allow us to construct
translation subplanes of order qk in very specific ways. Generally, subplanes of
translation planes are not well understood and those that are known tend to
be Desarguesian or of the same general type as the superplane. Thus, it seems
extremely unlikely that all the focal spreads that arise in the going up process
may arise as k-cuts from t-spreads of translation planes, where t = k(s − 1) in
this context. It is also possible to define a focal-spread simply as a partition of
a vector space by one subspace of dimension t′ and the remaining subspaces of
dimension k, where the vector space has dimension t+ k, and there t′ ≤ t. We
call these partitions focal-spreads of type (t, t′, k) if t′ < t. The going up process
allows constructions of this more general type.

We are particularly interested in ‘additive focal-spreads’, where there is a
natural additive structure on the partition. We are able to show that arbitrary
additive partial t-spreads are equivalent to additive focal-spreads.

1 Theorem. Additive focal-spreads of dimension t+k with focus of dimen-
sion t over GF (p) are equivalent to additive partial t-spreads of degree pk.

For a theoretical consequence of such insights, in a related article [9], the
authors show that it is possible to construct additive focal-spreads that are
equipped with affine subplanes of order pt, where the order of the focal-spread
is pn, where t does not divide n. With the exception of a single semifield plane of
order 25 that admits an affine subplane of order 22, all previously known affine
subplanes of translation planes never have such a property, this again suggests
that there are many focal-spreads that are not k-cuts, since the translation plane
providing the k-cut would also admit the type of subplane in question.

However, considering these questions, and some of the ideas presented here,
the authors [9] also have shown that there are infinitely many known semifield
planes of even order 2n, for n odd, that admit affine subplanes of order 22,
where n = 5k or 7k, for any odd integer k. The semifield planes are the com-
mutative binary semifield planes of Knuth [12] and their generalizations due to
Kantor [10]. Furthermore, in the above mentioned article of the authors’, addi-
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tive partial spreads are used to show that either there are many new additive
maximal partial spreads or there are great numbers of semifield planes with
exotic subplanes yet to be discovered. In Part I, we also give a matrix approach
for the analysis of focal-spreads.

So, in this article, we give the basics of focal-spreads and use some the-
ory from translation planes for their study. We also show that the existence
of focal-spreads of type (k + 1, k) leads to a construction of designs of type
2 − (qk+1, q, 1) and to other double-spreads or triple-spreads (partitions where
there are subspaces in the partition of either two or three different dimensions,
respectively).

Another important use of focal-spreads is in the construction of subgeometry
partitions. A ‘subgeometry partition’ of a projective space is a partition by
subgeometries isomorphic to projective spaces. So, in the author’s work [5],
we use focal-spreads to construct a variety of new and unusual subgeometry
partitions.

In the final section of Part II, we review the various sorts of applications of
focal-spreads that we have been able to initially determine. There are a number
of problems yet to be considered and we also detail several of these.

2 Beutelspacher’s Construction

Certainly, the impetus for this paper comes from a construction of Beu-
telspacher, which is as follows:

Let Vt+k be a vector space of dimension t + k over GF (q) for t > k and
let L be a subspace of dimension t. Let V2t be a vector space of dimension
2t containing Vt+k (t > k required here) and let St be a t-spread containing L.
There are always at least Desarguesian t-spreads with this property. Let Mt be a
component of the spread St not equal L. Then Mt∩Vt+k is a subspace of Vt+k of
dimension at least k. But, since Mt is disjoint from L, the dimension is precisely
k and we then obtain a focal-spread with focus L. This construction may be
found in Beutelspacher [2], Lemma 2, page 205. One of the referees suggested
calling the corresponding focal-spread a ‘k-cut of a t-spread’ and we shall adopt
this terminology and use the notation F = St\Vt+k for the focal-spread F .

The formal definition is

2 Definition. A partition of a finite-dimensional vector space of dimension
t+ k by a partial Sperner k-spread and a subspace of dimension t �= k, shall be
called a ‘focal-spread of type (t, k)’. The unique subspace of dimension t of the
partition shall be called the ‘focus’ of the focal-spread.

We define a ‘planar extension’ of a focal-spread as a t-spread such that the
focal-spread is of type (t, k) and arises from the t-spread as a k-cut.
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The ‘kernel’ of a focal-spread of dimension t+ k, over GF (q), with focus of
dimension t, shall be defined as the endomorphism ring of the vector space that
leaves the focus and each k-component invariant.

3 Remark. For finite translation planes, the kernel is a field. One of the
referee’s pointed out that the same result of André (see Lüneburg [13] (1.6), p.
3) shows that the kernel of any partition of a finite vector space is also a field.
For focal-spreads, the kernel will also act semi-regularly on the non-zero vectors
of each component.

2.1 Focal-Spreads: Coordinate-Free Approach

Let V = Vt ⊕ Vk be a vector space of rank t + k expressed as a direct sum
of subspaces Vt and Vk, having dimensions t and k respectively. Then a (t ,k)-
spread set on V , based on axes (Vk, Vt), is a collection S of linear maps from
Vk to Vt, such that (1) 0 ∈ S; (2) the nonzero maps in S are injective; (3) the
difference between any two members of S is injective or zero; (4) S is transitive
in the sense that for any pair of non-zero vectors x ∈ Vk, y ∈ Vt there is a unique
S ∈ S such that xS = y. The following remark and proposition follow using
the same correspondence between t-spreads and spread-sets.

4 Remark. Every (t, k)-spread set S as above yields a focal-spread of type
(t, k), with component set {MS : S ∈ S}∪{Vt}, where MS := {(x, xS) : x ∈ Vk}.

5 Proposition. Every focal-spread of type (t, k) may be coordinatized by a
(t, k)-spread set, and any focal-spread of type (t, k) arises by coordinatization
by a (t, k)-spread set, which is uniquely determined by the focus and any other
component chosen as ‘basis’.

As for planar spreads, it is usually helpful to express these results in terms of
matrices. This material follows so closely to analogous matrix coordinatization
of translation planes that we leave all of the straight forward proofs to the reader.
The reader is directed to the standard texts on translation planes Lüneburg [13],
Hughes and Piper [3] or the authors’ texts ( [1] or [6]) for these concepts.

