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Abstract. Here we study affine parallel translation structures, both finite and infinite, with a
principal line, that is a line which intersects every line not in its parallel class. These structures
can be regarded also as (finite or infinite) translation transversal divisible designs. An algebraic
characterization of these structures in terms of semidirect product of groups is provided and
the main properties related to their group of automorphisms are inspected. The particular case
of kinematic spaces is also taken into consideration.
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Introduction

An affine parallel translation structure (also called translation structure, see
e.g. [2]), or briefly apt-structure, is an incidence structure (P,L) endowed with
an equivalence relation “//” on L called parallelism which fulfills the euclidean
parallel axiom, and a group T of translations which acts regularly on the point-
set P. As in the case of affine spaces (that are, in particular, apt-structures) two
distinct lines which are parallel do not intersect, but in general there can exist
skew lines, that is distinct lines which do not intersect but are not parallel. A
principal line is a line R such that, for any other line S, either R//S or R∩S �= ∅.
The study of ap(t)-structures with a principal line was started in [13] and further
continued in [15].

In the literature one can find different structures, both finite and infinite,
which can be related to the translation structures with a principal line requir-
ing eventually the structure itself to fulfill additional properties. In particular
from this construction one can obtain the split extension of kinematic spaces of
Marchi, Pianta and Zizioli [16, 18, 19, 22] and, in the finite case, the transversal
translation group divisible designs [3, 8, 21].
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In this second situation, the link between the two points of view is quite deep,
and many of the results from one branch can be rephrased (or even reproved) in
the language of the other branch. This also justifies the idea to consider infinite
apt-structures with a principal line as a natural generalization to the infinite
case of the aforementioned designs. This point of view is further justified since
it is possible to check that infinite translation structures fulfill the axioms of
infinite designs as defined in [4], but here this aspect is simply touched, since
we prefer the point of view of translation structures in our exposition.

This paper is devoted to deepen the analysis of finite and infinite apt-
structures which admit a principal line.

In particular in Section 1 we recall some classical definitions and results
concerning apt-structures and groups with a partition in subgroups.

In Section 2 we take into consideration finite apt-structures with a principal
line. Here we underline explicitely the links with transversal group divisible
designs (see [3, 20, 21]) and characterize apt-structures with “many points” on
every line. We provide also a characterization of finite affine translation planes.

Starting from Section 3 we drop the hypothesis on finiteness and we obtain
an algebraic characterization of apt-structures which admit a principal line as
semidirect product of groups with an additional property (�) (Theorem 17).

Section 4 is devoted to the study of a particular subclass of the apt-
structures with a principal line, namely those that fulfill an additional property
(∗) which involves some automorphisms of the algebraic structure. In particular
here we obtain again a characterization of affine translation planes among those
apt-structures (Theorem 22) and we try to answer the question whether some
automorphisms of the algebraic structure are also collineations of the geometric
one. Sufficient conditions for the property (∗) to be fulfilled are proved here
(Proposition 27) and in Section 5.

In Section 5 the special case of kinematic spaces with a principal line is
taken into consideration. Here we also show explicitely that our construction
is a generalization of that of split extension kinematic spaces of Marchi, Zizioli
and Pianta (see [16, 18, 22]).

Section 6, at the end, provides some examples of apt-structures (in fact
kinematic spaces) with a principal line.

1 Setting and known results

For the following definitions and classical results on apt-structures and kine-
matic spaces we refer, for example, to [1, 2, 9, 10, 14].

1 Definition. Let P be a nonempty set whose elements we call points, L
a family of subsets of P we call lines and “//” a binary relation on L called
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parallelism. The triple (P,L, //) is an affine parallel structure (ap-structure) if
it fulfills the following properties:

AP1) for any pair of distinct points p and q there exists exactly one line p, q ∈ L
such that p, q ∈ p, q (hence (P,L) is a linear space);

AP2) “//” is an equivalence relation on L such that, for any line R ∈ L and for
any point p ∈ P there exists exactly one line S ∈ L such that p ∈ S and
S//R (euclidean parallel axiom);

AP3) in P there exist at least three non collinear points and every line contains
at least two points.

2 Definition. Two ap-structures (P,L, //) and (P ′,L′, //′) are isomorphic
if there exists a bijection ϕ : P −→ P ′ which maps lines onto lines and preserves
the parallelism. If (P,L, //) and (P ′,L′, //′) coincide, the isomorphism ϕ is called
an automorphism or a collineation. A dilatation of (P,L, //) is a collineation ϕ
such that, for any R ∈ L, R//ϕ(R); a translation is the identity or a dilatation
without fixed points.

3 Definition. An ap-structure (P ,L, //) is an affine parallel translation
structure (apt-structure or André structure) if there exists a group T of trans-
lations of (P,L, //) which acts transitively (and hence regularly) on P.

In the following we will always deal with translation structures.
Recall that a partition of a group (G, ·, 1G) is a family F of non-trivial

subgroups of G such that for all X,Y ∈ F , if X �= Y then X ∩ Y = {1G} and
for all g ∈ G there exists X ∈ F such that g ∈ X. The family F = {G} is
always a partition of the group G and it is called the trivial partition of G; in
the following we will always assume that a partition of a group G is not the
trivial one. It is well known that apt-structures are equivalent to groups with a
partition:

4 Theorem (André, [1]). Let G be a group and F a partition of G. The
triple (G,L (F), //) made up of:

(1) the set of elements of G;

(2) the set L (F) of the left cosets of the elements of F ;
(3) the binary relation “//” defined as follows:

∀ a, b ∈ G, ∀ F1, F2 ∈ F : aF1//bF2 ⇐⇒ F1 = F2

is an apt-structure, denoted by [G,F ], with transitive translation group isomor-
phic to G.
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Vice versa if (P,L, //) is an apt-structure, o ∈ P and T the group of transla-
tions regular on the point-set P, then the set P can be endowed with an op-
eration which makes it into a group isomorphic to T and such that the set
Lo := {L ∈ L | o ∈ L} is a partition of P and, moreover, [P,Lo] ∼= (P,L, //).

