Groups with Large Centralizer Subgroups

Maria De Falco
Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II,
via Cintia, I - 80126 Napoli (Italy)
mdefalco@unina.it

Francesco de Giovanni
Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II,
via Cintia, I - 80126 Napoli (Italy)
degiovan@unina.it

Carmela Musella
Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II,
via Cintia, I - 80126 Napoli (Italy)
cmusella@unina.it

Received: 28/12/2008; accepted: 08/01/2009.

Abstract. This article describes the structure of locally graded groups in which every (infinite) proper self-centralizing subgroup is abelian.

Keywords: metahamiltonian group; self-centralizing subgroup

MSC 2000 classification: 20F24

1 Introduction

We shall say that a subgroup X of a group G is self-centralizing (in G) if X contains its centralizer $C_G(X)$. Obvious examples of self-centralizing subgroups are provided by maximal abelian subgroups of arbitrary groups and by the Fitting subgroup of any soluble group. It follows immediately from Zorn’s Lemma that if a group G does not contain proper self-centralizing subgroups, then G is abelian. The aim of this paper is to study groups for which the set of self-centralizing subgroups is small in some sense.

In Section 2 a full description will be given of locally graded groups in which every proper self-centralizing subgroup is abelian; here a group G is said to be locally graded if each finitely generated non-trivial subgroup of G contains a proper subgroup of finite index. We work within the universe of locally graded groups in order to avoid Tarski groups (i.e. infinite simple groups whose proper non-trivial subgroups have prime order) and other similar pathological examples. The last section is devoted to the study of locally graded groups whose infinite proper self-centralizing subgroups are abelian.

Recall that a group is metahamiltonian if all its non-abelian subgroups
are normal. Groups with such property were introduced and investigated by G.M. Romalis and N.F. Sesekin ([6], [7], [8]), who proved in particular that (generalized) soluble metahamiltonian groups have finite commutator subgroup. Metahamiltonian groups are naturally involved in the study of groups with few self-centralizing subgroups; in fact, it is easy to show that groups whose proper self-centralizing subgroups are abelian must be metahamiltonian. Note also that in Section 3 a result of S.N. Černikov [1] concerning locally graded groups whose infinite non-abelian subgroups are normal will be used.

Most of our notation is standard and can be found in [5].

2 Centralizers of non-abelian subgroups

Let \(\mathcal{Q} \) be the class consisting of all groups whose proper self-centralizing subgroups are abelian (i.e. a group \(G \) has the property \(\mathcal{Q} \) if and only if \(C_G(X) \) is not contained in \(X \) for each proper non-abelian subgroup \(X \) of \(G \)). Of course, \(\mathcal{Q} \) contains all abelian groups, and also Tarski groups have the property \(\mathcal{Q} \). The main result of this section will characterize locally graded \(\mathcal{Q} \)-groups.

We begin with the following obvious property.

1 Lemma. Let \(G \) be a group and let \(X \) be a subgroup of \(G \). Then the normalizer \(N_G(X) \) is a self-centralizing subgroup of \(G \).

Proof. Clearly,

\[
C_G(N_G(X)) \leq C_G(X) \leq N_G(X),
\]

and hence the subgroup \(N_G(X) \) is self-centralizing in \(G \). \(\square \)

If \(\mathcal{X} \) is any class of groups, we will denote as usual by \(\mathcal{L}\mathcal{X} \) the class consisting of all groups with a local system by \(\mathcal{X} \)-subgroups (i.e. \(G \in \mathcal{L}\mathcal{X} \) if and only if every finite subset of \(G \) is contained in some \(\mathcal{X} \)-subgroup of \(G \)); the group class \(\mathcal{X} \) is local if \(\mathcal{L}\mathcal{X}=\mathcal{X} \). We shall say that a local group class \(\mathcal{X} \) is centrally stable if it satisfies the following conditions:

- \(\mathcal{X} \) is closed with respect to normal subgroups (i.e. every normal subgroup of an arbitrary \(\mathcal{X} \)-group belongs to \(\mathcal{X} \));

- if \(G \) is any group and \(X \) is an \(\mathcal{X} \)-subgroup of \(G \), then \(\langle g, X \rangle \in \mathcal{X} \) for each element \(g \in C_G(X) \).

Of course, for each non-negative integer \(c \) the class \(\mathfrak{N}_c \) of nilpotent groups with class at most \(c \) is centrally stable; in particular, the class \(\mathfrak{A} \) of abelian groups has such property.
2 Lemma. Let \mathfrak{X} be a class of groups which is closed with respect to normal subgroups, and let G be a group whose proper self-centralizing subgroups belong to \mathfrak{X}. Then every non-normal subgroup of G is an \mathfrak{X}-group. Moreover, if the group class \mathfrak{X} is centrally stable, then G contains a maximal subgroup which is an \mathfrak{X}-group.

