Note di Matematica Note Mat. 29 (2009), n. 1, 165-184 ISSN 1123-2536, e-ISSN 1590-0932 DOI 10.1285/i15900932v29n1p165 http://siba-ese.unisalento.it, © 2009 Università del Salento

On Characterizations of the Space of p-Semi-Integral Multilinear Mappings

Erhan Çalışkan i

Department of Mathematics, Faculty of Sciences and Arts, Yıldız Technical University, 34210 Esenler, Istanbul, Turkey caliskan@yildiz.edu.tr

Received: 22/02/2008; accepted: 03/10/2008.

Abstract. In this paper we consider the ideal of *p*-semi-integral *n*-linear mappings, which is a natural multilinear extension of the ideal of *p*-summing linear operators. The space of *p*-semi-integral multilinear mappings is characterized by means of a suitable tensor norm up to an isometric isomorphism. In this connection we also consider tensor products of linear operators and multilinear mappings of finite type.

Keywords: p-semi integral multilinear mappings, tensor product of Banach spaces

MSC 2000 classification: primary 46G25, secondary 46A32

Introduction

Semi-integral multilinear mappings between Banach spaces were introduced by R. Alencar and M. Matos [1] as a natural multilinear extension of the classical ideal of absolutely summing linear operators. The extension of this notion to p-semi-integral multilinear mappings, $1 \leq p < +\infty$ is immediate [see [2, 11]]. It is shown in [11] that the class of p-semi-integral multilinear mappings has many good properties, e.g. the ideal property [11, Proposição 5.1.11], inclusion property [11, Proposição 5.1.9], etc. [see also [2]]. Also it follows from a result of V. Dimant [4] that p-semi integral multilinear mappings have good properties with respect to the Aron-Berner extensions. As well, R. Alencar and M. Matos in [1] show that every multilinear vector-valued Pietsch-integral mapping is semi integral. We refer to [2] and [11] for the relation between p-semi-integral multilinear mappings and other classes of p-summing multilinear mappings, such as dominated, multiple (or, fully), strongly and absolutely summing mappings.

The aim of this paper is to obtain characterizations of the space $\mathcal{L}_{si,p}(E_1,\ldots,E_n;F)$ of p-semi-integral n-linear mappings from $E_1\times\cdots\times E_n$ to F. In Section 2 we introduce a reasonable crossnorm $\widetilde{\sigma}_p$ such that the space $\mathcal{L}_{si,p}(E_1,\ldots,E_n;F')$ of p-semi-integral n-linear mappings is isometric to the dual

ⁱWe would like to thank Professor Daniel M. Pellegrino and Professor Geraldo Botelho for several helpful conversations and suggestions.

of $E_1 \otimes \cdots \otimes E_n \otimes F$ endowed with $\widetilde{\sigma}_p$. A corresponding reasonable crossnorm σ_p for scalar-valued p-semi-integral mappings is also studied. In Section 3 we study the continuity of the tensor product of linear operators with respect to the norm $\widetilde{\sigma}_p$ (and σ_p). Finally, in Section 4 we consider the norm $\widetilde{\sigma}_p$ (and σ_p) in connection with spaces of multilinear mappings of finite type. Stronger representation results are obtained for multilinear mappings of finite type on reflexive spaces.

The symbols $E, E_1, \ldots, E_n, G_1, \ldots, G_n, F, F_0$ represent (real or complex) Banach spaces, E' denotes the topological dual of E, \mathbb{K} represents the scalar field and \mathbb{N} represents the set of all positive integers. Given a natural number $n \geq 2$, the Banach space of all continuous n-linear mappings from $E_1 \times \cdots \times E_n$ into F endowed with the sup norm will be denoted by $\mathcal{L}(E_1, \ldots, E_n; F)$ ($\mathcal{L}(E_1, \ldots, E_n)$ if $F = \mathbb{K}$). For $p \geq 1$, $l_p(E)$ denotes the linear space of absolutely p-summable sequences $(x_j)_{j=1}^{\infty}$ in E with the norm $\|(x_j)_{j=1}^{\infty}\|_p = \left(\sum_{j=1}^{\infty} \|x_j\|_p^p\right)^{\frac{1}{p}} < \infty$. Also, $l_p^w(E)$ denotes the linear space of the sequences $(x_j)_{j=1}^{\infty}$ in E such that $(\varphi(x_j))_{j=1}^{\infty} \in l_p$ for every $\varphi \in E'$. The expression

$$\|(x_j)_{j=1}^{\infty}\|_{w,p} = \sup_{\varphi \in B_{E'}} \|(\varphi(x_j))_{j=1}^{\infty}\|_p$$

defines a norm on $l_p^w(E)$. If $p = \infty$ we are restricted to the case of bounded sequences and in $l_\infty(E)$ we use the sup norm. The symbol $E_1 \otimes \cdots \otimes E_n$ denotes the algebraic tensor product of the Banach spaces E_1, \ldots, E_n .

Let $p \geq 1$. An *n*-linear mapping $T \in \mathcal{L}(E_1, \ldots, E_n; F)$ is *p-semi-integral* $(T \in \mathcal{L}_{si,p}(E_1, \ldots, E_n; F))$ if there exist $C \geq 0$ and a regular probability measure μ on the Borel σ -algebra of $B_{E'_1} \times \cdots \times B_{E'_n}$ endowed with the product of the weak star topologies $\sigma(E'_l, E_l)$, $l = 1, \ldots, n$, such that

$$||T(x_1,\ldots,x_n)|| \le C \left(\int_{B_{E_1'}\times\cdots\times B_{E_n'}} |\varphi_1(x_1)\cdots\varphi_n(x_n)|^p d\mu(\varphi_1,\ldots,\varphi_n) \right)^{1/p}$$

for every $x_j \in E_j$ and j = 1, ..., n. The infimum of the constants C working in the inequality defines a norm $\|\cdot\|_{si,p}$ on $\mathcal{L}_{si,p}(E_1, ..., E_n; F)$.

1 p-Semi-Integral Mappings and Tensor Products of Banach Spaces

The following characterization of p-semi-integral mappings, which was proved in [11] [see also [2]] will be important in this paper:

1 Theorem. [11], [2] Let E_1, \ldots, E_n and F be Banach spaces and let $p \ge 1$. Then, $T \in \mathcal{L}_{si,p}(E_1, \ldots, E_n; F)$ if and only if there exists $C \ge 0$ such that

$$\left(\sum_{j=1}^{m} \|T(x_{1,j},\dots,x_{n,j})\|^{p}\right)^{1/p} \leq C \left(\sup_{\substack{\varphi_{l} \in B_{E'_{l}} \\ l=1,\dots,n}} \sum_{j=1}^{m} |\varphi_{1}(x_{1,j}) \cdots \varphi_{n}(x_{n,j})|^{p}\right)^{1/p}$$
(1)

for every $m \in \mathbb{N}$, $x_{l,j} \in E_l$ with l = 1, ..., n and j = 1, ..., m. Moreover, the infimum of the C in (1) is $||T||_{si,p}$.

A standard argument shows that $\mathcal{L}_{si,p}(E_1,\ldots,E_n;F)$ is complete with respect to the norm $\|\cdot\|_{si,p}$. Next we introduce a reasonable crossnorm [see [14, p. 127]] on $E_1 \otimes \cdots \otimes E_n \otimes F$ so that the topological dual of the resulting space is isometric to $(\mathcal{L}_{si,p}(E_1,\ldots,E_n;F'),\|\cdot\|_{si,p})$.