Let B be a focal-spread of dimension t + k over GF (q) with focus L of
dimension t. Fix any k-component M . We may choose a basis so that the vectors
have the form (x1, x2, . . . , xk, y1, y2, . . . , yt). Let x = (x1, x2, . . . , xk) and y =
(y1, y2, . . . , yt), where the focus L has equation x = 0 = (0, 0, 0, . . . , 0) (k-zeros)
and the fixed k-component M has equation y = 0 = (0, 0, 0, . . . , 0) (t-zeros).
We note that qt+k − qt = qt(qk − 1), which implies that there are exactly qt k-
subspaces in the focal-spread. Consider any k-component N distinct from y = 0.
There are k basis vectors over GF (q), which we represent as follows: y = xZk,t,
where Zk,t is a k × t matrix over GF (q), whose k rows are a basis for the k-
component. Hence, we obtain a set of qt k-components, which we also represent
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as follows: Row 1 shall be given by [u1, u2, . . . , ut], as ui vary independently over
GF (q). Then the rows 2, . . . , k have entries that are linear functions of the ui.

6 Remark. The k × t matrices in the focal-spread have rank k and the
difference of any two distinct matrices associated with k-components also has
rank k.

The following is essentially immediate.

7 Theorem. Let Vt+k be a t+ k-dimensional vector space over GF (q) and
let S be a set of qt − 1 k × t matrices of rank k such that the difference of any
two distinct matrices also has rank k. Then there is an associated focal-spread
constructed as

x = 0, y = 0, y = xM ; M ∈ S,

where x is a k-vector and y is a t-vector over GF (q), where the focus is x = 0.

In particular, it is possible to choose one k-space to have 1’s in the (i, i),
position and 0’s elsewhere in the k × t matrix.

Conversely, any focal-spread has such a representation.

8 Remark. Suppose that B is a focal-spread of dimension t+k, with focus
of dimension t < k. Then necessarily the rank of the associated matrices cannot
have rank k. Hence, t > k for focal-spreads.

From the matrix spread set point of view, we now actually may define what
we mean by ‘extension of a focal-spread’. This would then mean that the
k × t matrices for a focal-spread have been extended to a set of t × t matrices
of rank t whose differences are also of rank t. We therefore ask the following
question, which is generally open:

Can any focal-spread be extended to a spread set for a translation
plane?

For example, consider a focal-spread of dimension t + 1, then looking at
the 1 × t spread sets, whose differences are of rank 1, it is clear that such sets
can obviously be extended in many ways to t-spreads. So the question only is
relevant for k > 1.

3 Inherited groups

9 Definition. In a focal-spread of dimension t + k over GF (q) and focus
L of dimension t, every collineation is assumed be an element of ΓL(t + k, q),
leave invariant the focus L and permute the components of the partial Sperner
k-space S.

A ‘homology’ h is a collineation of GL(t+k, q) with the following properties:
(1) h leaves invariant the focus L and another k-subspace of S, (2) h fixes one of
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the two fixed components pointwise and acts fixed-point-free on another fixed
component (in the case that a k-component is fixed pointwise, we assume that
the group acts fixed-point-free on the focus).

10 Remark. (1) An homology of a focal-spread fixes exactly two compo-
nents and permutes the remaining components semi-regularly. The point-
wise fixed subspace is called the ‘axis’ of h and the fixed subspace is the
‘coaxis’ of h.

(2) If a collineation h fixes the focus pointwise then h is an homology.

Proof. Represent the focal-spread in the form

x = 0, y = 0, y = xM ; M is a k × t matrix in set M
for x a k-vector and y a t-vector, where x = 0 is the focus, and y = 0 is a k-space.
Assume furthermore that Ik×t ∈M. Then any collineation in GL(t+ k, q) that
fixes a component pointwise may be represented in either the form lA : (x, y)→
(xA, y), where A is a non-singular k×k matrix or rB : (x, y)→ (x, yB), where B
is a non-singular t×tmatrix. First assume that rB is an homology, so that B acts
fixed-point-free on the focus. Assume that B fixes x = 0, y = 0, and y = xM . So,
xMB = xM . Choose then any x0M = z0, for z0 a t-vector, so that z0B = z0.
However, this is contrary to the action of B. Since the previous argument is also
valid for any power Bj �= It, then 〈rB〉 fixes exactly two components and acts
semi-regularly on the remaining components. This proves (1).

Now assume that h fixes the focus pointwise and hence may be represented
as lA, where A is a non-singular k×k matrix. Assume that 〈lA〉 is not fixed-point-
free on the the k-component y = 0. Without loss of generality, let x0A = x0,
where x0 is a non-zero k-vector. A component y = xM maps to y = xA−1M ,
under lA. Since (x0, x0M) is a non-zero vector common to y = xM and y =
xA−1M , it follows that lA fixes each k-component and since this means lA is
in the kernel. Since the identity mapping fixing each component is also in the
kernel and the kernel is a field by Remark 3, it follows that A − Ik is non-
singular, a contradiction to the fact that A has 1 as an eigenvalue. Hence, 〈lA〉
acts semi-regularly on y = 0, so that the group is an homology group. QED

11 Definition. An ‘elation’ e of a focal-spread of type (t, k) over GF (q) is
a collineation of GL(t + k, q) with the following two properties: (1) e fixes the
focus L pointwise, and (2) if V is the associated vector space of dimension t+ k
over GF (q), e fixes V/L pointwise.

12 Remark. Choose coordinates so that the focal-spread may be repre-
sented in the form:

x = 0, y = 0, y = xM ; M is a k × t matrix in set M
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for x a k-vector and y a t-vector.

(1) Any collineation e in GL(t + k, q) that fixes the focus x = 0 pointwise
may be represented in the form eA,C : (x, y) → (xA, xC + y), where A is
a non-singular k × k matrix, where C is a k × t matrix of rank k.

(2) e is an elation if and only if in the representation eA,C then A = I and
where C acts additively and semi-regularly of order p (for q = pr, p a
prime) on M∪ {0}.

Furthermore, any group E of elations is an elementary Abelian p-group that
acts semi-regularly on the partial Sperner k-space.

Proof. If e is an elation the e fixes V/(x = 0) pointwise and it follows
that A = Ik and therefore C is non-zero. Since e permutes the partial Sperner
k-space, we have y = 0 mapping to y = xC, so C has rank k. Furthermore,
y = xM maps to y = x(M + C), since M + B �= M then the elation group is
semi-regular and clearly the order of any elation then e fixes is p. The converse
is immediate and left to the reader as the last part of the part (2) follows
immediately from the matrix form of an elation. QED

Finally, in this section, we briefly introduce the type of groups that can act
on focal-spreads that are k-cuts and are inherited from the group of a t-spread.
The following lemma was pointed out to the authors by one of the referees,
which is easily verified.