In the following we will denote, for any line L ∈ L, by [L] the parallel class
of L, that is the equivalence class of L with respect to the equivalence relation
“//”.

5 Definition. Let (P,L, //) be an apt-structure and let N ∈ L be a line. N
is called a principal line if it meets any line in L which is not in [N ].

Note that, by the assumption of transitivity of the translation group, if N
is a principal line, then every line in [N ] is again principal, so we could restate
the previous definition as a definition concerning the parallelism classes of lines.

In [13] and [15] for ap-structures with a principal line the following is proved.

6 Theorem ( [13, Prop. 1 and Thm. 4]). Let A = (P,L, //) be a finite
ap-structure with principal lines. Then the following holds:

(1) if every line of L is principal, then A is an affine plane.

(2) if all the lines of L have the same cardinality (i.e. A is a Sperner space),
then A is an affine plane.

Recall that, if (P,L) is a linear space, a linear subspace of (P,L) is a linear
space (P ′,L′) such that P ′ ⊆ P and L′ ⊆ L. If X ⊆ P is a set of points of
(P,L), then the closure of X, denoted by C (X), is the intersection of all the
linear subspaces of (P,L) which contain X; the points of the set X are called
generators of C (X). IfX = {p1, p2, . . .} ⊆ P we say that the points p1, p2, . . . are
independent if none of the pi ∈ X belongs to the closure of the remaining ones.
A linear space (P,L) is said to be an exchange space if it fulfills the following
axiom, namely the exchange axiom:

(E) for any pair of points p, q ∈ P and for any subset X of P such that
p /∈ C (X), if p ∈ C

({q} ∪X
)
, then q ∈ C

({p} ∪X
)
.

If (P,L) is an exchange space, the dimension of a linear subspace (P ′,L′)
of (P,L), denoted by dim(P ′,L′), is the number of independent generators of
(P ′,L′) diminished by 1. In an analogous way, if (P,L, //) is an ap-structure,
an ap-substructure of (P,L, //) is an ap-structure (P ′,L′, //′) such that P ′ ⊆ P,
L′ ⊆ L and “//′” is the restriction of “//” to the lines of L′. This gives rise to the
notions of //-closure C//(X) of a subset X of P, //-generators, //-independence
and //-dimension.
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7 Theorem ( [15, Prop. 1]). If (P,L, //) is an ap-structure with a prin-
cipal line, then it is an exchange space with respect to the //-closure and its
//-dimension is 2.

2 Finite apt-structures with a principal line

All the apt-structures considered in this section are finite. In the finite case
the notion of apt-structure and that of transversal group-divisible design are
equivalent; let us recall the following definition (see [8, 20, 21]).

8 Definition. A group-divisible design or GDD is a finite incidence struc-
ture (P,B) such that

(1) for all p, q ∈ P there exists at most one B ∈ B such that p, q ∈ B;

(2) in the set P an equivalence relation “∼” is defined in the following way:

p ∼ q ⇐⇒ p = q or [p, q] = 0,

where we denote by [p, q] the number of blocks of B which contain both
p and q.

The set P/ ∼ is the set of point classes. A GDD is a transversal design if the
following two conditions hold:

3. every block meets every point class;

4. there exist at least two different point classes.

A translation group-divisible design is a GDD such that there exists a group
T � Aut(P,B) regular on P and such that for any B ∈ B and τ ∈ T ,
τ(B) = B or τ(B) ∩B = ∅.

As a straightforward consequence of this Definition we can state the following
Proposition.

9 Proposition. Let (P,L, //) be a finite apt-structure with a principal line
N . Then the incidence structure (P := P, B := L \ [N ]) is a translation trans-
versal design, and vice versa.

All the results on finite apt-structures with a principal line can be rephrased
for translation transversal GDD, and vice versa. In particular in [20] a classifi-
cation of finite translation group-divisible designs is provided. This translates in
our context to an exhausting classification of finite apt-structures with a princi-
pal line. Recall that a Frobenius group is a group G (finite or infinite) such that
G contains a normal subgroup N and a proper subgroup H �= {1} such that,
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for any n ∈ N∗, H ∩Hn = {1} and F = {Hn | n ∈ N} ∪ {N} is a partition of
the group1, called the principal Frobenius partition. A Hughes-Thompson group
is a finite group G such that, for a prime p, G is not a p-group and the Hughes
subgroup Hp(G), defined as the group generated by all elements of G of order
different from p, is proper and non-trivial.

10 Theorem. Let (P,L, //) = [G,F ] be a non-trivial finite apt-structure
with a principal line N through the origin. Then one of the following conditions
holds.

(1) G is a p-group and Hp(G) � N .

(2) G is a Hughes-Thompson group.

(3) G is a Frobenius group and F is the principal Frobenius partition of G.

(4) G is a Frobenius group with a p-group as Frobenius kernel and the partition
F is built as in [3].

Proof. By Proposition 9 above this is simply [20, Thm. 2.1]. QED

11 Proposition. Let [G,F ] = (P,L, //) be a finite apt-structure with two
non parallel principal lines N1 and N2. Then [G,F ] is an affine translation
plane, and vice versa.