2 Proposition. Let E_1, \ldots, E_n and F be Banach spaces and let $p \geq 1$. Let

$$\widetilde{\sigma}_{p}(u) := \inf \|(\lambda_{j})_{j=1}^{m}\|_{q} \left(\sup_{\substack{\varphi_{l} \in B_{E_{l}^{'}} \\ l=1,\dots,n}} \sum_{j=1}^{m} |\varphi_{1}(x_{1,j}) \cdots \varphi_{n}(x_{n,j})|^{p} \right)^{1/p} \|(b_{j})_{j=1}^{m}\|_{\infty}$$

where the infimum is taken over all representations of $u \in E_1 \otimes \cdots \otimes E_n \otimes F$ in the form

$$u = \sum_{j=1}^{m} \lambda_j x_{1,j} \otimes \cdots \otimes x_{n,j} \otimes b_j$$

with $m \in \mathbb{N}$, $x_{l,j} \in E_l$, l = 1, ..., n, $\lambda_j \in \mathbb{K}$, $b_j \in F$, j = 1, ..., m, and $q \ge 1$ with 1/p + 1/q = 1.

Then the function $\widetilde{\sigma}_p$ is a reasonable crossnorm on $E_1 \otimes \cdots \otimes E_n \otimes F$.

For the proof we will need the following lemma.

3 Lemma. Given $u \in E_1 \otimes \cdots \otimes E_n \otimes F$, for any $\delta > 0$ we can find a representation of u of the form

$$u = \sum_{i=1}^{m} \alpha_j x_{1,j} \otimes \cdots \otimes x_{n,j} \otimes a_j,$$

such that

$$\| (\alpha_j)_{j=1}^m \|_q \leq [(1+\delta)\widetilde{\sigma}_p(u)]^{1/q},$$

$$\sup_{\varphi_l \in B} \sum_{e'_l}^m | \varphi_1(x_{1,j}) \cdots \varphi_n(x_{n,j}) |^p \leq (1+\delta)\widetilde{\sigma}_p(u),$$

$$\| (a_j)_{j=1}^m \|_{\infty} = 1.$$

PROOF. Let us take a constant $\delta > 0$. It is clear, by the definition of $\tilde{\sigma}_p$, that we can choose a representation of u of the form

$$u = \sum_{i=1}^{m} \alpha_j x_{1,j} \otimes \cdots \otimes x_{n,j} \otimes a_j,$$

such that

$$\widetilde{\sigma}_{p}(u) \leq \| (\alpha_{j})_{j=1}^{m} \|_{q} \left(\sup_{\substack{\varphi_{l} \in B_{E'_{l}} \\ l=1,\dots,n}} \sum_{j=1}^{m} | \varphi_{1}(x_{1,j}) \cdots \varphi_{n}(x_{n,j}) |^{p} \right)^{1/p} \| (a_{j})_{j=1}^{m} \|_{\infty}$$

$$\leq (1+\delta)\widetilde{\sigma}_{n}(u) = [(1+\delta)\widetilde{\sigma}_{n}(u)]^{1/q} [(1+\delta)\widetilde{\sigma}_{n}(u)]^{1/p}.$$
(*)

Thus as a first step we can rearrange the representation of u by multiplying and dividing $\|(a_j)_{j=1}^m\|_{\infty}$ with a suitable constant c>0 so that $\|(a_j^*)_{j=1}^m\|_{\infty}:=\|(ca_j)_{j=1}^m\|_{\infty}=1$, and $\|(\alpha_j^*)_{j=1}^m\|_q:=\|(\frac{1}{c}\alpha_j)_{j=1}^m\|_q$. Observe that the representation $u=\sum_{j=1}^m\alpha_j^*x_{1,j}\otimes\cdots\otimes x_{n,j}\otimes a_j^*$ satisfies (*) with

$$\| (\alpha_{j}^{*})_{j=1}^{m} \|_{q} \left(\sup_{\substack{\varphi_{l} \in B_{E'_{l}} \\ l=1,\dots,n}} \sum_{j=1}^{m} | \varphi_{1}(x_{1,j}) \cdots \varphi_{n}(x_{n,j}) |^{p} \right)^{1/p}$$

$$\leq [(1+\delta)\widetilde{\sigma}_{p}(u)]^{1/q} [(1+\delta)\widetilde{\sigma}_{p}(u)]^{1/p}.$$

Now as a second step, for this representation of u, for example, if

$$\left(\sup_{\substack{\varphi_l \in B_{E'_l} \\ l=1,\dots,n}} \sum_{j=1}^m |\varphi_1(x_{1,j}) \cdots \varphi_n(x_{n,j})|^p\right)^{1/p} > [(1+\delta)\widetilde{\sigma}_p(u)]^{1/p} \qquad (**)$$

again we can choose a suitable constant C > 0 so that

$$\left(\sup_{\substack{\varphi_l \in B_{E_l'} \\ l=1,\dots,n}} \sum_{j=1}^m |\varphi_1(Cx_{1,j}) \cdots \varphi_n(x_{n,j})|^p\right)^{1/p} = [(1+\delta)\widetilde{\sigma}_p(u)]^{1/p}.$$

Hence, we have that

$$\| (\alpha_{j}^{*})_{j=1}^{m} \|_{q} \frac{1}{C} \left(\sup_{\substack{\varphi_{l} \in B_{E_{l}^{'}} \\ l=1,\dots,n}} \sum_{j=1}^{m} | \varphi_{1}(Cx_{1,j}) \cdots \varphi_{n}(x_{n,j}) |^{p} \right)^{1/p} \| (a_{j}^{*})_{j=1}^{m} \|_{\infty}$$

$$\leq [(1+\delta)\widetilde{\sigma}_{p}(u)]^{1/q} [(1+\delta)\widetilde{\sigma}_{p}(u)]^{1/p}$$

and this will imply that $\| (\alpha_j^*)_{j=1}^m \|_q \frac{1}{C} \leq [(1+\delta)\widetilde{\sigma}_p(u)]^{1/q}$. Now taking $\| (\alpha_j^{**})_{j=1}^m \|_q = \| (\frac{1}{C}\alpha_j^*)_{j=1}^m \|_q$ and $x_{1,j}^* = Cx_{1,j}, \ j=1,\ldots,m$ we obtain a representation of u of the form $u = \sum_{j=1}^m \alpha_j^{**} x_{1,j}^* \otimes \cdots \otimes x_{n,j} \otimes a_j^*$ satisfying (*) and conditions

$$\| (\alpha_j^{**})_{j=1}^m \|_q \leq [(1+\delta)\widetilde{\sigma}_p(u)]^{1/q},$$

$$\sup_{\varphi_l \in B_{E_l'}} \sum_{j=1}^m | \varphi_1(x_{1,j}^*) \cdots \varphi_n(x_{n,j}) |^p \leq (1+\delta)\widetilde{\sigma}_p(u),$$

$$\| (a_j^*)_{j=1}^m \|_{\infty} = 1.$$

Note that, in the second step above, if, instead of (**), it would be

$$\| (\alpha_j^*)_{j=1}^m \|_q > [(1+\delta)\widetilde{\sigma}_p(u)]^{1/q},$$
 (***)

then we would proceed completely in a similar way to obtain a suitable representation of u satisfying (*) and the above conditions. Note also that, as a consequence of the inequality (*), it cannot happen (**) and (***) simultaneously.