Proof. Let X be any subgroup of G which is not in \mathfrak{X}. As \mathfrak{X} is closed with respect to normal subgroups, the normalizer $N_G(X)$ cannot belong to \mathfrak{X}; moreover, $N_G(X)$ is self-centralizing in G, and so it follows that $N_G(X) = G$ and X is normal in G. Suppose now that \mathfrak{X} is also centrally stable, so that in particular by Zorn’s Lemma G contains a maximal \mathfrak{X}-subgroup M and $C_G(M) \leq M$. Let H be any subgroup of G which properly contains M. Then

$$C_G(H) \leq C_G(M) \leq M < H,$$

and hence H is a self-centralizing subgroup of G which is not in \mathfrak{X}, so that $H = G$ and M is a maximal subgroup of G.

The above lemma provides information on the structure of groups whose proper self-centralizing subgroups belong to a given group class \mathfrak{X}, for several different choices of \mathfrak{X}. In particular, for $\mathfrak{X} = \mathfrak{A}$ we have the following consequence of Lemma 2.

3 Corollary. Let G be a \mathfrak{Q}-group. Then G is metahamiltonian and contains a maximal subgroup which is abelian.

Since it is well known that abelian-by-finite groups with finite commutator subgroup are central-by-finite, we also obtain the following result.

4 Corollary. Let G be a locally graded \mathfrak{Q}-group. Then the factor group $G/Z(G)$ is finite.

Proof. The group G is metahamiltonian by Corollary 3, so that in particular its commutator subgroup G' is finite. Moreover, G contains a maximal subgroup M which is abelian, and of course the index $[G : M]$ is finite. Thus G is abelian-by-finite and hence $G/Z(G)$ is finite.

5 Lemma. A locally graded group G belongs to the class \mathfrak{Q} if and only if $G = XZ(G)$ for each non-abelian subgroup X of G.

Proof. Suppose first that G is a \mathfrak{Q}-group, and assume for a contradiction that G contains a non-abelian subgroup X such that $XZ(G) \neq G$. As $G/Z(G)$ is finite by Corollary 4, there exists a maximal subgroup M of G containing $XZ(G)$. By hypothesis, M is not self-centralizing and so we may consider an element g of $C_G(M) \setminus M$; then $G = \langle g, M \rangle$ and hence g belongs to $Z(G)$. This contradiction proves that $G = XZ(G)$ for every non-abelian subgroup X of G.

Conversely, suppose that G satisfies the condition of the statement, and let X be any proper non-abelian subgroup of G. Then $G = XZ(G)$, so that the
centre $Z(G)$ is not contained in X and in particular X is not self-centralizing. Therefore G is a Q-group.

6 Corollary. A locally graded group G belongs to the class Q if and only if all proper subgroups of G containing $Z(G)$ are abelian.

It is known that a locally graded group G is metahamiltonian if and only every non-abelian subgroup of G contains the commutator subgroup G' of G (see [3]). Thus the above corollary provides further evidence of the fact that the centre and the commutator subgroup of a group have dual behaviours. In fact, since any Q-group is metahamiltonian, we obtain the following information.

7 Corollary. Let G be a locally graded group. If all proper subgroups of G containing the centre $Z(G)$ are abelian, then every non-abelian subgroup of G contains the commutator subgroup G' and in particular all proper subgroups of G' are abelian.

We can now describe locally graded Q-groups, starting with the nilpotent case.

8 Theorem. Let G be a nilpotent group. Then G belongs to the class Q if and only if it is abelian or the factor group $G/Z(G)$ has order p^2 for some prime number p.

Proof. Suppose first that G is a non-abelian Q-group. By Corollary 4 we have that $G/Z(G)$ is a finite (non-cyclic) group, and so it contains two distinct maximal subgroups $M_1/Z(G)$ and $M_2/Z(G)$. Moreover, it follows from Lemma 5 that M_1 and M_2 are abelian, so that $M_1 ∩ M_2 = Z(G)$ and $G/Z(G)$ has order p^2 for some prime number p.

Conversely, assume that $G/Z(G)$ has order p^2 for some prime number p. If X is any non-abelian subgroup of G, the group $XZ(G)/Z(G)$ cannot be cyclic and hence $XZ(G) = G$. Therefore G belongs to Q by Lemma 5.