Proof. Let L be a line parallel neither to N1 nor to N2 and consider the
parallel class [N1]. Every line in this set meets both L and N2 because N1 is
a principal line and no two of these lines can intersect L or N2 in the same
point because this would contradict the euclidean parallel axiom. This shows
that |L| = |N2|. The same reasoning shows also that |L| = |N1|, and so all the
lines of L have the same cardinality. We can now conclude by applying Theorem
6. The opposite implication is obvious. QED

In the following, once a principal line N is fixed, we will also denote by F∗

the set F \{N}. The following result, conveniently restated, is probably already
known from the theory of translation transversal designs, however we cannot
find a reference in the literature, thus we propose here a proof using the point
of view of translation structures.

12 Proposition. Let [G,F ] be a finite apt-structure with a principal line
N . Then, if n is the cardinality of the line N , the cardinality of any other line
H ∈ F∗ is at most n, and any two lines of F∗ have the same cardinality.

1In the finite case, in fact, it suffices to require the existence of such an H to deduce the
existence of N . In the infinite case, instead, this last requirement alone is not enough to have
a partition of the group: this is the reason why we choose this more restrictive definition of
Frobenius group in this paper.
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Proof. Let p ∈ P be a point neither on H nor on N and let {q} :=
Ln(p, // N) ∩H. For every point x ∈ H \ {q} the line p, x intersects the line N
and, when x varies on the line H \ {q}, all these intersection points are distinct,
hence |H| − 1 � |N |, which shows that |H| is at most n+1. If now |H| = n+1,
then all the lines through p intersect H, in fact |Lp| = |N | + 1 = |H|, but this
is in contradiction with the existence of the parallel line to H through p.

Let now H ′ be a line of F∗ distinct from H. Then, since N and all the lines
in its parallel class are principal lines, the map h ∈ H �→ H ′ ∩ Ln(h, // N) ∈ H ′

is a bijection. QED

It is now easy to characterize those apt-structures which achieve or approach
the bound.

13 Proposition. Let [G,F ] be a finite apt-structure with a principal line
N and denote by n = |N |, and let H ∈ F∗.

(1) If |H| = n then [G,F ] is an affine translation plane.

(2) If |H| = n − 1 then there exists an affine translation plane Π such that
[G,F ] is obtained from Π by removing a line ([G,F ] is called a stripe
plane) and, moreover, G is a Frobenius group of kernel N .

Proof. Claim 1 follows easily from the fact that, by Proposition 12 above,
all the lines of L have the same cardinality and from Theorem 6.

Claim 2 follows from the classification provided by Theorem 10 and from [10,
§ 6]. A direct construction for the stripe plane is also possible: see [17, Rmk 4.7]
for details. QED

14 Remark. Note that, a posteriori, a finite apt-structure with a principal
line N and such that every other line has cardinality |N |−1 is a kinematic space
(see Section 5) and, moreover, in this case N is a normal subgroup of G.

15 Proposition. Let [G,F ] be a finite apt-structure which is not an affine
plane with a principal line N and assume moreover that H acts transitively on
the points of N∗. Then for any H ∈ F∗, |H| = |N | − 1, H acts regularly on N∗

and G is a Frobenius group.

Proof. Denote by n the cardinality of N . If H acts transitively on N∗,
then |H| � |N | − 1; this, combined with Propositions 12 and 13 above shows
that |H| = n− 1, hence necessarily H acts regularly on N∗. QED

3 Characterization of apt-structures with a principal

line

Starting from this Section we drop the hypothesis of finiteness of G. First
of all let us start by proving the following Theorem which generalizes a result
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proved by L. Giuzzi in [6] and which deals with the linear dimension of an
apt-structure with a principal line N , completing Theorem 7 above.

16 Theorem. Let (P,L, //) = [G,F ] be an apt-structure with a principal
line N ∈ F . Then (P,L) is an exchange space and one of the following is
fulfilled:

(1) if there exists F ∈ F \ {N} such that |F | = 2, then dim(P,L) = 3;

(2) if there exists F ∈ F \ {N}, |F | > 2, then dim(P ,L) = 2.

Proof. Assume that F ∈ F \ {N} is a line such that |F | = 2. From the
fact that every line in [N ] meets F , follows that the parallel class of N is made
up of two distinct lines, and so P \ N ∈ L and every other line in L \ [N ] has
cardinality two. This shows that, for any four triplewise non collinear points
a, b, c, d ∈ P, we may assume that N = a, b and P \N = c, d, so

P = N ∪ (P \N) = a, b ∪ c, d ⊆ C
({a, b, c, d}) ⊆ P,

and hence dim(P,L) � 3.
Let now a, b, c ∈ P be any three non collinear points; again we can assume

without loss of generality that c, b ∈ [N ]. Hence C (a, b, c) = N ∪ {a} �= P, and
this shows that dim(P,L) � 3.

Assume now that for one, and hence for all F ∈ F \ {N}, |F | > 2. Let
a, b, c be three non collinear points and A = (P ′,L′) := C ({a, b, c}). Without
loss of generality we can assume that a, b, a, c /∈ [N ]. Let L := Ln(c, // N) and
M := Ln(a, // N). If we denote by d the point {d} := L ∩ a, b, then d is a point
of A and L = c, d ∈ L′. From |F | > 2 follows that there exists a point e in A
such that e ∈ a, b \ {a, d}, and so the line c, e is a line of A. Denote by f the
point of P ′ such that {f} = M ∩ c, e, then M = a, f is a line of A. Of course
every line R through c and different from L meets the line M , and so is entirely
contained in A, thus

P =
⋃
x∈P

c, x =
⋃
R∈L
c∈R

R ⊆ P ′ ⊆ P

hence A = (P,L), which shows that dim(P,L) = 2. QED

In the next Theorem we obtain an algebraic characterization of apt-structures
admitting a principal line.