PROOF OF PROPOSITION 2. First we show that $\widetilde{\sigma}_p(u) = 0$ implies u = 0. Suppose that $\widetilde{\sigma}_p(u) = 0$. Then, for every $\epsilon > 0$, there is a representation $\sum_{j=1}^m \lambda_j x_{1,j} \otimes \cdots \otimes x_{n,j} \otimes b_j \text{ of } u \text{ such that}$

$$\| (\lambda_j)_{j=1}^m \|_q \left(\sup_{\substack{\varphi_l \in B_{E'_l} \\ l=1,\dots,n}} \sum_{j=1}^m | \varphi_1(x_{1,j}) \dots \varphi_n(x_{n,j}) |^p \right)^{1/p} \| (b_j)_{j=1}^m \|_{\infty} < \epsilon.$$

Hence it follows from the Hölder's inequality that

$$\begin{split} \sup_{\varphi_{l} \in B_{E'_{l}}, \varphi \in B_{F'}} \left| \varphi_{1} \times \cdots \times \varphi_{n} \times \varphi(\sum_{j=1}^{m} \lambda_{j} x_{1,j} \otimes \cdots \otimes x_{n,j} \otimes b_{j}) \right| \\ &= \sup_{\varphi_{l} \in B_{E'_{l}}, \varphi \in B_{F'}} \left| \sum_{j=1}^{m} \varphi_{1}(\lambda_{j} x_{1,j}) \cdots \varphi_{n}(x_{n,j}) \varphi(b_{j}) \right| \\ \leq & \| (b_{j})_{j=1}^{m}) \|_{\infty} \| (\lambda_{j})_{j=1}^{m}) \|_{q} \left(\sup_{\substack{\varphi_{l} \in B_{E'_{l}} \\ l=1,\dots,n}} \sum_{j=1}^{m} \left| \varphi_{1}(x_{1,j}) \cdots \varphi_{n}(x_{n,j}) \right|^{p} \right)^{1/p} < \epsilon. \end{split}$$

Thus we have that

$$\left| \sum_{j=1}^{m} \varphi_1(\lambda_j x_{1,j}) \cdots \varphi_n(x_{n,j}) \varphi(b_j) \right| < \epsilon \parallel \varphi_1 \parallel \cdots \parallel \varphi_n \parallel \parallel \varphi \parallel,$$

for every $\varphi_l \in E'_l$, $l = 1, \ldots, n$ and $\varphi \in F'$.

Since the value of the sum $\varphi_1 \times \cdots \times \varphi_n \times \varphi(\sum_{j=1}^m \lambda_j x_{1,j} \otimes \cdots \otimes x_{n,j} \otimes b_j)$

is independent of the representation of u, it follows that

$$\sum_{i=1}^{m} \varphi_1(\lambda_j x_{1,j}) \cdots \varphi_n(x_{n,j}) \varphi(b_j) = 0,$$

for every $\varphi_l \in E'_l$, $l = 1, ..., n, \varphi \in F'$.

Hence, since E'_1, \ldots, E'_n and F' are separating subsets of the respective algebraic duals, by the multilinear version of [14, Proposition 1.2] it follows that u = 0.

To prove the triangular inequality, take $u, v \in E_1 \otimes \cdots \otimes E_n \otimes F$. For any $\delta > 0$, by Lemma 3 we can find representations

$$u = \sum_{j=1}^{m} \alpha_j x_{1,j} \otimes \cdots \otimes x_{n,j} \otimes a_j$$
 and $v = \sum_{j=1}^{m} \beta_j y_{1,j} \otimes \cdots \otimes y_{n,j} \otimes b_j$

such that

$$\|(\alpha_j)_{j=1}^m\|_q \le [(1+\delta)\widetilde{\sigma}_p(u)]^{1/q},$$

$$\|(\beta_{j})_{j=1}^{m}\|_{q} \leq [(1+\delta)\widetilde{\sigma}_{p}(v)]^{1/q},$$

$$\sup_{\varphi_{l} \in B_{E'_{l}}} \sum_{j=1}^{m} |\varphi_{1}(x_{1,j}) \cdots \varphi_{n}(x_{n,j})|^{p} \leq (1+\delta)\widetilde{\sigma}_{p}(u),$$

$$\sup_{\varphi_{l} \in B_{E'_{l}}} \sum_{j=1}^{m} |\varphi_{1}(y_{1,j}) \cdots \varphi_{n}(y_{n,j})|^{p} \leq (1+\delta)\widetilde{\sigma}_{p}(v),$$

$$||(a_{j})_{j=1}^{m}||_{\infty} = 1 = ||(b_{j})_{j=1}^{m}||_{\infty}.$$

Then it follows that

$$\widetilde{\sigma}_{p}(u+v) \leq \left(\sum_{j=1}^{m} |\alpha_{j}|^{q} + \sum_{j=1}^{m} |\beta_{j}|^{q}\right)^{1/q} \times \left(\sup_{\substack{\varphi_{l} \in B_{E'_{l}} \\ l=1,\dots,n}} \left(\sum_{j=1}^{m} |\varphi_{1}(x_{1,j}) \cdots \varphi_{n}(x_{n,j})|^{p} + \sum_{j=1}^{m} |\varphi_{1}(y_{1,j}) \cdots \varphi_{n}(y_{n,j})|^{p}\right)\right)^{1/p} \\ \leq (1+\delta)^{1/q} (\widetilde{\sigma}_{p}(u) + \widetilde{\sigma}_{p}(v))^{1/q} (1+\delta)^{1/p} (\widetilde{\sigma}_{p}(u) + \widetilde{\sigma}_{p}(v))^{1/p} \\ = (1+\delta)(\widetilde{\sigma}_{p}(u) + \widetilde{\sigma}_{p}(v)),$$

which shows the triangular inequality. Hence $\widetilde{\sigma}_p$ is a norm on $E_1 \otimes \cdots \otimes E_n \otimes F$. It is easily seen that $\widetilde{\sigma}_p(x_1 \otimes \cdots \otimes x_n \otimes b) \leq \|x_1\| \cdots \|x_n\| \cdot \|b\|$ for every $x_l \in E_l$, $l=1,\ldots,n$ and $b \in F$. To show that $\|\varphi_1 \otimes \cdots \otimes \varphi_n \otimes \varphi\| \leq \|\varphi_1\| \cdots \|\varphi_n\| \cdot \|\varphi\|$ let $\varphi_l \in E_l'$ with $\varphi_l \neq 0$, $l=1,\ldots,n$, let $\varphi \in F'$ with $\varphi \neq 0$, and let $u=\sum_{j=1}^m \lambda_j x_{1,j} \otimes \cdots \otimes x_{n,j} \otimes b_j$. Then by the Hölder's inequality we get

$$|\varphi_1 \otimes \cdots \otimes \varphi_n(u)| \leq ||\varphi|| ||(b_j)_{j=1}^m||_{\infty} ||\varphi_1|| \cdots ||\varphi_n|| ||(\lambda_j)_{j=1}^m||_q$$

$$\times \left(\sup_{\substack{\varphi_l \in B_{E'_l} \\ l=1 \dots n}} \sum_{j=1}^m |\varphi_1(x_{1,j}) \cdots \varphi_n(x_{n,j})|^p \right)^{1/p}.$$

Therefore we obtain that $|\varphi_1 \otimes \cdots \otimes \varphi_n \otimes \varphi(u)| \leq ||\varphi_1|| \cdots ||\varphi_n|| ||\varphi|| \widetilde{\sigma}_p(u)$, and we have shown that $\widetilde{\sigma}_p$ is a reasonable crossnorm.

Note that when n=1, in particular, the norm $\tilde{\sigma}_p$ is reduced to the Chevet-Saphar norm d_q on $E_1 \otimes F$ [see [14, pg. 135]].

In the previous proposition if we take $F = \mathbb{K}$, then we identify $E_1 \otimes \cdots \otimes E_n \otimes \mathbb{K}$ with $E_1 \otimes \cdots \otimes E_n$, and in this case the corresponding reasonable crossnorm will be denoted by σ_p which is described as follows:

$$\sigma_p(u) := \inf \|(\lambda_j)_{j=1}^m\|_q \left(\sup_{\substack{\varphi_l \in B_{E'_l} \\ l=1,\dots,n}} \sum_{j=1}^m |\varphi_1(x_{1,j}) \cdots \varphi_n(x_{n,j})|^p \right)^{1/p}$$

where the infimum is taken over all representations of $u \in E_1 \otimes \cdots \otimes E_n$ in the form $u = \sum_{j=1}^m \lambda_j x_{1,j} \otimes \cdots \otimes x_{n,j}$ with $m \in \mathbb{N}$, $x_{l,j} \in E_l$, $l = 1, \ldots, n$, $\lambda_j \in \mathbb{K}$, $j = 1, \ldots, m$, and $q \ge 1$ with $\frac{1}{p} + \frac{1}{q} = 1$.