13 Lemma. Let V = V (2t, q) and let S be a t-spread on V and assume that
G is a collineation group of S. Let W be a subspace of dimension t+k containing
a component L and assume that both W and L are G invariant. Then G acts
faithfully as a group of collineations of the k-cut F = S \W .

So, obviously, any kernel homology group of the translation plane of order qt

that leaves k-subspaces invariant inherits as a collineation group of any k-cut.

14 Corollary. (1) Any affine homology group with axis y = 0, and coaxis
x = 0, of the t-spread inherits as a collineation group of a k-cut focal-
spread with focus x = 0.

(2) Any affine elation group with axis x = 0 of the t-spread inherits as a
collineation group of any k-cut focal-spread with focus x = 0.

Proof. Consider the axis y = 0 of an affine homology group. Take the
subspace Vt+k generated by any k-subspace of y = 0 and x = 0. Then the affine
homology group will leave Vt+k invariant. This proves (1). Let E be an elation
group with axis x = 0. An elation group acts trivially on the quotient space
V2t/(x = 0) and hence will leave Vt+k invariant. This proves (2). QED
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We now formally define the planar extension of a focal-spread admitting a
particular group. This definition was suggested by one of the referees.

15 Definition. Let F be a focal-spread of type (t, k) with collineation group
G in ΓL(t + k, q) and let V be a 2t-dimensional vector space over GF (q). Let
W be a t+ k-dimensional subspace of V containing the focus L of F . Then we
shall say that F has a ‘planar extension with group G’ if and only if there is a
t-spread S of V and a group G′ in ΓL(2t, q), such that there is a GF (q)-linear
monomorphism φ : F → V and a group isomorphism f : G→ G′ such that φ(L)
lies in a unique spread component L′ of S, where φ(Lα) ⊆ L′f(α), for α ∈ G.

When G = 〈1〉, we simply say that F has a ‘planar extension’.
Note that planar extensions of focal-spreads need not be unique.

Now we show at least one situation where a focal-spread necessarily is a
k-cut. As a guide to the argument that we give, we formulate a matrix-based
method to construct k-cuts from t-spreads (corresponding to translation planes
of order qt with kernel containing GF (q)). The situation which we then consider
will show almost immediately that the focal-spread in question can arise as a
k-cut.

16 Remark. Let π be a translation plane of order qt, and kernel con-
taining GF (q). Represent points of the 2t-dimensional GF (q)-vector space as
(x1, . . . , xt, y1, . . . , yt), where xi, yi ∈ GF (q), for i = 1, 2, . . . , t. Assume that we
have a matrix t-spread set

x = 0, y = 0, y = xM, M ∈M,

whereM is a set of non-singular t× t matrices, where the differences of distinct
matrices are also non-singular, and where x = (x1, . . . , xt), y = (y1, . . . , yt). Let
Vt+k be the t+ k-dimensional subspace of vectors (x1, . . . , xk, 0, . . . , 0, y1, y2, . . .
. . . , yt) for all xj , yi ∈ GF (q), for j = 1, 2, . . . , k, i = 1, 2, . . . , t. If we form the
k-cut, Vt+k ∩ Z, where Z is one of the components of the matrix t-spread, we
have the focal-spread:

Vt+k ∩ (x = 0) = (x = 0),

Vt+k ∩ (y = 0) = {(x1, . . . , xk, 0, 0, . . . , 0);xi ∈ GF (q), i = 1, 2, . . . , k},
Vt+k ∩ (y = xM) = {(x1, . . . , xk, 0, . . . , 0), (x1, . . . , xk, 0, . . . , 0)M}, ∀M ∈M.

Now if Ik×t is the k×t matrix with 1 in the (i, i) positions, for i = 1, 2, . . . , k and
zeros in all other positions, then (x1, . . . , xk, 0, . . . 0)M = (x1, . . . , xk)Ik×tM .
Now suppress the t = k zeros in x and now use x to represent (x1, . . . , xk).
Then the focal spread of type (t, k) over GF (q) is

x = 0, y = 0, y = xIk×tM , for M ∈M,
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where x is a k-vector and y is a t-vector.

17 Theorem. Let F be a focal-spread of type (t, k) over GF (q). Assume
that there is an affine group G of order qt − 1 fixing the focus, fixing a k-
component pointwise and acting transitively on the remaining k-spaces of the
partial Sperner k-spread.

(1) Then G is an homology group (every non-identity element of G is an affine
homology with the same axis and coaxis)

(2) There is a nearfield plane π of order qt so that F is a k-cut of π. Hence,
there is a planar extension with group G.

Proof. Represent the focal-spread in the form

x = 0, y = 0, y = xM ; M is a k × t matrix in set M
for x a k-vector and y a t-vector, where x = 0 is the focus, and y = 0 is a k-
space. Assume furthermore that Ik×t ∈M. Suppose a focal-spread of type (t, k)
admits a collineation group that fixes the focus and one k-component pointwise
and is transitive on the remaining k-components. Choosing x = 0 as the focus
and y = 0 as the k-component that is pointwise fixed, we have vectors (x, y),
where x is a k-vector and y is a t-vector. The collineation group has elements
of the form σB : (x, y) → (x, yB), where B is a non-singular t × t matrix.
We may always choose a representation so that y = xIk×t is a k-component.
Therefore, we have y = xIk×tB as a k-component for all elements τB. Assume
that some σB does not act fixed-point-free on the focus x = 0. Without loss
of generality, let y0B = y0, where y0 is a non-zero t-vector (that is, (0, y0) is
fixed by σB). There exists a non-zero k-vector x0 and a matrix M of M so
that x0M = y0. Hence, (x0, x0MB) = (x0, y0B) = (x0, y0) = (x0, x0M), so
that (x0, y0) is a vector on y = xMB and y = xM , so this means that σB
leaves y = xM , invariant, a contradiction to our assumptions. Hence, G is a
homology group and as such acts sharply transitive on the non-zero vectors of
the focus x = 0. In the context of Remark 16, now consider x and y t-vectors
and form the associated 2t-dimensional vector space over GF (q) with vectors

(x1, . . . , xt, y1, . . . , yt). Let C denote the group {B;σB =

[
Ik 0
0 B

]
∈ G}. Form

the putative t-spread:

x = 0, y = 0, y = xB, B ∈ C.
Now we claim that this is a t-spread. To see this, we note that if y = xB and
y = xD, for B,D ∈ C, share a vector (x0, x0B) = (x0, x0D), for x0 �= 0, then
x0BD−1 = x0. However, C is fixed-point-free, as noted above. Hence, we obtain
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a t-spread and by Remark 16, it follows immediately the focal-spread is a k-cut.
This completes the proof of the theorem.