17 Theorem. Let (P,L, //) = [G,F ] be an apt-structure and N ∈ F a
principal line. Then, the following property holds:

for any line H ∈ F \ {N}, G = N �H (�)
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Conversely let G = N �H be a group with a partition F such that N,H ∈ F
and the property (�) holds. Then N is a principal line.

Proof. Let H ∈ F be a line distinct from N . First we show that G = N ·H.
Let g ∈ G and consider the line gH = Ln(g, // H). By definition of principal
line there exists n ∈ N such that ∅ �= gH ∩N = {n}, thus

gH = Ln(g, // H) = Ln(n, // H) = nH,

indeed there exists h ∈ H such that g = nh. The proof of the fact that N is
normal is essentially the same as in the finite case, see [7, Prop. 1.6]. We recall
it here for completeness. Let g ∈ G and n ∈ N , assume that f = g−1ng /∈ N
and write F for the component of F containing f . Then, by the first part of
this proof, there exist n′ ∈ N and f ′ ∈ F such that g = n′f ′, thus

f ∈ g̃(N) ∩ F = f̃ ′(N) ∩ F = f̃ ′(N ∩ F ) = 1 ∈ N,

a contradiction.
To prove the converse let a, b ∈ G and F ∈ F∗, and consider the lines aF

and bN . By property (�) G = N � F , so there exist n, n′ ∈ N and f, f ′ ∈ F
such that a = nf , b = n′f ′, aF = nfF = nF and bN = Nb = Nnf ′ = Nf ′,
and so nf ′ ∈ aF ∩ bN . QED

18 Remark. Note that by property (�) all the subgroups of F∗ are isomor-
phic. An isomorphism between two subgroups H,H ′ ∈ F is, for example, the
following:

H −→ G/N −→ H ′

h �−→ Nh = Nnh′ �−→ h′,

where h = nh′ ∈ N � H ′ = G. In the following we will refer to these isomor-
phisms as the canonical ones.

In some interesting cases it is also possible to extend such isomorphisms
between a fixed line H and every other line of F∗ to automorphisms of the
whole group G obtaining a family Ψ ⊆ Aut(G, ·) which fulfills the following
property:

∀ F ∈ F∗ ∃ ψ ∈ Ψ such that ψ(H) = F and ψ(N) = N. (∗)

In general for a group G = N �H the existence of a family Ψ fulfilling property
(∗) (not necessarily obtained extending the canonical isomorphisms above) is
stronger than property (�) (see Section 4). Note also that the existence of such a
family Ψ with respect to a given line H entails, for any other line F ∈ F∗ \{H},
the existence of family Ψ′ which fulfills property (∗). In the case a family Ψ
fulfilling property (∗) exists it could be interesting to find out if, under suitable
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choices of the extensions, the family Ψ is also a family of collineations of the
geometric structure (later this will become an assumption in this work). A
partial answer to this question is provided by Proposition 21. Example 35 shows
a case in which the family Ψ is in fact a set of collineations which do not fix N
pointwise.

For any F,H ∈ F denote by NG(F ) and CG(F ) the normalizer and the
centralizer respectively of the line F in G and by NH(F ) and CH(F ) the groups
NG(F )∩H and CG(F )∩H respectively. The next Proposition gives a geometric
description of the normalizer in G of a line F ∈ F which will be useful in section
5.

19 Proposition. Let (P,L, //) = [G,F ] be an apt-structure. Then, for any
F ∈ F the normalizer NG(F ) of F in G is a union of lines parallel to F .
Moreover, if N ∈ L is a principal line and H ∈ F∗, then NG(H) = NN (H)×H
and NG(N) = NH(N)×N .

Proof. If g ∈ G belongs to NG(F ), then, for all f ∈ F , g̃f(F ) = g̃(F ) = F ,
so gf ∈ NG(F ), which shows that gF = Ln(g, // F ) ⊆ NG(F ). The second part
is immediate. QED

4 Apt-structures which fulfill property (∗)
Let us start by observing that if for G = N � H there exists a family

Ψ ⊆ Aut(G, ·) fulfilling the property (∗), then for any F ∈ F∗, G = N �F , that
is property (�).

In order to achieve our results let us now point out some properties of a
family Ψ which fulfills property (∗). Note that the family Ψ is not required to
be a group. The Corollaries 32 and 33 of section 5 show two cases in which the
family Ψ is a group (equal to the group of inner automorphisms of N); in the
general case the situation is made clear by the following Proposition.

20 Proposition. Let [G = N �H,F ] be a non abelian apt-structure such
that N,H ∈ F . Then there exists a family Ψ which fulfills the property (∗) if
and only if there exists a subgroup S of Aut(G, ·) which acts transitively on F∗

and such that, for any ϕ in S, ϕ(N) ∈ L.
Proof. If Ψ is a family which fulfills property (∗), then the group S := 〈Ψ〉

achieves the required properties. The converse is trivial. QED

According to the previous Proposition we can assume that a set Ψ which
fulfills property (∗) is in fact a group. Note however that, of course, a group Ψ
does not need to fulfill the property that any automorphism of Ψ maps the line
H to another line of F∗. In fact it turns out that requiring that for all ψ ∈ Ψ,
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ψ(H) is still a line of F∗ is equivalent to the fact that the group Ψ is a group of
collineations of the geometric structure, as shown by the following Proposition.

21 Proposition. Let [G = N �H,F ] be an apt-structure such that N,H ∈
F and Ψ a group of automorphisms of G which fulfills property (∗). Then Ψ is
such that for all ψ ∈ Ψ, ψ(H) is still a line of F∗ if and only if any automor-
phism of Ψ is a collineation.