4 Remark. (Commutativity and associativity of σ_p) Let E, F and G be Banach spaces. Since the algebraic isomorphisms $E \otimes F = F \otimes E$ and $E \otimes (F \otimes G) = (E \otimes F) \otimes G$ are well known [see, for example, [7, p. 179]] then it follows by the very definition of σ_p that, the normed (resp. Banach) spaces $(E \otimes F, \sigma_p)$ and $(F \otimes E, \sigma_p)$ (resp. $(E \otimes F, \sigma_p)$ and $(F \otimes E, \sigma_p)$) are isometrically isomorphic, and the normed (resp. Banach) spaces $((E \otimes F, \sigma_p) \otimes G, \sigma_p)$ and $(E \otimes (F \otimes G, \sigma_p), \sigma_p)$ (resp. $((E \otimes F, \sigma_p) \otimes G, \sigma_p)$ and $(E \otimes (F \otimes G, \sigma_p), \sigma_p)$) are isometrically isomorphic in the canonical way, where the symbol $\tilde{\otimes}$ denotes the completion of the corresponding normed space.

The above remark assures that the (reasonable) crossnorm σ_p is symmetric, that is, if we interchange the factor spaces the value of the norm does not alter. Although σ_p and $\widetilde{\sigma}_p$ share many properties, let us see that, contrary to the case of σ_p , commutativity and associativity do not hold for $\widetilde{\sigma}_p$: take a tensor u in $E \otimes F$ and consider the infima

$$\inf \|(\lambda_j)_{j=1}^m\|_q \left(\sup_{\varphi \in B_{E'}} \sum_{j=1}^m |\varphi(x_j)|^p \right)^{1/p} \|(y_j)_{j=1}^m\|_{\infty} \text{ and }$$

$$\inf \|(\lambda_j)_{j=1}^m\|_q \left(\sup_{\phi \in B_{F'}} \sum_{j=1}^m |\phi(y_j)|^p \right)^{1/p} \|(x_j)_{j=1}^m\|_{\infty},$$

where the infima are taken over all representations $u = \sum_{j=1}^{m} \lambda_j x_j \otimes y_j$ with $\lambda_j \in \mathbb{K}, x_j \in E, y_j \in F, j = 1, ..., m$. The fact that these infima are different

in general shows that $\tilde{\sigma}_p$ is not a symmetric norm. Its non-associativity follows analogously.

- **5 Remark.** Let E_1, \ldots, E_n and F be Banach spaces and let $p \geq 1$.
- (a) It follows from the definitions of σ_p and $\widetilde{\sigma}_p$ that $\sigma_p(u) \leq \widetilde{\sigma}_p(u)$ for every $u \in E_1 \otimes \cdots \otimes E_n \otimes F$.
- (b) To each tensor $u \in E'_1 \otimes \cdots \otimes E'_n$ corresponds a canonical operator $T_u : E_1 \times \cdots \times E_n \longrightarrow \mathbb{K}$ given by

$$u = \sum_{j=1}^{m} \lambda_j \varphi_{1,j} \otimes \cdots \otimes \varphi_{n,j} \mapsto T_u = \sum_{j=1}^{m} \lambda_j \varphi_{1,j} \times \cdots \times \varphi_{n,j},$$

with $\lambda_j \in \mathbb{K}$, $\varphi_{l,j} \in E_l'$, $l = 1, \ldots, n$, $j = 1, \ldots, m$. By an easy application of Hölder's inequality we see that $||T_u|| \leq \sigma_p(u)$ for every $u \in E_1' \otimes \cdots \otimes E_n'$.

Below by combining the argument of the proof of [9, Theorem 3.7] with Theorem 1 we prove the following result. This result characterizes the space of p-semi integral mappings as the topological dual of the space of the tensor product $(E_1 \otimes \cdots \otimes E_n \otimes F, \widetilde{\sigma}_p)$ up to an isometric isomorphism.

6 Proposition. Let E_1, \ldots, E_n be Banach spaces. Then, for every Banach space F and $p \geq 1$, the space $(\mathcal{L}_{si,p}(E_1, \ldots, E_n; F'), \|\cdot\|_{si,p})$ is isometrically isomorphic to $(E_1 \otimes \cdots \otimes E_n \otimes F, \widetilde{\sigma}_p)'$ through the mapping $T \longrightarrow \phi_T$, where $\phi_T(x_1 \otimes \cdots \otimes x_n \otimes b) = T(x_1, \ldots, x_n)(b)$, for every $x_l \in E_l$, $l = 1, \ldots, n$, and $b \in F$.

Proof. It is easy to see that the correspondence

$$T \in \mathcal{L}_{si,p}(E_1, \dots, E_n; F') \longrightarrow \phi_T \in (E_1 \otimes \dots \otimes E_n \otimes F, \widetilde{\sigma}_p)'$$

defined by

$$\phi_T(x_1 \otimes \cdots \otimes x_n \otimes b) := T(x_1, \dots, x_n)(b), \ x_l \in E_l, \ l = 1, \dots, n \text{ and } b \in F,$$

is linear and injective. To show the surjectivity let $\phi \in (E_1 \otimes \cdots \otimes E_n \otimes F, \widetilde{\sigma}_p)'$ and consider the corresponding n-linear mapping $T_{\phi} \in \mathcal{L}(E_1, \ldots, E_n; F')$, defined by $T_{\phi}(x_1, \ldots, x_n)(b) = \phi(x_1 \otimes \cdots \otimes x_n \otimes b)$, for $x_l \in E_l, \ l = 1, \ldots, n$, and $b \in F$. Let us consider $x_{l,j} \in E_l, \ l = 1, \ldots, n, \ j = 1, \ldots, m$. For every $\epsilon > 0$ there are $b_j \in F$, with $\|b_j\| = 1, \ j = 1, \ldots, m$, such that

$$\|(T_{\phi}(x_{1,j},\ldots,x_{n,j}))_{j=1}^{m}\|_{p}^{p} = \sum_{j=1}^{m} \|T_{\phi}(x_{1,j},\ldots,x_{n,j})\|^{p}$$

$$\leq \epsilon + \sum_{j=1}^{m} |T_{\phi}(x_{1,j},\ldots,x_{n,j})(b_{j})|^{p} = (*).$$

Now we can choose $\lambda_j \in \mathbb{K}$, with $|\lambda_j| = 1, j = 1, \ldots, m$, such that

$$(*) = \epsilon + \sum_{j=1}^{m} |\phi(x_{1,j} \otimes \cdots \otimes x_{n,j} \otimes b_j)|^p$$

$$= \epsilon + \left| \sum_{j=1}^{m} |\phi(x_{1,j} \otimes \cdots \otimes x_{n,j} \otimes b_j)|^{p-1} \lambda_j \phi(x_{1,j} \otimes \cdots \otimes x_{n,j} \otimes b_j) \right| = (**).$$

Proceeding from this point, by continuity of ϕ and the Hölder's inequality we get

$$(**) \leq \epsilon + \|\phi\|_{(E_{1}\otimes \cdots \otimes E_{n}\otimes F, \widetilde{\sigma}_{p})^{\prime}} \widetilde{\sigma}_{p}$$

$$\left(\sum_{j=1}^{m} \lambda_{j} |\phi(x_{1,j}\otimes \cdots \otimes x_{n,j}\otimes b_{j})|^{p-1} x_{1,j}\otimes \cdots \otimes x_{n,j}\otimes b_{j}\right)$$

$$\leq \epsilon + \|\phi\|_{(E_{1}\otimes \cdots \otimes E_{n}\otimes F, \widetilde{\sigma}_{p})^{\prime}} \|(\lambda_{j} |\phi(x_{1,j}\otimes \cdots \otimes x_{n,j}\otimes b_{j})|^{p-1})_{j=1}^{m}\|_{q}$$

$$\times \left(\sup_{\substack{\varphi_{l}\in B_{E'_{l}}\\l=1,\dots,n}} \sum_{j=1}^{m} |\varphi_{1}(x_{1,j})\cdots \varphi_{n}(x_{n,j})|^{p}\right)^{1/p} \|(b_{j})_{j=1}^{m}\|_{\infty}$$

$$= \epsilon + \|\phi\|_{(E_{1}\otimes \cdots \otimes E_{n}\otimes F, \widetilde{\sigma}_{p})^{\prime}} \|(T_{\phi}(x_{1,j}, \dots, x_{n,j}))_{j=1}^{m}\|_{p}^{p/q}$$

$$\left(\sup_{\substack{\varphi_{l}\in B_{E'_{l}}\\l=1,\dots,n}} \sum_{j=1}^{m} |\varphi_{1}(x_{1,j})\cdots \varphi_{n}(x_{n,j})|^{p}\right)^{1/p}.$$