This completes the proof. QED

4 Additive Focal-Spreads

We now consider the focus as x = 0 and y = 0 a k-space. If the group fixing
the focus is an elation group transitive on the Sperner k-space and fixes x = 0
pointwise, in contrast to Theorem 17, it is not known that the focal-spread is
a k-cut of a semifield plane. If we assume that a group of order qt fixes x = 0
pointwise, (and fixes no other points) then the group will act sharply transitive
on the set of qt k-spaces of the Sperner k-space.

18 Definition. A focal-spread of type (t, k) over GF (q) shall be said to be
‘additive’ if there is an elation group E of order qt with axis the focus.

19 Remark. Choose a representation for the focal-spread as in Remark 12.
Then if there is an elation group E of order qt with axis the focus, then there
is a matrix spread set for the focal-spread as follows:

x = 0, y = xC; C ∈M,

where M is an elementary Abelian p-group of order qt of k × t matrices. The

group E =

〈
eC : (x, y)→ (x, xC + y) = (x, y)

[
Ik C
0 It

]
;C ∈M

〉
.

Thus, an additive focal-spread has a matrix representation whose matrix set
is an additive group of k × t matrices.

In this section, we consider a generalization of semifield spreads; additive
focal-spreads. Hence, coordinate and construction methods useful for the study
of semifields should be applicable in analysis of additive focal-spreads. Indeed,
methods of Knuth [11] and Kantor [10] are very much in use in a more general
setting.

Suppose that we have an additive focal-spread. This means we have a focal-
spread of type (t, k) over GF (q), for q = pr, p a prime. Choose x = 0 as the
focus and y = 0 as a fixed k-space. Then the focal-spread is x = 0, y = xM,
where M is in a set S of qt k × t matrices of rank k or the zero matrix, such
that the difference of any two distinct matrices in S is also of rank k and where
S is an elementary Abelian p-group and hence a vector space.

The following result now follows immediately from Remark 19.

20 Theorem. An focal-spread of type (t, k) that admits an elementary
Abelian matrix spread set, is an additive focal-spread (admits an elation group
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qt that fixes the focus pointwise and acts transitive on the Sperner partial k-
spread).

Now if we consider the vector space over GF (p), for q = pr, for p a prime,
then we have a set of ptr kr× tr matrices and each row i is clearly a function fi
of the vectors in row. So row i is fi(x), where x is a kt-vector over GF (q), and
if two matrices M and N in S have the same row i, then M − S cannot have
rank k. Now if S is additive, clearly this implies that the functions fi are also
additive. Since we are working over GF (p), this means that the functions fi are
linear transformations over GF (p). Write fi(x) = xAi, where x is the kt-vector
in row 1 of the matrix Mx of S. Hence, we have a set of k kr × kr matrices Ai,
for i = 1, 2, . . . , k and A1 = I. We note that Ai − I is non-singular since the
matrices M in S are all of rank k. Consider the rows xAi and xAj , for i �= j.
Then we know that xAi = xAj , which implies that Ai − Aj is non-singular.
Note, in this context, the k × t matrices over GF (q), become kr × tr matrices
over GF (p). We also know that the set of k vectors Ax = {xAi; i = 1, 2, .., kr} is
linearly independent for each non-zero vector Ax. We have that in an additive
spread, the rows are xAi where x is the first row. For each x, we have a non-
singular matrix, which means that the rows are linearly independent for each
fixed x.

This is equivalent to having x(
∑kr

i=1 αiAi) = 0, for any x non-zero tr-vector,
imply that αi = 0, for i = 1, 2, . . . , kr.

This means that the sum over GF (p) of this set of matrices is non-singular.
Clearly then, the set of matrices generates an additive set of matrices. So, to
recreate the original spread, we take the rows to be xAi for i = 1, 2, .., tr, in the
spread case.

Hence, we have shown the following theorem:

21 Theorem. Each t+k-additive focal-spread over GF (q), for q = pr, gives
rise to a partial spread of kr tr × tr matrices,

y = xAi, for i = 1, 2, . . . , kr

where A1 = I and

x(
kr∑
i=1

αiAi) = 0,

implies αi = 0, for i = 1, 2, . . . , kr, for any x non-zero.
Conversely, any such partial spread that can be extended to some additive

spread produces a (t+ k)r-additive focal-spread over GF (p), which is a kr-cut.
Hence, an additive (t′, k′)-focal-spread over GF (p) may be extended to a

semifield t′-spread if and only if the companion additive partial spread of degree
pk

′

+ 1 and order pt
′

may be extended to a semifield spread.
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Proof. If the partial spread indicated can be extended to a spread S over
GF (p), then we obtain a set of ptr − 1 non-singular tr × tr matrices Bi, i =
1, 2, . . . , ptr−1, such that the spread is given by x = 0, y = 0, y = xBi. Now given
any nonzero tr-vector v considered as a row vector, then there is exactly one
matrix B1(v), in which v appears as row 1. Similarly, there is exactly one matrix
Bj(v) of S such that v appears in row j. There is a function gi such that row i in
B1(w) is gi(w), where w is the tr-vector considered as row 1 in B1(w). We consider

the set of matrices Bi in the following manner: [wT , g2(w)
T , . . . , gptr−1(w)

T ]T ,
where gi(w) is the ith row of the matrix Bi(w), such that w is in row 1, and CT

denotes the transpose of the matrix C. Now if we assume that the matrices Bi

are additive, then if B1(v+w) = B1(v) +B1(w), this implies that the functions gi
are additive functions. This shows that we will find the set Ai, for i = 1, 2, . . . , kr
within the set of matrices Bi. Indeed, since the additive spread is itself a vector
space over GF (p), this also implies that there is a basis of tr-vectors, within
which we will find the set Ai. Hence, we have extended the linearly independent
set {Ai, i = 1, . . . , kr} to a basis for the additive spread, which has a basis
of tr-vectors over GF (p). Now we note that the additive spread obtained by
this method of mappings from the first row generates the same spread as the
original spread. This means we could have used the kr-cut construction as well
to construct the additive focal-spread. QED

22 Definition. The partial spread obtained from an additive focal-spread
as in the previous theorem shall be called the ‘companion partial spread’. If we
actually have an additive spread, that is, a semifield spread, we call this related
semifield spread the ‘companion semifield spread’.