9 Theorem. Let G be a locally graded non-nilpotent group. Then G belongs to the class Q if and only if $G = A ⋉ P$, where P is a finite abelian group of prime exponent $p = A$ and $A = \langle a, Z(G) \rangle$ for some element a acting irreducibly on P, and $\langle a \rangle ∩ Z(G) = \langle a^q \rangle$ for some prime number $q > 1$ which is prime to p; moreover, a^k acts irreducibly on P for each positive integer $k < q$. Assume for a contradiction that q is not a prime number, so that there exists a positive divisor r of q such that $\langle a^r \rangle < \langle a^r \rangle < \langle a \rangle$. Thus the subgroup $\langle a^r, P \rangle$ is not abelian and hence
Groups with large centralizer subgroups

\[G = \langle a^r, P \rangle Z(G), \text{ a contradiction since } \langle a^r, Z(G) \rangle \text{ is properly contained in } A. \] Therefore \(q \) is a prime number.

Conversely, suppose that \(G = A \rtimes P \) has the structure described in the statement, so that in particular \(G \) is metahamiltonian (see [3], Theorem 2). Let \(X \) be any proper non-abelian subgroup of \(G \). Since \(P \) is a minimal normal subgroup of \(G \), it follows that \(P = G' \) is contained in \(X \) (see [3], Theorem 3). Assume for a contradiction that \(X \) contains also \(Z(G) \); then \(PZ(G) \leq X \) and \(|G : PZ(G)| = q \), so that \(X = PZ(G) \) is abelian. This contradiction shows that \(Z(G) \) is not contained in \(X \), so that in particular \(X \) is not self-centralizing. Therefore \(G \) belongs to the class \(Q \).

Finally, we note that Corollary 4 can be extended to the case of groups with finitely many self-centralizing non-abelian subgroups. Since every self-centralizing subgroup contains the centre, it is clear that if \(G \) is a central-by-finite group, then the set of all self-centralizing subgroups of \(G \) is finite.

10 Theorem. Let \(G \) be a locally graded group with finitely many self-centralizing non-abelian subgroups. Then the factor group \(G/Z(G) \) is finite.

Proof. By Lemma 1 the group \(G \) has finitely many normalizers of non-abelian subgroups, so that its commutator subgroup \(G' \) is finite (see [2]). Let \(A \) be any maximal abelian subgroup of \(G \); then \(C_G(A) = A \) and hence \(A \) is finite. In particular, \(G \) is periodic. Moreover, it follows from the Hall-Kulatilaka-Kargapolov theorem (see [5] Part 1, Theorem 3.43) that \(G \) is not locally finite, so that it contains an infinite finitely generated subgroup \(E \). If \(X \) is any subgroup of finite index of \(E \), the normalizer \(N_G(X) \) is an infinite self-centralizing subgroup, so

3 Centralizers of infinite non-abelian subgroups

The consideration of Tarski groups shows that the condition that the group is locally graded is necessary in our next result.

11 Lemma. Let \(G \) be an infinite locally graded group whose proper self-centralizing subgroups are finite. Then \(G \) is abelian.

Proof. Assume for a contradiction that \(G \) is not abelian. Let \(A \) be any maximal abelian subgroup of \(G \); then \(C_G(A) = A \) and hence \(A \) is finite. In particular, \(G \) is periodic. Moreover, it follows from the Hall-Kulatilaka-Kargapolov theorem (see [5] Part 1, Theorem 3.43) that \(G \) is not locally finite, so that it contains an infinite finitely generated subgroup \(E \). If \(X \) is any subgroup of finite index of \(E \), the normalizer \(N_G(X) \) is an infinite self-centralizing subgroup, so
that $N_G(X) = G$ and X is normal in G; in particular, all subgroups of finite index of E are normal. Let J be the finite residual of E; then E/J is nilpotent and so finite. Since G is locally graded, it follows that E itself is finite. This contradiction proves the statement.

Let \mathfrak{Q}_∞ be the class consisting of all groups in which all infinite proper self-centralizing subgroups are abelian. Applying the argument used in the proof of the first part of Lemma 2 to the class \mathfrak{A}_∞ of all infinite abelian groups, the following result can be proved.

12 Lemma. Let G be an infinite \mathfrak{Q}_∞-group. Then all infinite non-abelian subgroups of G are normal.

Groups in which every infinite non-abelian subgroup is normal have been described by S.N. Černikov [1]. We state here his main result as a lemma; it will be used in order to describe (generalized soluble) \mathfrak{Q}_∞-groups.