Since ϵ is arbitrary and p - (p/q) = 1 we obtain

$$\|(T_{\phi}(x_{1,j},\ldots,x_{1,j}))_{j=1}^{m}\|_{p} \leq \|\phi\|_{(E_{1}\otimes\cdots\otimes E_{n}\otimes F,\widetilde{\sigma}_{p})'} \left(\sup_{\substack{\varphi_{l}\in B_{E_{l}'}\\l=1,\ldots,n}} \sum_{j=1}^{m} |\varphi_{1}(x_{1,j})\cdots\varphi_{n}(x_{n,j})|^{p}\right)^{1/p},$$

showing that $||T_{\phi}||_{si,p} \leq ||\phi||_{(E_1 \otimes \cdots \otimes E_n \otimes F, \widetilde{\sigma}_p)'}$, and therefore $T_{\phi} \in (\mathcal{L}_{si,p}(E_1, \ldots, E_n; F'), ||\cdot||_{si,p})$.

To show the reverse inequality let $T \in \mathcal{L}_{si,p}(E_1, \dots, E_n; F')$ and consider the linear functional ϕ_T on $E_1 \otimes \cdots \otimes E_n \otimes F$ given by

$$\phi_T(u) = \sum_{j=1}^m \lambda_j T(x_{1,j}, \dots, x_{n,j})(b_j)$$

for $u = \sum_{j=1}^{m} \lambda_j x_{1,j} \otimes \cdots \otimes x_{n,j} \otimes b_j$, where $m \in \mathbb{N}$, $\lambda_j \in \mathbb{K}$, $k = 1, \ldots, n$, $b_j \in F$, $j = 1, \ldots, m$. Hence, by Hölder's inequality and Theorem 1 it follows that

$$|\phi_T(u)|^p \le \|(\lambda_j)_{j=1}^m\|_q^p \|(b_j)_{j=1}^m\|_\infty^p \|T\|_{si,p}^p \sup_{\varphi_l \in B_{E_l'}} \sum_{j=1}^m |\varphi_1(x_{1,j})\cdots\varphi_n(x_{n,j})|^p.$$

$$\underset{l=1,\dots,n}{\underset{l=1,\dots,n}{\underset{l=1,\dots,n}{\underset{l=1}{\underset{}}{\underset{l=1}{\underset{$$

Thus $|\phi_T(u)| \leq ||T||_{si,p} \widetilde{\sigma}_p(u)$, showing that ϕ_T is $\widetilde{\sigma}_p$ -continuous with $||\phi_T||_{(E_1 \otimes \cdots \otimes E_n \otimes F, \widetilde{\sigma}_p)'} \leq ||T||_{si,p}$.

Making $F = \mathbb{K}$, in the previous Proposition we obtain that for every Banach spaces E_1, \ldots, E_n , and $p \geq 1$, the space of *p*-semi-integral forms $(\mathcal{L}_{si,p}(E_1, \ldots, E_n), \|\cdot\|_{si,p})$ is isometric to $(E_1 \otimes \cdots \otimes E_n \otimes \mathbb{K}, \widetilde{\sigma}_p)'$.

On the other hand, by a slight modification of the proof of Proposition 6, alternatively, we obtain the representation of the space of p-semi-integral forms as the dual of the tensor product endowed with the σ_p -norm.

7 Proposition. Let E_1, \ldots, E_n be Banach spaces, and let $p \geq 1$. Then $(\mathcal{L}_{si,p}(E_1, \ldots, E_n), \|\cdot\|_{si,p})$ is isometrically isomorphic to $(E_1 \otimes \cdots \otimes E_n, \sigma_p)'$ through the mapping $T \longrightarrow \phi_T$, where $\phi_T(x_1 \otimes \cdots \otimes x_n) = T(x_1, \ldots, x_n)$ for every $x_l \in E_l$, $l = 1, \ldots, n$.

It is interesting to observe that $(E_1 \otimes \cdots \otimes E_n \otimes \mathbb{K}, \widetilde{\sigma}_p)'$ is not isometric to $(E_1 \otimes \cdots \otimes E_n, \widetilde{\sigma}_p)'$, but as a consequence of Propositions 6 and 7 we see that $(E_1 \otimes \cdots \otimes E_n \otimes \mathbb{K}, \widetilde{\sigma}_p)'$ is isometric to $(E_1 \otimes \cdots \otimes E_n, \sigma_p)'$.

Recall that a linear operator $u: E \longrightarrow F$ is said to be absolutely p-summing if $(u(x_j))_{j=1}^{\infty} \in l_p(F)$ whenever $(x_j)_{j=1}^{\infty} \in l_p^w(E)$. The vector space (operator ideal) composed by all absolutely p-summing operators from E to F is denoted by $\mathcal{L}_{as,p}(E;F)$. Hence the class of absolutely p-summing linear mappings coincides with the class of p-semi integral linear mappings. So in the linear case we prefer to write $\mathcal{L}_{as,p}(E;F)$ (resp. $\|\cdot\|_{as,p}$) instead of $\mathcal{L}_{si,p}(E;F)$ (resp. $\|\cdot\|_{si,p}$). For the theory of absolutely summing operators we refer to [3].

Below, inspired by a result of D. Pérez-García [12], we show that the norm σ_p is well behaved in connection with p-semi integral mappings.

8 Proposition. Let E_1, \ldots, E_n and F be Banach spaces and let $p \geq 1$. Then we have the following:

(a) If $T: E_1 \otimes \cdots \otimes E_n \longrightarrow F$ is a linear operator, then $T \in \mathcal{L}((E_1 \widetilde{\otimes} \cdots \widetilde{\otimes} E_n, \sigma_p); F)$ if and only if $\varphi \circ T \in (E_1 \widetilde{\otimes} \cdots \widetilde{\otimes} E_n, \sigma_p)'$ for every $\varphi \in B_{F'}$. In this case we have:

$$\parallel T\parallel_{\mathcal{L}((\widetilde{E_1}\otimes \cdots \otimes \widetilde{E_n},\sigma_p);F)} = \sup_{\varphi \in B_{F'}} \parallel \varphi \circ T\parallel_{(\widetilde{E_1}\otimes \cdots \otimes \widetilde{E_n},\sigma_p)'}.$$

(b) A multilinear mapping $T: E_1 \times \cdots \times E_n \longrightarrow F$ is p-semi integral if its associated linear mapping $\widetilde{T}: E_1 \otimes \cdots \otimes E_n \longrightarrow F$, given by $\widetilde{T}(x_1 \otimes \cdots \otimes x_n) = T(x_1, \ldots, x_n)$ for every $x_l \in E_l$, $l = 1, \ldots, n$, is σ_p -continuous and p-semi integral. In this case we have

$$\parallel T \parallel \leq \parallel T \parallel_{si,p} \leq \parallel \widetilde{T} \parallel_{si,p}$$
.