Proof. Assume that any automorphism of Ψ maps the line H to another
line of F∗. According to property (∗) for any F ∈ F∗ there exists ϕ ∈ Ψ such
that F = ϕ(H), and so, for any ψ ∈ Ψ, ψ(F ) = ψ ◦ φ(H), which is still a line,
because ψ ◦ φ ∈ Ψ. The converse is obvious. QED

In the remainder of this section we will always assume that the group Ψ
which fulfills property (∗) is in fact a group of collineations of the geometric
structure (P,L, //), fixing N and acting transitively on F∗ (by Proposition 20).

The next result shows that, the existence of two distinct and non parallel
principal lines is in fact equivalent to the fact that every line of L is principal
and so gives a characterization of affine translation planes among apt-structures
(see also Proposition 11 where the assumption of finiteness replaces property
(∗)).

22 Theorem. Let (P,L, //) be an apt-structure with a principal line N and
a family Ψ of automorphisms which fulfills property (∗). Then (P,L, //) admits
another normal line N1\//N if and only if P is an abelian group. Moreover the
line N1 is principal if and only if (P,L, //) is an affine translation plane.

Proof. Let F be any line of F \ {N,N1}. Then, G = N × N1 = N � F
by Theorem 17, thus, by property (∗), F is a normal subgroup of G, and hence
P = G is abelian by a well known Theorem of Kontorovič (see [12]). If we assume
moreover that N1 is a principal line, G = F ×N by property (�) referred to the
principal line N and, by property (�) referred to the principal line N1, N ∼= F .
If ϕ is such an isomorphism, then, for any line H ∈ F∗ \{F}, the map ϕ defined
as follows

ϕ :

{
N ×H −→ F ×H

nh �−→ ϕ(n)h

is an automorphism of G since the group is abelian, and hence F is a princi-
pal line as well. By Theorem 6.1, (P,L, //) is an affine translation plane. The
opposite implication is obvious. QED

The following result is already known for a class of kinematic spaces (see
[19]), but it extends also to our situation.

23 Proposition. Let [G = N �H,F ] be a non abelian apt-structure such
that N,H ∈ F and Ψ a family of automorphisms of G which fulfills property (∗).
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Then every automorphism ϕ of G which preserves the partition fulfills ϕ(N) =
N .

Proof. Let ϕ ∈ Aut(G, ·,F), then ϕ(N) ∈ F and ϕ(N) � G. If ϕ(N) �= N ,
then G = N × ϕ(N) would be an apt-structure with two distinct principal
lines, and so, according to Theorem 22, G would be an abelian group, which
contradicts our assumption. QED

24 Theorem. Let (P,L, //) be an apt-structure with a principal line N and
Ψ a group of automorphisms of G which fulfills property (∗). Then, for any line
H in F∗,

Aut(G, ·,F) = Ψ ◦ ΓH

where ΓH is the group ΓH := {γ ∈ Aut (G, ·,F) | γ(H) = H}. Moreover if Ψ
acts regularly on F∗, then Ψ ∩ ΓH = {id}.

Proof. Let ϕ ∈ Aut(G, ·,F) and consider H ∈ F∗. Then, if we consider
the automorphism ψ of Ψ sending H to H ′ := ϕ(H), we have that

ψ−1 ◦ ϕ(H) = H,

that is ψ−1 ◦ φ ∈ ΓH . The second part is trivial. QED

25 Remark. Let us observe that if we succeed in extending the “canonical”
isomorphisms of Remark 18 to a family Ψ of automorphisms of the whole group
G, then any ψ ∈ Ψ acts between H and ψ(H) as a sort of “projection” in the
direction of the principal line N , that is, from the geometrical viewpoint,

ψ(h) = Ln(h, // N) ∩H ′.

Note also that, for any line L = hN //N and for any ψ ∈ Ψ, ψ(L) = L, in fact

ψ(hN) = ψ(h)ψ(N) = ψ(h)N = hN

because ψ(h) ∈ Ln(h, // N).
Moreover note that any automorphism ψ ∈ Ψ restricted to a line H ∈ F∗

acts as a projection in the sense above if and only if every line of [N ] is fixed by
every automorphism of Ψ. A sufficient condition for this to hold is that, for all
ψ1, ψ2 ∈ Ψ and for all L ∈ [N ], ψ1(L) = ψ2(L). Under the assumption that any
line of [N ] is fixed by any automorphism ψ of Ψ, all those automorphisms act
as “projections” not only between the lines H and H ′ = ψ(H) as shown above,
but between any pair of corresponding lines in F∗. For we have that, if F and
F ′ are such that ψ(F ) = F ′ and f ∈ F , if we denote by h the intersection point
of H and fN and by h′ the point ψ(h), then

ψ
(
h, h′

)
= Ln(h′, // N) = h, h′,
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and so

ψ(f) = ψ(F ) ∩ ψ
(
h, h′

)
= F ′ ∩ h, h′ = F ′ ∩ Ln(f, // N).

If we strengthen our hypothesis and assume also that all the automorphisms
of Ψ are obtained extending the isomorphisms between the line H and every
other line of F∗ by the identity of N (this happens, for instance, in Example 35),
then we can prove the following Proposition, which shows a sufficient condition
for the existence of a family Ψ which fulfills property (∗) and which acts regularly
on F∗, and at the same time characterizes those groups with an abelian principal
line.

26 Lemma. Let [G = N � H,F ] be an apt-structure such that N,H ∈ F
and Ψ be a group of automorphisms of G which fulfills property (∗). Assume,
moreover, that, for any ψ,ϕ ∈ Ψ, ψ|N = φ|N and ψ fixes any line parallel to N .
Then ∀ ψ ∈ Ψ : ψ|N = idN and Ψ acts regularly on the set F∗ and hence on
the points of any line L �= N parallel to N .