23 Remark. In a related article (see Jha and Johnson [7]), it is shown
that the companion semifield spread is the spread arising from the dual of the
associated semifield.

Consider any additive partial spread of order pt, and degree pk. By definition,
an additive partial spread is an elementary Abelian p-group so is a GF (p)-vector
space and thus has a basis {A1 = I, A2, . . . , Ak} of t× t matrices such that the
partial spread is

∑k
i=1 αiAi, where αi ∈ GF (p). Now consider a t + k-vector

space over GF (p) with vectors (x1, x2, . . . , xk, y1, y2, . . . , yt). Regard y = 0 =
(y1, . . . , yt) to be in the original additive spread. Now form

y = x
[
wT , (wA2)

T , (wA3)
T , . . . , (wAk)

T
]T

,

for all t-vectors w over GF (p),

where MT denotes the transpose of the matrix M .

We claim that this is a t+ k-dimensional additive focal-spread with focus of di-
mension t. To see this we note that

∑k
i=1 αiAi is a non-singular linear transfor-
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mation, for αi not all zero and so for w non-zero t-vectors then w
∑k

i=1 αiAi = 0,

if and only if αi = 0, but w
∑k

i=1 αiAi =
∑k

i=1 αiwAi, since the αi are in GF (p).

Therefore, the matrices
[
wT , (wA2)

T , (wA3)
T , . . . . . . , (wAk)

T
]T

are all of
rank k and therefore we have an additive focal-spread of dimension t + k with
focus of dimension t. Hence, we have the following result.

24 Theorem. Additive focal-spreads of dimension t + k with focus of di-
mension t over GF (p) are equivalent to additive partial t-spreads of degree pk.

25 Remark. We may always regard x = 0 adjoined to any additive partial
spread of degree pt to produce a partial spread of degree pt + 1.

In a semifield spread, it is possible to consider the associated spread in
the dual vector space. The sequences of transpose and dual of Knuth [11] and
Kantor [10] generalize directly. In particular, if x = 0, y = xM , represents the
spread then the dual spread is given by x = 0, y = xMT . For additive focal-
spreads, we also have a representation x = 0, y = xM , where now the matrices
are k × t instead of t × t, and it does not make sense to consider a transposed
additive focal-spread. However, it is possible to transpose the partial spread
corresponding to an additive focal-spread. In the semifield case, the companion
spread is the semifield spread arising from associated dual semifield. So, the
process would be : semifield→dual→transpose→dual. For additive focal-spreads,
we also could have:

additive focal-spread → companion→
transpose → companion (an additive focal-spread).

26 Theorem. Let A be an additive focal-spread of dimension t + k over
GF (p) with focus of dimension t. Then there is a related additive focal-spread
Actcobtained from A by the iterated processes of

companion→ transpose→ companion.

If

x = 0, y = x
[
wT , (wA2)

T , (wA3)
T , . . . . . . , (wAk)

T
]T

,

for all t-vectors x over GF (p).

represents A then Actc may be given by

x = 0, y = x
[
wT , (wAT

2 )
T , (wAT

3 )
T , . . . . . . , (wAT

k )
T
]T

,

for all t-vectors x over GF (p).
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Proof. The companion partial spread of A is x = 0, y = x
∑k

i=1 αiAi,
where αi ∈ GF (p). Transposing this partial spread produces the partial spread
x = 0, y = x

∑k
i=1 αiA

T
i , where αi ∈ GF (p), and forming the companion focal-

spread, we have

x = 0, y = x
[
wT , (wAT

2 )
T , (wAT

3 )
T , . . . , (wAT

k )
T
]T

,

for all t-vectors w over GF (p).

QED

4.1 Nuclei of Additive Focal-Spreads

It is well known that given a finite semifield spread, the middle and right
nuclei and left nucleus NM , NR NL are fields and, whose multiplicative groups

are given by the right and left homology groups

〈[
A 0
0 I

]〉
,

〈[
I 0
0 B

]〉
,〈[

M 0
0 M

]〉
for A ∈ NM − {0} and B ∈ NR − {0}, M ∈ NL − {0}. Under the

dualization process, the middle nucleus of a semifield is isomorphic to the middle
nucleus of the dual semifield, whereas the right and left nuclei are interchanged
in the process. The question for this subsection is whether the corresponding
homology groups are interchanged between an additive focal-spread and the
companion additive partial spread.

First assume that we have an additive focal-spread

x = 0, y = x
[
wT , (wA2)

T , (wA3)
T , . . . , (wAk)

T
]T

,

for all t-vectors x over GF (p).

Assume also that

[
Ik 0
0 B

]
is a collineation of the additive focal-spread. The

image of the additive focal-spread is

x = 0, y = x
[
(wB)T (wA2B)T , (wA3B)T , . . . , (wAkB)T

]T
,

for all t-vectors x over GF (p).

also represents the additive focal-spread. This implies that

wAiB = wBAi, 2, 3, . . . , k.

for all w. This implies that Ai commutes with B, for all i = 1, 2, . . . , k. Hence,
considering the corresponding additive partial spread

x = 0, y = x

k∑
i=1

αiAi, for all αi ∈ GF (p),
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admits the collineation

[
B 0
0 B

]
fixing all components. We note that we are

‘not’ assuming that B has an inverse.The converse is also valid, as is easily
verified. Thus, we obtain the following proposition. If we define the nuclei corre-
sponding to a set of particular collineation as the set of matrices that define the
collineations union the zero mapping, we then have the following proposition.

27 Proposition. The left nucleus of an additive partial spread is isomor-
phic to the right nucleus of the associated companion additive focal-spread.

28 Remark. (1) It is easily verified that the right and middle nuclei of
an additive partial spread are fields, whereas the left nucleus, which cor-
responds to group that fixes each component may not be a field.

(2) For example, consider any regulus R of order pt and degree 1 + pk in
standard form

x = 0, y = xα;α ∈ GF (pk), where k = t/2.

α is a scalar matrix αIt, which then commutes with any t× t matrix M .
Assuming that we non-singular matrices, then the left nucleus contains
GL(2, pk).

(3) Hence, we cannot normally determine that the right nucleus of an additive
focal-spread is a field.