Conversely, if $T \in \mathcal{L}_{si,p}(E_1, \ldots, E_n; F)$, then the associated linear mapping \widetilde{T} is σ_p -continuous, that is, $\widetilde{T} \in \mathcal{L}((E_1 \otimes \cdots \otimes E_n, \sigma_p); F)$. In this case we have:

$$\parallel T \parallel \leq \parallel \widetilde{T} \parallel_{\mathcal{L}((E_1 \otimes \cdots \otimes E_n, \sigma_n); F)} \leq \parallel T \parallel_{si,p}.$$

PROOF. (a) The non-trivial implication of the first assertion is an easy consequence of the closed graph theorem. To show the second assertion let $u_0 \in E_1 \otimes \cdots \otimes E_n$ with $Tu_0 \neq 0$. Then by the Hanh-Banach Theorem there exists a $\varphi_0 \in B_{F'}$ such that $\varphi_0(Tu_0) = ||Tu_0||$. Therefore for every $\varphi \in B_{F'}$ we have that

$$\parallel Tu_0 \parallel \leq \sup_{\varphi \in B_{F'}} \mid \varphi \circ T(u_0) \mid \leq \sup_{\varphi \in B_{F'}} \parallel \varphi \circ T \parallel_{(\widetilde{E_1} \otimes \cdots \otimes \widetilde{E_n}, \sigma_p)'} \sigma_p(u_0),$$

which shows that

$$\parallel T \parallel_{\mathcal{L}((\widetilde{E_1} \otimes \cdots \otimes \widetilde{E_n}, \sigma_p); F)} \leq \sup_{\varphi \in B_{F'}} \parallel \varphi \circ T \parallel_{(\widetilde{E_1} \otimes \cdots \otimes \widetilde{E_n}, \sigma_p)'}.$$

Since the reverse inequality is immediate we have (a).

(b) Suppose $\widetilde{T} \in \mathcal{L}_{si,p}((E_1 \otimes \cdots \otimes E_n, \sigma_p); F)$. Then by Proposition 7 and

Theorem 1 it follows that

$$\begin{split} &\left(\sum_{j=1}^{m} \|T(x_{1,j},\ldots,x_{n,j})\|^{p}\right)^{1/p} \\ \leq &\|\widetilde{T}\|_{si,p} \left(\sup_{\varphi \in B_{(E_{1} \otimes \cdots \otimes E_{n},\sigma_{p})'}} \sum_{j=1}^{m} |\varphi(x_{1,j} \otimes \cdots \otimes x_{n,j})|^{p}\right)^{1/p} \\ = &\|\widetilde{T}\|_{si,p} \left(\sup_{S \in B_{(\mathcal{L}_{si,p}(E_{1},\cdots,E_{n}),\|.\|_{si,p})}} \sum_{j=1}^{m} |S(x_{1,j},\cdots,x_{n,j})|^{p}\right)^{1/p} \\ \leq &\|\widetilde{T}\|_{si,p} \left(\sup_{\varphi_{l} \in B_{E_{l}'}} \sum_{j=1}^{m} |\varphi_{1}(x_{1,j})\cdots\varphi_{n}(x_{n,j})|^{p}\right)^{1/p}, \end{split}$$

which shows that $T \in \mathcal{L}_{si,p}(E_1, \ldots, E_n; F)$ with $||T||_{si,p} \leq ||\widetilde{T}||_{si,p}$. The fact that $||T|| \leq ||T||_{si,p}$ follows easily from Theorem 1.

To show the converse, suppose now $T \in \mathcal{L}_{si,p}(E_1, \ldots, E_n; F)$, and let $u \in E_1 \otimes \cdots \otimes E_n$. Choosing a representation $u = \sum_{j=1}^m \lambda_j x_{1,j} \otimes \cdots \otimes x_{n,j}$, from the Hölder's inequality and Theorem 1 it follows that

$$\|\widetilde{T}(u)\|^{p} \leq \|(\lambda_{j})_{j=1}^{m}\|_{q}^{p} \sum_{j=1}^{m} \|T(x_{1,j}, \dots, x_{n,j})\|^{p}$$

$$\leq \|(\lambda_{j})_{j=1}^{m}\|_{q}^{p} \|T\|_{si,p}^{p} \sup_{\varphi_{l} \in B_{E'_{l}}} \sum_{j=1}^{m} |\varphi_{1}(x_{1,j}) \cdots \varphi_{n}(x_{n,j})|^{p}.$$

$$= \lim_{l=1,\dots,n} |\varphi_{l}(x_{l}, y_{l})|^{p} + \lim_{l=1,\dots,n} |\varphi_{l}(x_{l}, y_{l})|^{p} + \lim_{l=1,\dots,n} |\varphi_{l}(x_{l}, y_{l})|^{p}.$$

Hence $\|\widetilde{T}(u)\| \leq \|T\|_{si,p}\sigma_p(u)$, and so \widetilde{T} is σ_p -continuous with $\|\widetilde{T}\|_{\mathcal{L}((E_1\otimes \cdots \otimes E_n,\sigma_p);F)} \leq \|T\|_{si,p}$. Finally, since σ_p is a reasonable crossnorm, it readily follows that $\|T\| \leq \|\widetilde{T}\|_{\mathcal{L}((E_1\otimes \cdots \otimes E_n,\sigma_p);F)}$, which completes the proof of (b).

QED

Proposition 8(b) can be seen as a weak vector-valued version of Proposition 7. We do not know if, in general, $\widetilde{T} \in \mathcal{L}_{si,p}((E_1 \otimes \cdots \otimes E_n, \sigma_p); F)$ whenever $T \in \mathcal{L}_{si,p}(E_1, \ldots, E_n; F)$.

We end this section by giving another property of the p-semi integral multilinear mappings.

9 Proposition. [11, Teorema 5.1.14] If $T \in \mathcal{L}_{si,p}(E_1, \ldots, E_n; F)$ then, for each $i = 1, \ldots, n$, the mapping $T_i \colon E_i \longrightarrow \mathcal{L}(E_1, \stackrel{[i]}{\ldots}, E_n; F)$, defined by $T_i(x_i)(x_1, \stackrel{[i]}{\ldots}, x_n) := T(x_1, \ldots, x_n)$, is absolutely p-summing with $T_i(x_i) \in \mathcal{L}_{si,p}(E_1, \stackrel{[i]}{\ldots}, E_n; F)$. Furthermore,

$$||T|| = ||T_i|| \le ||T_i||_{as,p} \le ||T||_{si,p}.$$

PROOF. A close examination of the proof of [11, Teorema 5.1.14] gives the first part. Since it is readily seen that $||T|| = ||T_i||$ and, it follows by Proposition 8(b) that $||T_i|| \le ||T_i||_{si,p}$, we have the proof.

2 Tensor Product of Operators

In this section we consider the tensor product of linear operators in connection with the reasonable crossnorm $\tilde{\sigma}_p$ (and σ_p). We show that the reasonable crossnorms $\tilde{\sigma}_p$ and σ_p are actually tensor norms. The results of this section are similar to those ones given for the projective tensor product in connection with bilinear mappings in [14] with the same patterns in corresponding proofs [see [14, Propositions 2.3 and 2.4]].

In what follows we use the notation $\widetilde{\sigma}_{p;E_1,...,E_n}$ to emphasize that the cross-norm $\widetilde{\sigma}_p$ is considered on $E_1 \otimes \cdots \otimes E_n$.

10 Proposition. Let $T_i \in \mathcal{L}(E_i; F_i)$, i = 1, ..., n, $T \in \mathcal{L}(E; F)$ and $p \geq 1$. Then there is a unique continuous linear operator $T_1 \otimes_{\widetilde{\sigma}_p} \cdots \otimes_{\widetilde{\sigma}_p} T_n \otimes_{\widetilde{\sigma}_p$

$$T_1 \otimes_{\widetilde{\sigma}_p} \cdots \otimes_{\widetilde{\sigma}_p} T_n \otimes_{\widetilde{\sigma}_p} T(x_1 \otimes \cdots \otimes x_n \otimes x) = (T_1 x_1) \otimes \cdots \otimes (T_n x_n) \otimes (Tx)$$

for every $x_i \in E_i$, $i = 1, ..., n$, and $x \in E$. Moreover

$$||T_1 \otimes_{\widetilde{\sigma}_p} \cdots \otimes_{\widetilde{\sigma}_p} T_n \otimes_{\widetilde{\sigma}_p} T|| = ||T_1 \otimes \cdots \otimes T_n \otimes T|| = ||T_1|| \cdots ||T_n|| ||T||.$$