Proof. From Proposition 20 it follows that the group Ψ is transitive on the
set F∗. Assume now that ψ and ϕ are automorphisms of Ψ such that ψ(F ) =
ϕ(F ) for a line F ∈ F∗. Then, for any f ∈ F , according to Remark 25,

ψ(f) = Ln(f, // N) ∩ ψ(F ) = Ln(f, // N) ∩ φ(F ) = {ϕ(f)},

which shows that ψ|F = φ|F . If for any ψ,ϕ ∈ Ψ ψ|N = ϕ|N , then, by the fact
that Ψ is a group, necessarily ψ|N = φ|N = idN . It is now enough to apply (�)
to conclude. QED

27 Proposition. Let [G,F ] be an apt-structure with a principal line N .
Then property (∗) is fulfilled for a family Ψ of automorphisms which act as
projections in the direction of the principal line N and such that for any ψ ∈ Ψ
ψ|N = idN if and only if the group N is abelian.

Proof. Assume first that property (∗) holds. As an easy computation shows
the fact that Ψ is made up of automorphisms of the whole group G is equivalent
to the fact that, for any n ∈ N , h ∈ H and ψ ∈ Ψ, hnh−1 = ψ(h)nφ(h)−1, or
equivalentely

h̃(n) = ψ̃(h)(n). (1)

Note that, since the automorphisms of Ψ act as projections, for any h ∈ H,

Ψ(h) := {ψ(h) | ψ ∈ Ψ} = hN = Nh,

hence, since equality (1) is true for any ψ ∈ Ψ and the first part of this equation

is independent of the choice of ψ, for any n1, n2 ∈ N , ñ1h = ñ2h, that is ñ1 = ñ2,
which shows that N is abelian.
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Conversely assume now that N is abelian and, for any H ′ ∈ F∗ write φH′

for the “canonical” isomorphism between the two lines H and H ′. Note that, as
observed in Remark 25, these isomorphisms act as projections in the direction
of the principal line N . Consider now the maps

ψH′ :

{
N �H −→ N �H ′

nh �−→ n ϕH′(h)

and write Ψ := {ψH′ | H ′ ∈ F∗}. Again (see (1)) those maps are automorphisms
of G if and only if, for any h ∈ H, n ∈ N , ψ ∈ Ψ,

h−1ψ(h) ∈ CG(n) ⇔ ψ(h) ∈ h CG(n).

Since N is abelian, N ⊆ CG(N), hence for any h ∈ H, hN = Ψ(h) ⊆ h CG(N)
which concludes the proof. QED

28 Corollary. Let [G,F ] be an apt-structure with a principal line N and as-
sume that N is an abelian group. Then property (�) is equivalent to the existence
of a family Ψ ⊆ Aut(G, ·) fulfilling property (∗).

5 Kinematic spaces with a principal line

In the following we will always assume that [G,F ] is a kinematic space, i.e.
the partition F of G is normal.

First of all let us remark that for a group G = N � H all the conjugates
of H are those made by elements of N , that is G̃(H) = Ñ(H), since for any
g = nh ∈ G,

g̃(H) = gHg−1 = nhHh−1n−1 = ñ(H).

The following Proposition once again gives a geometric description of the
inner automorphisms of G as projections between a line H ∈ F∗ and its image
in the direction of the principal line N in the same sense as in Remark 25. This
has a non trivial consequence, as shown in Corollary 30.

29 Proposition. Let [G,F ] be a kinematic space with a principal line N
and let n ∈ N . Then, for any line H ∈ F∗, the inner automorphism ñ acts on
the line H as the projection of this line on H ′ := ñ(H) in the direction of N ,
i.e., for all h ∈ H,

ñ(h) = H ′ ∩ Ln(h, // N).

Proof. Of course ñ(N) = N . Fix H ∈ F∗ and let h ∈ H. Then {h} =
H ∩ hN , thus

ñ(h) = ñ(H) ∩ ñ(hN) = H ′ ∩ ñ(h)N = H ′ ∩ hh−1(nhn−1)N

= H ′ ∩ hN = H ′ ∩ Ln(h, // N). QED
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30 Corollary. Let [G,F ] be a kinematic space with a principal line N .
Then, for any line H ∈ F∗, NN (H) = CN (H).

Proof. Of course CN (H) ⊆ NN (H). If n ∈ NN (H), then, by Proposition
29,

ñ(h) = H ∩ Ln(h, // N) = {h}. QED

In Proposition 19 we gave a geometric description to the normalizer of a line
F ∈ F in G. We are now in position to give both a geometric and an algebraic
description also of the centralizer of a line H in G.

31 Proposition. Let [G,F ] be a kinematic space with a principal line N .
Then, for any line H ∈ F∗, if we denote by Z(H) the centre of H, the centralizer
of H in G is

CG(H) = NG(H) ∩
⋃

z∈Z(H)

Ln(z, // N),

or, equivalentely, CG(H) = NN (H)× Z(H).

Proof. Let us start by proving the first equality. Let x ∈ NG(H) ∩ zN for
a suitable z ∈ Z(H). By 19 there exists n ∈ NN (H) such that {x} = nH ∩ zN ,
and so x = nz. For any h ∈ H we have

x̃(h) = ñz(h) = nzhz−1n−1 = nhn−1 = h

where in the last equality we are aware of Corollary 30. This shows that

NG(H) ∩
⋃

z∈Z(H)

Ln(z, // N) ⊆ CG(H).