We note in Proposition 30 that the middle nucleus of an additive partial
spread is a field, whereas the right nucleus (if k/2 ≤ t) is a ring but may not be
a field.

29 Remark. In the following, for simplicity, we take additive focal-spreads
of type (t, k) over the prime field GF (p).

The following proposition was suggested by one of the referees of the original
article.

30 Proposition. Let F denote a matrix set of k × t matrices over GF (p),
containing the zero matrix and whose other matrices are of rank k, and whose
distinct differences are also of rank k.

(1) Let R(F ) = {A; A is a k × k GF (p) matrix such that AF = F}. Then
R(F) ∪ {0k×k} is a field.

31 Definition. (2) Let L(F ) = {B; B is a t× t GF (p) matrix such that
F = FA}. Then L(F) ∪ {0k×k} is a ring, which is a field if k > t/2.

Proof. If B, C ∈ L(F), assume rank of B + C = D < t. Assume that
y0D = 0, for y0 a non-zero t-vector. For any x0 non-zero k-vector, there is a k×t
matrix M of F so that x0M = y0. Therefore, (x0, x0MD) = (x0, 0). It follows
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that MD = 0k×t. Row-reduce to note that this implies that Ik×tD = 0k×t = D1,
where D1 is the submatrix of D of the first k rows of D. Hence, the kernel of
D is at least k-dimensional. Now since NB + NC is a k-component for all k-
components N , it follows that D is of rank at least k. Therefore, the rankD and
kernelD ≥ 2k. Hence, if k > t/2, this is a contradiction. QED

5 Associated Designs, Double and Triple-Spreads

32 Definition. A ‘double-spread’ of a vector space is a partition using
subspaces of two distinct dimensions. So a focal-spread is also a double-spread.
Similarly, a ‘triple-spread’ is a partition of a vector space into subspaces of three
distinct dimensions.

Using the idea of a general focal-spread, in this section, we find examples of
both double-spreads, which are not focal-spreads, and triple-spreads.

33 Lemma. Suppose that B is a focal-spread of type (1+k, k) over GF (q).
Then each hyperplane that intersects the focus in a k-dimensional subspace in-
duces a partition of a vector space of dimension 2k over GF (q) by q+1 subspaces
of dimension k and qk+1 − q subspaces of dimension k − 1. Hence, each hyper-
plane then produces a double-spread.

Proof. For a focal-spread of type (1 + k, k), with focus L, consider any
hyperplane H, a subspace of dimension 2k, that intersects L in a subspace
of dimension k. Since 2k + k − (2k + 1) = k − 1, then H intersects each k-
component in at least a k−1-subspace. Let a denote the number of k-dimensional
intersections so that qk+1 − a is the number of k − 1-dimensional intersections.

a(qk − 1) + (qk+1 − a)(qk−1 − 1) = q2k − qk,

which implies that
aqk−1(qk − 1) = qk(qk − 1),

so that a = q. QED

In a similar manner, triple-spreads may be constructed. The following may
be proved in a manner similar to the previous lemma and will be left to the
reader.

34 Remark. Given any focal-spread of type (t, k) with focus L. Then any
subspaceH2k−1 of dimension 2k−1 that intersects L in a k-dimensional subspace
is partitioned by a subspace of dimension k, q2 subspaces of dimension k − 1,
and (qk+1− q2) subspaces of dimension k− 2. Thus, in this way, a triple-spread
is obtained.

Finally, we construct associated designs.
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35 Theorem. Let F be any focal-spread of type (1 + k, k) with focus L.
Denote by D = D(F) = (P,B) the incidence structure whose point set P =
F−{L} and whose blocks B are hyperplanes that do not contain L. Then D
is an affine (or resolvable) 2 − (qk+1, q, 1)-design. Any parallel class is formed
from the hyperplanes that intersect L in a common k-space.

Proof. By Lemma 33, every block contains q points.

Since |B| = (q2k+1 − 1)/(q − 1) − (qk − 1)/(q − 1) = qk(qk+1 − 1)/(q − 1),
there are exactly qk hyperplanes that intersect L in a common k-space U . Since
any point P lies in the hyperplane P +U , it follows that this set of hyperplanes
covers the points. Furthermore, two hyperplanes containing U cannot share a
point. In addition, the points P and Q lines in a unique hyperplane P + Q of
B. This completes the proof. QED

6 Additive Focal-Spreads of Large and Small De-

grees

In this section, we consider additive focal-spreads of type (t, 2) and (t, t−1).
The focal-spreads of type (t, 2)-spreads over GF (p) can always be extended and
the focal-spreads of type (t, t− 1) can either be extended or produce interesting
additive maximal partial spreads.

An additive focal-spread of type (t, 2) over GF (p), for p a prime, is a set of pt

2×t-matrices over GF (p). Then, we have a partial spread x = 0, y = x, y = xA1,
where A1 is a non-singular t× t matrix over the prime field.

Change coordinates by (x, y) → (x,−xA1 + y) and then by (x, y) → (x,
−yA−1

1 ), to convert to x = 0, y = x, y = 0, which clearly may be extended to an
additive spread. By changing coordinates back, we have extended the original
partial spread to an additive spread. This proves the following:

36 Theorem. (1) Any additive focal-spread of type (t, 2) over GF (p) may
be extended to a semifield spread.

(2) Given any additive focal-spread of type (t, 2) over GF (q), let g denote the
function that maps the t-vectors of row 1 to the t-vectors of row 2 in the
associated 2× t additive matrix set. If g is a linear function over GF (q),
then the additive focal-spread of type (t, 2) may be extended to a semifield
spread.

We now turn to the focal-spreads of type (t, t− 1).

37 Theorem. For any additive focal-spread of type (t, t−1) over GF (p), if
the associated companion additive partial spread is not maximal then the additive
focal-spread can be extended to a semifield spread.
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Therefore, every additive focal-spread of type (t, t− 1) over GF (p) gives rise
to a semifield plane or an additive maximal partial spread.