PROOF. Given linear operators $T_i \in \mathcal{L}(E_i; F_i)$, i = 1, ..., n, and $T \in \mathcal{L}(E; F)$, there is a unique linear operator $T_1 \otimes \cdots \otimes T_n \otimes T : E_1 \otimes \cdots \otimes E_n \otimes E \longrightarrow F_1 \otimes \cdots \otimes F_n \otimes F$ such that

$$T_1 \otimes \cdots \otimes T_n \otimes T(x_1 \otimes \cdots \otimes x_n \otimes x) = (T_1 x_1) \otimes \cdots \otimes (T_n x_n) \otimes (Tx)$$
 for every $x_i \in E_i, i = 1, \dots, n$ and $x \in E$ [see [14, p. 7]]. We may suppose $T_i \neq 0$, $i = 1, \dots, n$ and $T \neq 0$. Let $u \in E_1 \otimes \cdots \otimes E_n \otimes E$ and let $\sum_{i=1}^m \lambda_j x_{1,j} \otimes \cdots \otimes x_{n,j} \otimes x_j$

be a representation of u. Hence the sum

$$\sum_{j=1}^{m} \lambda_j T_1(x_{1,j}) \otimes \cdots \otimes T_n(x_{n,j}) \otimes T(x_j)$$

is a representation of $T_1 \otimes \cdots \otimes T_n \otimes T(u)$ in $F_1 \otimes \cdots \otimes F_n \otimes F$. Then, for every $p \geq 1$

$$\widetilde{\sigma}_{p;F_{1},\dots,F_{n},F}(T_{1} \otimes \dots \otimes T_{n} \otimes T(u)) \\
\leq \|(\lambda_{j})_{j=1}^{m}\|_{q} \left(\sup_{\substack{\phi_{l} \in B_{F'_{l}} \\ l=1,\dots,n}} \sum_{j=1}^{m} |\phi_{1}(T_{1}x_{1,j}) \dots \phi_{n}(T_{n}x_{n,j})|^{p} \right)^{1/p} \|(Tx_{j})_{j=1}^{m}\|_{\infty} \\
\leq \|T_{1}\| \dots \|T_{n}\| \|T\| \|(\lambda_{j})_{j=1}^{m}\|_{q} \left(\sup_{\substack{\phi_{l} \in B_{E'_{l}} \\ l=1,\dots,n}} \sum_{j=1}^{m} |\phi_{1}(x_{1,j}) \dots \phi_{n}(x_{n,j})|^{p} \right)^{1/p} \|(x_{j})_{j=1}^{m}\|_{\infty}$$

and we have that

$$\widetilde{\sigma}_{v:F_1,\dots,F_n,F}(T_1\otimes\dots\otimes T_n\otimes T(u))\leq \|T_1\|\dots\|T_n\|\|T\|\widetilde{\sigma}_{v:E_1,\dots,E_n,E}(u),$$

so that the linear operator $T_1 \otimes \cdots \otimes T_n \otimes T$ is continuous for the crossnorms on $E_1 \otimes \cdots \otimes E_n \otimes E$ and $F_1 \otimes \cdots \otimes F_n \otimes F$ and $||T_1 \otimes \cdots \otimes T_n \otimes T|| \leq ||T_1|| \cdots ||T_n|| ||T||$. On the other hand, as $\widetilde{\sigma}_p$ is an reasonable crossnorm we get that

$$||T_{1}(x_{1})|| \cdots ||T_{n}(x_{n})|| ||T(x)|| = \widetilde{\sigma}_{p;F_{1},\dots,F_{n},F}(T_{1}(x_{1}) \otimes \dots \otimes T_{n}(x_{n}) \otimes T(x))$$

$$\leq ||T_{1} \otimes \dots \otimes T_{n} \otimes T|| \quad \widetilde{\sigma}_{p;E_{1},\dots,E_{n},E}(x_{1} \otimes \dots \otimes x_{n} \otimes x)$$

$$= ||T_{1} \otimes \dots \otimes T_{n} \otimes T|| ||x_{1}|| \cdots ||x_{n}|| ||x||,$$

[see [14, Proposition 6.1]], and therefore $||T_1 \otimes \cdots \otimes T_n \otimes T|| \ge ||T_1|| \cdots ||T_n|| ||T||$. Hence we have that

$$||T_1 \otimes \cdots \otimes T_n \otimes T|| = ||T_1|| \cdots ||T_n|| ||T||$$

Now taking the unique continuous extension of the operator $T_1 \otimes \cdots \otimes T_n \otimes T$ to the completions of $(E_1 \otimes \cdots \otimes E_n \otimes E, \widetilde{\sigma}_p)$ and $(F_1 \otimes \cdots \otimes F_n \otimes F, \widetilde{\sigma}_p)$, which we denote by $T_1 \otimes_{\widetilde{\sigma}_p} \cdots \otimes_{\widetilde{\sigma}_p} T_n \otimes_{\widetilde{\sigma}_p} T$, we obtain a unique linear operator from $(E_1 \widetilde{\otimes} \cdots \widetilde{\otimes} E_n \widetilde{\otimes} E, \widetilde{\sigma}_p)$ into $(F_1 \widetilde{\otimes} \cdots \widetilde{\otimes} F_n \widetilde{\otimes} F, \widetilde{\sigma}_p)$ with the norm $\|T_1 \otimes_{\widetilde{\sigma}_p} \cdots \otimes_{\widetilde{\sigma}_p} T_n \otimes_{\widetilde{\sigma}_p} T\| = \|T_1\| \cdots \|T_n\| \|T\|$.

The $\widetilde{\sigma}_p$ -tensor product does not respect subspaces but respects 1-complemented subspaces. Indeed; if E_0 is a subspace of E, then $E_0 \otimes F$ is an algebraic subspace of $E \otimes F$, but the norm induced on $E_0 \otimes F$ by $(E \otimes F, \widetilde{\sigma}_p)$ is not, in

general the $\widetilde{\sigma}_p$ norm on $E_0 \otimes F$. In fact, if we take $u \in E_0 \otimes F$, then we see that

$$\widetilde{\sigma}_{p;E,F}(u) = \inf \|(\lambda_j)_{j=1}^m\|_q \left(\sup_{\varphi \in B_{E'}} \sum_{j=1}^m |\varphi(x_j)|^p \right)^{1/p} \|(y_j)_{j=1}^m\|_{\infty}$$

$$\leq \inf \|(\lambda_j)_{j=1}^m\|_q \left(\sup_{\psi \in B_{E'_0}} \sum_{j=1}^m |\psi(x_j)|^p \right)^{1/p} \|(y_j)_{j=1}^m\|_{\infty} = \widetilde{\sigma}_{p;E_0,F}(u)$$

since the set of representations of u become bigger when we enlarge the space E_0 to E. Similarly if F_0 is a subspace of F, then $E \otimes F_0$ is an algebraic subspace of $E \otimes F$, but the norm induced on $E \otimes F_0$ by $(E \otimes F, \widetilde{\sigma}_p)$ is not, in general the $\widetilde{\sigma}_p$ norm on $E \otimes F_0$. Whereas for complemented subspaces we have:

11 Proposition. Let M_1, \ldots, M_n , N be complemented subspaces of E_1, \ldots, E_n , F respectively. Then $M_1 \otimes \cdots \otimes M_n \otimes N$ is complemented in $(E_1 \otimes \cdots \otimes E_n \otimes F, \widetilde{\sigma}_p)$ and the norm on $M_1 \otimes \cdots \otimes M_n \otimes N$ induced by $\widetilde{\sigma}_{p;E_1,\ldots,E_n,F}$ is equivalent to $\widetilde{\sigma}_{p;M_1,\ldots,M_n,N}$. Moreover, if M_1,\ldots,M_n and N are 1-complemented, then $(M_1 \otimes \cdots \otimes M_n \otimes N, \widetilde{\sigma}_p)$ is 1-complemented in $(E_1 \otimes \cdots \otimes E_n \otimes F, \widetilde{\sigma}_p)$ as well.