To show the opposite inclusion let now x ∈ CG(H) ⊆ NG(H) and, since
G = N � H, let n ∈ NN (H) and h ∈ H be such that x = nh. Then for any
h′ ∈ H,

h̃(h′) = hh′h−1 = n−1nhh′h−1n−1n = ñ−1
(
x̃(h′)

)
= ñ−1(h′) = h′

by Corollary 30. This shows that h ∈ Z(H), and so

x = nh ∈ hN ⊆
⋃

z∈Z(H)

Ln(z, // N).

Let us now show the second claim. The proof of the second inclusion above
entails CG(H) = NN (H) · Z(H). Moreover NN (H) ∩ Z(H) = {1} because
NN (H) ⊆ N , Z(H) ⊆ H and N ∩ H = {1}. Let us now show that NN (H) �
CG(H). For, let n ∈ NN (H) and x ∈ CG(H). Then

˜̃x(n)(H) = x̃nx−1(H) = xnx−1Hxn−1x−1 = xnHn−1x−1 = xHx−1 = H
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which shows that x̃(n) ∈ NN (H). The relation Z(H) � CG(H) is trivial, and
this complete the proof. QED

Let us denote, for any H ∈ F∗, by NH the set

NH :=
G

NG(H)
,

which we will identify with the set {gi | i ∈ I} made up of a representative for
each of the cosets of NG(H) in G. The conjugacy class of H is exactly the set
NH(H) := {g̃i(H) | i ∈ I}, and every conjugate of H appears exactly once in
this set. It is easy to see that we can choose the gi in N , so we can identify the
set NH with a subset of N .

Consider the index |G : NG(H)|. If |G : NG(H)| = 1, then G = NG(H), and
so H � G, G = N ×H, NH(H) = {H} and, if the group Ψ fulfills property (∗),
G is an abelian group, according to Theorem 22. Two cases can occur:

(1) NH(H) ⊂ F∗ (NH(H) �= F∗);

(2) NH(H) = F∗.

Let us consider more in detail the case NH(H) = F∗. In the following two
Corollaries of Theorem 17 we characterize those kinematic spaces with a single
conjugacy class in terms of the group Ψ of automorphisms.

32 Corollary. Let G = N � H be a group with a partition F such that
N,H ∈ F and the property (∗) holds for a family Ψ of automorphisms. If we
assume, moreover, that Ψ = Ñ , then G is a kinematic space and the lines of the
partition F different from N are all conjugate to H. Vice versa if the partition
F is normal and the set F∗ is made up of lines all conjugate to H, then the
group Ψ can be chosen equal to Ñ .

Proof. We have to check that, for any g = nh ∈ G and F ∈ F , the
conjugate g̃(F ) belongs to F . This is obvious if F = N . If F = H then

g̃(H) = nhHh−1n−1 = ñ(H)

and this belongs to F because Ñ = Ψ. If F ∈ F is distinct from N and H, then,
by property (∗), there exists n′ ∈ N such that ñ′(H) = F , and so

g̃(F ) = hnn′Hn′−1
n−1h−1 = n′′hHh−1n′′−1 = ñ′′(H)

which still belongs to F for the same reason.
Vice versa it is easy to check that the conjugacy class of H is Ñ(H) and

this equals F∗, because F is normal and all the lines of F∗ belong to the
same conjugacy class. Then, for all F ∈ F∗ there exists nF ∈ N such that
F = ñF (H). QED
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33 Corollary. Let G = N � H be a group with a partition F such that
N,H ∈ F and the property (∗) holds for a family Ψ of automorphisms. Then
Ψ can be chosen equal to Ñ and such that it acts regularly on the set F∗ if and
only if G is a split extension.

Proof. Assume Ψ = Ñ regular on F∗. According to [22, Thm. 2] it is
enough to prove that the conditions C1) and C2) hold. In particular C1) follows
easily from the fact that N is a normal subgroup of G. Ψ = Ñ implies that all
the groups of the partition F distinct from N are conjugate to H and, moreover,
under our assumptions, for any H ′ ∈ F∗ there exists exactly one ñ ∈ Ψ such
that ñ(H) = H ′.
Vice versa if G = N �H is a split extension, then ∀ n ∈ N∗, nHn−1 �= H and

F = {N} ∪ {ñ(H) | n ∈ N} = {N} ∪ Ñ(H). QED

34 Remark. Note that in Corollary 32 we have shown that if the set F∗ is
made up of only one conjugacy class, then a family Ψ which fulfills property (∗)
always exists and can be chosen equal to Ñ , and so it is a family of collineations.

6 Examples

In this section we collect some examples. The first one is an example of a
finite apt-structure with a principal line, and thus of a translation transversal
design, with a family Ψ fulfilling property (∗) and made up of collineations. Note
that, so far, we do not know any example of apt-structures with a principal line
which do not fulfill property (∗).

35 Example. Let N = Z7 = {0, 1, . . . , 6} be the cyclic group of seven
elements andH = {1, 2, 4} be the group of squares of the Galois field Z7 different
from 0, and consider the action of H on N given by left multiplication. It is easy
to show thatG := N�H is a Frobenius group. Let us consider the automorphism
ϕ ∈ Aut(N, ·) given, for all x ∈ N , by ϕ(x) = 2x. It is easy to show by direct
computations that the family of automorphisms Ψ obtained by extending in a
natural way the projections between the line H and the other lines of F∗ by ϕ
is a family of fixed-point-free collineations of the geometric structure.

The next two examples show that in the case of Hughes-Thompson groups
and Frobenius groups (finite or infinite), whenever a family Ψ exists, it is made
up of collineations.