Proof. Assume that we have an additive (t, t−1)–focal spread over GF (p).
Then we obtain a set of t− 1 t× t matrices I, A2, . . . , At−1 such that

x(

t−1∑
i=1

αiAi) = 0,

for all αi, i = 1, 2, .., t− 1 in GF (p), then either all αi = 0 or x = 0. So we have
an additive partial t-spread of degree 1+ pt−1. Assume that the partial spread
1 + pt−1 t-subspaces is not maximal so let y = xM extend the set {y = xAi,
y = x and x = 0}. Therefore,

(∗) : x(
t−1∑
i=1

αiAi) = xM ,

for αi, i = 1, 2, . . . , t− 1 in GF (p) if and only if x = 0. So consider

x(
t−1∑
i=1

αiAi + βM) = 0

for any set αi, i = 1, 2, .., t−1, β ∈ GF (q), not all of which are zero and we may
assume that β is not zero and some αj is not zero. Then

x(
t−1∑
i=1

αi

−βAi +M) = 0

which implies by (∗) that x = 0. Therefore, the set of pt matrices

t−1∑
i=1

αiAi + βM

forms an additive spread set. Hence, either the partial spread is maximal or
there is a semifield plane. Let M = At. We know that considering the first row
of the focal-spread as x then xAi for i = 1, 2, . . . , t− 1 gives the i th row of the
(t− 1)× t matrix. Therefore, xAt gives a t th row that extends the focal-spread
to a spread. This completes the proof of the theorem. QED
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7 Reconstruction

We begin with an open problem.

38 Problem. Does every 2 − (qk+1, q, 1)-designwith the assumptions on
parallel classes given previously arise from a focal-spread?

In this section, we show that if the design can be embedded into a vector
space of dimension 2k+1, then with certain assumptions on the point and line
set, we reconstruct a focal spread.

We recall that in a 2 − (qk+1, q, 1)-design, there are qk(qk+1 − 1)/(q − 1)
blocks, of which there are exactly (qk+1− 1)/(q− 1) containing a given point. If
the design can be embedded into a vector space of dimension 2k+1 over GF (q),
where the blocks are hyperplanes, there are exactly (qk−1)/(q−1) hyperplanes
not in the block set. Hence, we prove the following ‘reconstruction theorem’.

39 Theorem. Let D = (P,B) be a 2−(qk+1, q, 1)-design with the following
properties:

(a) The points are subspaces of a (2k + 1)-dimensional GF (q)-space V .

(b) The blocks are hyperplanes of V .

Then D = D(F), where F is a focal-spread of type (k + 1, k).

Proof. (1) Every point space P has dimension k and all hyperplanes con-
taining P are in B: Given a point P , there are (qk+1−1)/(q−1) hyperplanes of
H containing P . If P is an s-space, then there are (q2k+1−s − 1)/(q − 1) hyper-
planes containing P . Let H denote the set of qk(qk+1 − 1)/(q − 1) hyperplanes
of the design. Since there are exactly (q2k+1 − 1)/(q − 1) hyper-planes, there
are exactly (qk − 1)/(q − 1) hyperplanes that do not belong to H. There are
exactly (qk+1 − 1)/(q − 1) hyperplanes of H that contain P . This means that
the maximum number of hyperplanes that contain P is (qk+1 − 1)/(q − 1)+
(qk − 1)/(q + 1). Hence,

(qk+1 − 1)/(q − 1) + (qk − 1)/(q − 1) ≥ (q2k+1−s − 1)/(q − 1),

or equivalently,

qk+1 + qk ≥ q2k+1−s + 1 > q2k+1−s

Hence, qk+1+qk > q2k+1−s so that q > qk+1−s−1. Therefore, q ≥ qk+1−s, which
implies that 1 ≥ k+1− s or rather that s ≥ k. But, s ≯ k since otherwise there
could not be (qk+1−1)/(q−1) hyperplanes containing P . Therefore, every point
space is k-dimensional and so every hyperplane containing P lies in B.

(2) P is a partial spread of k-spaces on V :
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Assume that the subspace 〈P,Q〉 of dimension s ≤ 2k − 1 are in exactly
(q2k+1−s − 1)/(q − 1) hyperplanes. So, there are at least (q2 − 1)/(q − 1) hy-
perplanes containing P and Q and these are the hyperplanes of B contains P .
But, there is exactly one block containing P and Q. Therefore, the dimension
of 〈P,Q〉 is 2k.

(3) Let N denote the set of hyper-planes that do not belong to B. Then
L = ∩H∈NH is a (k + 1)-dimensional subspace that interests trivially with all
points.

Set Γ = (V −{0})−∪P∈P (P −{0}). Then |Γ| = qk+1− 1 by (1). Moreover,
H ∈ N does not contain any point by (1), since dimH ∩ P = k − 1 for P ∈ P .
This shows

|(H − {0})− ∪P∈P ((P ∩H)− {0}| = qk+1 − 1,

that is, it follows that Γ ⊆ H and Γ ⊆ L. Therefore, the dimL = � ≥ k+1. As L
is contained in exactly (q2k+1−� − 1)/(q − 1) hyperplanes but there are exactly
(qk − 1)/(q − 1) hyperplanes of V that are not in H. Therefore, dimL = k + 1,
which completes the proof of (3).

By (1), (2), (3), F =P ∪ {L} is a focal-spread of type (k + 1, k) and B is
the set of hyperplanes that do not contain L. This completes the proof of the
theorem. QED

40 Corollary. Assume that a 2− (qk+1, q, 1)-design can be embedded into a
vector space of dimension 2k + 1 such that the points are vector subspaces and
the lines are hyperplanes. Then there is a resolution of the lines into (qk+1 −
1)/(q − 1) parallel classes of qk+1 lines each.

We now turn to the question of isomorphism of the 2 − (qk+1, q, 1)-designs
that may be constructed from focal-spreads of type (k + 1, k). It is possible
that two designs may be isomorphic by a mapping that is not in the associated
group ΓL(2k+1, q), but here we consider any isomorphism to arise in this way.
In this section, we show that two focal-spreads of type (t, k) over GF (q) are
isomorphic by an element of ΓL(2k + 1, q) if and only if the two corresponding
2− (qk+1, q, 1) designs are isomorphic by an element of ΓL(2k + 1, q).

41 Definition. Suppose two focal-spreads F1 and F2 of dimension 2k + 1
over GF (q), with foci of dimension k+1 are isomorphic. We define an ‘isomor-
phism’ as a element of ΓL(2k + 1, q) that maps one Sperner k-spread to the
second Sperner k-spread and hence maps the focus of one focal-spread to the
focus of the remaining focal-spread. Clearly, we may identify the two foci.

Similarly, we define an isomorphism between the 2−(qk+1, q, 1)-designs con-
structed from two focal-spreads to be an element of ΓL(2k + 1, q).