13 Lemma. Let G be a locally graded group in which every infinite non-abelian subgroup is normal. Then either the commutator subgroup G' of G is finite or G is a Černikov group whose divisible part contains no infinite proper G-invariant subgroups.

Our next theorem deals with the case of finite-by-abelian groups, and in particular it applies to metahamiltonian \mathfrak{Q}_∞-groups which are locally graded.

14 Theorem. Let G be an infinite \mathfrak{Q}_∞-group with finite commutator subgroup. Then G belongs to \mathfrak{Q}.

Proof. Assume for a contradiction that G is not a \mathfrak{Q}-group, so that it contains a proper non-abelian subgroup X such that $C_G(X) \leq X$. Thus X is finite, so that in particular the centre $Z(G)$ of G is finite and hence $Z_2(G)$ has finite exponent (see [5] Part 1, Theorem 2.23). On the other hand, as G' is finite, the index $[G : Z_2(G)]$ is likewise finite (see [5] Part 1, p.113). It follows that G has finite exponent and so the infinite abelian group G/G' contains a subgroup H/G' of finite index such that $|G/H| > |X|$. Then XH is an infinite proper non-abelian subgroup and

$$C_G(XH) \leq C_G(X) \leq X < XH,$$

and this contradiction proves the theorem.

We can now complete the description of locally graded \mathfrak{Q}_∞-groups.

15 Theorem. Let G be a locally graded group with infinite commutator subgroup. Then G has the property \mathfrak{Q}_∞ if and only if G is a Černikov group whose divisible part J contains no infinite proper G-invariant subgroups and the factor group $G/JZ(G)$ has prime order.
Proof. Suppose first that \(G \) is a \(\mathcal{Q}_\infty \)-group. As \(G' \) is infinite, it follows from Lemma 12 and Lemma 13 that \(G \) is a Černikov group and its divisible part \(J \) has no infinite proper \(G \)-invariant subgroups. Moreover, \(J \) cannot be contained in \(Z(G) \), and hence the centralizer \(C_G(J) \) is an infinite proper subgroup of \(G \). On the other hand,
\[
C_G(C_G(J)) \leq C_G(J)
\]
and so \(C_G(J) \) must be abelian. Let \(X \) be any subgroup of \(G \) properly containing \(C_G(J) \). Then \(X \) is not abelian and
\[
C_G(X) \leq C_G(J) \leq X,
\]
so that \(X = G \). It follows that \(C_G(J) \) is a maximal subgroup of \(G \) and the index \([G : C_G(J)] \) is a prime number. Let \(x \) be an element of \(G \) such that \(G = \langle x, C_G(J) \rangle \) and consider the infinite non-abelian subgroup \(\langle x, JZ(G) \rangle \). Then
\[
C_G(\langle x, JZ(G) \rangle) \leq C_G(J) \cap C_G(x) = Z(G) \leq \langle x, JZ(G) \rangle,
\]
and hence \(G = \langle x, JZ(G) \rangle \) by the property \(\mathcal{Q}_\infty \). Therefore
\[
C_G(J) = \langle x, JZ(G) \rangle \cap C_G(J) = JZ(G)(\langle x \rangle \cap C_G(J)) = JZ(G),
\]
so that the group \(G/JZ(G) \) has prime order.

Assume conversely that \(G \) is a Černikov group satisfying the conditions of the statement, and let \(X \) be any infinite non-abelian subgroup of \(G \) such that \(C_G(X) \leq X \). Then \(Z(G) \) lies in \(X \) and \(X \) is not contained in \(JZ(G) \), so that
\[
G = JZ(G)X = JX.
\]
As \(X \) is infinite, its divisible part \(Y \) is likewise infinite and of course \(Y \) is a normal subgroup of \(G \). It follows that \(J = Y \leq X \) and hence \(X = G \). Therefore all infinite proper self-centralizing subgroups of \(G \) are abelian and \(G \) has the property \(\mathcal{Q}_\infty \).

Our last result provides further information on the structure of locally graded \(\mathcal{Q}_\infty \)-groups.

16 Corollary. Let \(G \) be a locally graded \(\mathcal{Q}_\infty \)-group with infinite commutator subgroup. Then \(G \) is a Černikov group and \(G' \) is the divisible part of \(G \).

Proof. By Theorem 15, \(G \) is a Černikov group and its divisible part \(J \) has no infinite proper \(G \)-invariant subgroups. Thus every infinite normal subgroup of \(G \) contains \(J \) and in particular \(J \leq G' \). On the other hand, Theorem 15 also yields that the factor group \(G/JZ(G) \) has prime order, so that \(G/J \) is central-by-cyclic and hence abelian. Therefore \(G' = J \).
References