36 Example. Let G = Hp �H be a (finite) Hughes-Thompson group and
F the usual partition made up of the group Hp and all the groups of order p
which are external to Hp. It is known that this partition is characteristic, in the
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sense that it is fixed by all the automorphisms of the group G, and this shows
that any automorphism of the group is, in fact, a collineation.

If we assume that a family Ψ fulfilling property (∗) exists, then we can check
this directly. For, if F is a group in F∗, ψ ∈ Ψ and x ∈ ψ(F ) ∩Hp, then

ψ−1(x) ∈ F ∩ ψ−1(Hp) = F ∩Hp = {1},
which shows that x = 1. ψ(F ) is, therefore, a group of order p which is external
to Hp, ad so belongs to F . Note also that, in general, in a Hughes-Thompson
group not all the subgroups of F∗ are conjugate to each other, thus in general
the family Ψ is different from the group of innner automorphisms

37 Example. Let G = N �H be a Frobenius group (finite or infinite) and
F be the principal Frobenius partition. This partition is characteristic and so,
as in the previous example, any automorphism of the group is a collineation.

Again we can easily see this also by direct computations. Let F ∈ F∗ and
ψ ∈ Ψ, H ′ ∈ F∗ be such that H ′ = ψ(H). If f ∈ F \ {1}, then ψ(f) ∈ G \N ,
and so there exists n ∈ N such that ψ(f) ∈ ñ(H ′), therefore

f ∈ ψ−1
(
ñ(H ′)

)
= ψ̃−1(n)(H),

and so, from f ∈ ψ̃−1(n)(H) ∩ F , we can conclude that F = ψ̃−1(n)(H). From
this it follows easily that

ψ(F ) = ψ
(
ψ̃−1(n)(H)

)
= ñ (ψ(H)) = ñ(H ′),

which shows that ψ(F ) is conjugate toH ′, and so toH, as to say that ψ(F ) ∈ F .
In this case, in particular, the inner automorphisms of G form a family Ψ

which fulfill property (∗).
Example 38 below is an example of a kinematic space with a principal line

in which the lines of the normal partition F different from the principal line are
parted into different conjugacy classes. A family Ψ is showed, which is different
from the family of inner automorphisms of the group.

38 Example (see Franchi, [5, Ex. 1]). Let p be an odd prime, m,n positive
integers such that n < p and write q for pm. Denote by Fq the Galois field of
order q, by Fp its prime subfield and by V the vector space Fn

q . Let a1, a2, . . . , am
be Fp-independent elements of Fq and define the matrices Ai to be the matrices
of GL(n, q) which have ones on the principal diagonal, ai on the first sub-
diagonal and zeroes elsewhere. Denote by H the subgroup H = 〈A1, . . . , Am〉 �
GL(n, q). In [5] it is proved that each Ai has order p and H is an elementary
abelian p-group of order pm = q. Consider now the action of H on V by right
multiplication of row vectors and define G to be the semidirect product V �H.
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Let now w = (0, 1, . . . , 1) ∈ V and, for each x ∈ Fq, define wi
x := a−1

1 aixw
and Hx := 〈w1

xA1, . . . , w
m
x Am〉 � G. In [5] it is proved that, for any x ∈ Fq,

Hx ∩ V = 1, Hx ∩ Hg
y �= 1 implies that x = y and g ∈ NG(Hx), and F :=

{V }∪{Hg
x | x ∈ Fq, g ∈ G} is a normal partition of G such that its components

split into q + 1 conjugacy classes.

It is now easy to check that, for any r ∈ Fp, the map ψr : G −→ G defined
by ψr(v,A) = (rv,A) is an automorphism of the group G which maps H to
another line of F∗, and so the family Ψ := {ψr | r ∈ Fp} fulfills property (∗).

Finally, Example 39 is an example of a kinematic space with a principal line
built starting from a natural generalization of the 4-dimensional real algebra of
the Study quaternions, which in the classical case arises considering the motions
of the real euclidean plane. The group associated to this kinematic space is a
Frobenius group (finite or infinite) with an abelian kernel and the family Ψ
fulfilling property (∗) is made up of inner automorphisms.

39 Example. Let F be a field of characteristic different from 2 and fix s ∈ F
which is not a square of F. Write HS for the four-dimensional vector space over
F with basis B = (1, i, ε, iε), where i and ε are such that i2 = s, ε2 = 0 and
iε = −εi. Then HS is in a natural way an algebra over F that, in analogy
with the case F = R, we shall call the Study quaternion algebra (see [11]).
Moreover M := Fε+ Fiε is the only maximal ideal of HS , which is then a local
algebra. It is a straightforward computation to check that HS is a kinematic
algebra or quadratic algebra, that is for any h ∈ HS , h

2 ∈ Fh+ F, thus, the set
(HS \M)/F∗ can be made into a kinematic space (see [10]) and, in particular, it
is a Frobenius group with an abelian kernel. In this space, that can be identified
with the 3-dimensional projective space HS/F∗, deprived of the projective line
M/F∗, we can define a new incidence structure in the following way: we call
line any (affine) plane of the pencil defined by M/F∗ and any (projective) line
which does not intersect M/F ∗. We can also introduce a new parallelism: any
two lines of the pencil defined by M/F∗ are parallel and two projective lines
which do not intersect M/F ∗ are parallel if and only if they differ for the (left)
multiplication by an element of (HS \M)/F∗. It turns out that the linear space
defined in this way is a kinematic space in which the affine planes considered
above are principal lines.

A family Ψ of automorphisms fulfilling property (∗) is, for example, the
group of inner automorphisms of ((HS \ M)/F∗, ·), since any two projective
lines through 1 are conjugate.
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[9] H. Karzel, H. J. Kroll, K. Sörensen: Invariante Gruppenpartitionen und Dopple-
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