42 Theorem. Let F1 and F2 be two focal-spreads of dimension 2k+1 over
GF (q) with foci of dimension k+1. Let D1 and D2 denote the 2− (qk+1, q, 1)-
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designs constructed from F1 and F2, respectively. Then F1 is isomorphic to F2

by an element of ΓL(2k+1, q) if and only if S2 is isomorphic to S1by an element
of ΓL(2k + 1, q).

Proof. Clearly, the stabilizer of a k-subspace X of the focus L will permute
the hyperplanes intersecting L in X and hence will permute the parallel class
PX of hyperplanes containing X. Furthermore, the stabilizer of a hyperplane
containing X must leave invariant the Sperner subspread SX of q k-subspaces
of intersection. In general, take any two disjoint k-subspaces P and Q of the
Sperner k-spread S1 of F1 and let σ be an isomorphism from F1 onto F2, for σ an
element of ΓL(2k+1, q) that leaves the common focus L invariant. Then σ maps
S1 to S2, the associated Sperner k-partial spreads of F1 and F2, respectively.
Then Pσ and Qσ are disjoint k-subspaces of S2 and since 〈P,Q〉 is then mapped
to 〈P,Q〉σ, it follows that 〈P,Q〉 ∩ S1 is mapped to 〈P,Q〉σ ∩ S2. This means
that an isomorphism of focal-spreads induces an isomorphism on the associated
designs D1 and D2, since the ‘points’ are the elements of Di and the ‘lines’ are
the hyperplanes of V2k+1 that intersect the common focus L in k-subspaces. Now
assume that τ is an isomorphism from D1 onto D2. We again regard τ as an
element of ΓL(2k+1, q) that maps points of D1 to points of D2 and so maps S1

onto S2. The line set is the set of hyperplanes that intersect a fixed k+1-space
in k-subspaces. Hence, we again may identity the fixed k + 1-space L in each
design. By requirement, τ will map a parallel class of D1 onto a parallel class of
D2 and map the set of hyperplanes that intersect L in k-spaces back into itself.
Every such hyperplane is of the form 〈P,Q〉, where P and Q are elements of F1

and τ maps this set to the hyperplane 〈P,Q〉 τ . Note that the intersection of a
given hyperplane with the corresponding Sperner space picks out the q ‘points’
of each hyperplane (line). Now since we assume that τ is in ΓL(2k + 1, q), we
know that k-subspaces map to k-subspaces. So, τ maps sets of q components
of F1 to sets of q components of F2. Therefore, if P is a component, it is an
element of a S1,X set and the image of an S1,X set is a S2,X′ set, so that Pτ is a
component of S2, which means that τ sets up an isomorphism between F1 and
F2. This proves the theorem. QED

A simple case for the designs arises from translation planes of order q2 with
spreads in PG(3, q), so in this case, we have a 4-dimensional vector space and
k = 1. Then from such a planar-spread, we have a 2 − (q2, q, 1)-design with
(q2− 1)/(q− 1) parallel classes and q(q+1) lines. The points are 1-dimensional
vector spaces and the lines are 2-dimensional vector spaces that intersect a given
2-dimensional subspace L in 1-dimensional subspaces.

One of the referees pointed the following remark. We shall formulate a dif-
ferent version following this.

43 Remark. Let F be a focal-spread of type (2, 1) over GF (q). Then D(F)
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' AG(2, q): In this case L is a hyperplane and the points of D are the points of
PG(V ) that do not lie on the line L. Thus, D is simply the affine plane that is
obtained from PG(V ) by removing L together with the points incidence with
it.

The matrix version of this remark is as follows:

44 Proposition. Any focal-spread of one 2-space and a partial Sperner
1-spread may be lifted to any 2-spread for a translation plane of order q2 with
spread in PGL(3, q). The associated 2−(q2, q, 1)-design is a Desarguesian affine
plane.

Proof. The focal-spread may be represented in the form

x = 0, y = 0, y = xM ; M is a 1× 2 matrix,

where (x, y) = (x1, y1, y2) and M has rank 1 and the difference of any two such
matrices has rank 1. There are q2 − 1 matrices [t, u], for r and s in GF (q) so
r and s take on all values independently except for r = s = 0. Any spread in
PG(3, q) corresponds to a translation plane of order q2 and may be written in
the form

x = 0, y = 0, y = x

[
g(t, u) f(t, u)

t u

]
;

∀ t, u ∈ GF (q), for (t, u) �= (0, 0),

where g, f are functions from GF (q)×GF (q) to GF (q).

Hence, we see that any focal-spread of one 2-space and a partial Sperner 1-
spread of degree q2 can be lifted to any translation plane with spread in PG(3, q).
It is not difficult to show that the associated design in a Desarguesian affine
plane as it may be constructed from a focal-spread arising from a Desarguesian
spread in PG(3, q) as a k = 1-cut. The details are left to the reader. QED

Assume that t > k and let π be a translation plane of order qt, let V2t denote
the associated vector space and let S denote the associated spread. Choose any
of the qt + 1 components L. Choose any vector subspace of dimension t + k
containing L. Consider V2t/L, a 2t− t = t-vector space. Choose any subspace of
dimension t+k containing L. Hence, we need to choose a 2k+1−k = k+1-space
in V2t/L (if t = k + 1, then 2k + 2− (k + 1) = k + 1). There are

(qt − 1)(qt−1 − 1) · · · (qt−k+1 − 1)/
(
(qk − 1)(qk−1 − 1) · · · (q − 1)

)
such subspaces. We now count the number of k-cuts.
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45 Remark. (1) Given a spread S of order qt and kernel containing
GF (q). Then there are

(qt+1)
(
(qt − 1)(qt−1 − 1) · · · (qt−k+1 − 1)/

(
(qk − 1)(qk−1 − 1) · · · (q − 1)

))
focal-spreads of dimension t + k with focus of dimension t constructed
using k-cuts.

(2) When t = k + 1, there are

(qt + 1)(qt − 1)/(q − 1) = (q2t − 1)/(q − 1) = (q2(k+1) − 1)/(q − 1)

constructed focal-spreads of dimension 2k + 1 with focus of dimension
k + 1 and this same number of 2 − (qk+1, q, 1)-designs constructed from
the focal-spreads.

8 Notes

There are a number of new directions that have developed from the study of
focal-spreads. In the second part, we summarize all of these and discuss various
open problems. The reader is directed to the final comments of the article [4]
for this material.
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