PROOF. Let P_1, \ldots, P_n , Q be projections from E_1, \ldots, E_n , F onto M_1, \ldots, M_n , N respectively. One can easily show that $P_1 \otimes \cdots \otimes P_n \otimes Q$ is a projection of $(E_1 \otimes \cdots \otimes E_n \otimes F, \widetilde{\sigma}_p)$ onto $M_1 \otimes \cdots \otimes M_n \otimes N$. We just have proved above that $\widetilde{\sigma}_{p;E,F}(u) \leq \widetilde{\sigma}_{p;M,N}(u)$ for $u \in M \otimes N$, and the same argument shows that $\widetilde{\sigma}_{p;E_1,\ldots,E_n,F}(u) \leq \widetilde{\sigma}_{p;M_1,\ldots,M_n,N}(u)$ for $u \in M_1 \otimes \cdots \otimes M_n \otimes N$.

Let $u \in M_1 \otimes \cdots \otimes M_n \otimes N$ and let $\sum_{j=1}^m \lambda_j x_{1,j} \cdots \otimes x_{n,j} \otimes y_j$ be a representation of u in $E_1 \otimes \cdots \otimes E_n \otimes F$. Then $u = P_1 \otimes \cdots \otimes P_n \otimes Q(u) = \sum_{j=1}^m \lambda_j P_1(x_{1,j}) \otimes \cdots \otimes P_n(x_{n,j}) \otimes Q(y_j)$ is a representation of u in $M_1 \otimes \cdots \otimes M_n \otimes N$. Therefore, by the argument used in the proof of Proposition 10 we obtain

$$\widetilde{\sigma}_{p;M_{1},\dots,M_{n},N}(u) \\
\leq \|(\lambda_{j})_{j=1}^{m}\|_{q} \left(\sup_{\substack{\phi_{l} \in B_{M_{l}'} \\ l=1,\dots,n}} \sum_{j=1}^{m} |\phi_{1}(P_{1}(x_{1,j})) \cdots \phi_{n}(P_{n}(x_{n,j}))|^{p} \right)^{1/p} \|(Q(y_{j}))_{j=1}^{m}\|_{\infty} \\
\leq \|P_{1}\| \cdots \|P_{n}\| \|Q\| \|(\lambda_{j})_{j=1}^{m}\|_{q} \left(\sup_{\substack{\phi_{l} \in B_{E_{l}'} \\ l=1,\dots,n}} \sum_{j=1}^{m} |\phi_{1}(x_{1,j}) \cdots \phi_{n}(x_{n,j})|^{p} \right)^{1/p} \|(y_{j})_{j=1}^{m}\|_{\infty}.$$

Since this holds for every representation of u in $E_1 \otimes \cdots \otimes E_n \otimes F$, it follows that

$$\widetilde{\sigma}_{p;E_1,...,E_n,F}(u) \le \widetilde{\sigma}_{p;M_1,...,M_n,N}(u) \le ||P_1|| \cdots ||P_n|| ||Q|| \widetilde{\sigma}_{p;E_1,...,E_n,F}(u).$$

Now, if M_1,\ldots,M_n and N are complemented by projections of norm one, then we have that $\widetilde{\sigma}_{p;E_1,\ldots,E_n,F}(u)=\widetilde{\sigma}_{p;M_1,\ldots,M_n,N}(u)$ for every $u\in M_1\otimes\cdots\otimes M_n\otimes N$, and by Proposition 10 it follows that $\|P_1\otimes\cdots\otimes P_n\otimes Q\|=\|P_1\|\cdots\|P_1\|\|Q\|=1$, as we desired.

We note that an analogous result to Proposition 10, in a similar way, can be obtained for σ_p also. As well, like the case of $\tilde{\sigma}_p$, and with analogous reasonings, the σ_p -tensor product does not respect subspaces but respects 1-complemented subspaces.

3 Connection with multilinear mappings of finite type

We recall that a multilinear mapping $T \in \mathcal{L}(E_1, \ldots, E_n; F)$ is said to be of finite type if it has a finite representation of the form

$$T = \sum_{j=1}^{m} \lambda_j \varphi_{1,j} \times \dots \times \varphi_{n,j} b_j \tag{2}$$

where $\lambda_j \in \mathbb{K}$, $\varphi_{l,j} \in E_l'$, $l = 1, \ldots, n$, $b_j \in F$, $j = 1, \ldots, m$. We denote by $\mathcal{L}_f(E_1, \ldots, E_n; F)$ the vector subspace of $\mathcal{L}(E_1, \ldots, E_n; F)$ of all n-linear mappings of finite type. It is plain that multilinear mappings of finite type are p-semi-integral, that is, $\mathcal{L}_f(E_1, \ldots, E_n; F) \subset \mathcal{L}_{si,p}(E_1, \ldots, E_n; F)$. It is clear that to each operator in $\mathcal{L}_f(E_1, \ldots, E_n; F)$ corresponds a tensor in $E_1' \otimes \cdots \otimes E_n' \otimes F$ via the canonical mapping

$$u = \sum_{j=1}^{m} \lambda_j \varphi_{1,j} \otimes \cdots \otimes \varphi_{n,j} \otimes b_j \longrightarrow T_u = \sum_{j=1}^{m} \lambda_j \varphi_{1,j} \times \cdots \times \varphi_{n,j} b_j, \quad (3)$$

where $\lambda_j \in \mathbb{K}$, $\varphi_{l,j} \in E'_l$, l = 1, ..., n, $b_j \in F$, j = 1, ..., m. Next we will see that, in some cases, these mappings are isometries.

12 Proposition. Let E_1, \ldots, E_n and F be Banach spaces and let $p \geq 1$. Given $T \in \mathcal{L}_f(E_1, \ldots, E_n; F)$, define

$$||T||_{f,p} := \inf ||(\lambda_j)_{j=1}^m||_q \left(\sup_{\substack{\phi_l \in B_{E_l''} \\ l=1,\dots,n}} \sum_{j=1}^m |\phi_1(\varphi_{1,j}) \cdots \phi_n(\varphi_{n,j})|^p \right)^{1/p} ||(b_j)_{j=1}^m||_{\infty}$$

where the infimum is taken over all representations of T as in (2), and $q \ge 1$ with $\frac{1}{p} + \frac{1}{q} = 1$.

Then $\|\cdot\|_{f,p}$ is a norm on $\mathcal{L}_f(E_1,\ldots,E_n;F)$ with the following properties:

- (a) For every $u \in E_1' \otimes \cdots \otimes E_n' \otimes F$ we have that $||T_u|| \leq ||T_u||_{f,p} = \widetilde{\sigma}_p(u)$. Consequently, $(\mathcal{L}_f(E_1, \dots, E_n; F), || \cdot ||_{f,p})$ is isometrically isomorphic to $(E_1' \otimes \cdots \otimes E_n' \otimes F, \widetilde{\sigma}_p)$ via the mapping given in (3).
- (b) For every $\varphi_l \in E'_l$, l = 1, ..., n, and $b \in F$ we have that $\|\varphi_1 \times \cdots \times \varphi_n b\|_{f,p} = \|\varphi_1\| \cdots \|\varphi_n\| \cdot \|b\|$.

PROOF. Following the lines of the proof of Proposition 2 it is easy to see that $\|\cdot\|_{f,p}$ is a norm on $\mathcal{L}_f(E_1,\ldots,E_n;F)$.

(a) Since the equality $||T_u||_{f,p} = \tilde{\sigma}_p(u)$ is trivial we show that $||T_u|| \le ||T_u||_{f,p}$. Given $x_l \in E_l$ with $x_l \ne 0, l = 1, \ldots, n$, by Hölder's inequality we have

$$||T_{u}(x_{1},...,x_{n})||^{p} \leq ||x_{1}||^{p} \cdot \cdot \cdot ||x_{n}||^{p} ||(b_{j})_{j=1}^{m}||_{\infty}^{p} ||(\lambda_{j})_{j=1}^{m}||_{q}^{p} \sup_{\substack{b \in B_{E_{i}''} \ j=1}} \sum_{j=1}^{m} |\phi_{1}(\varphi_{1,j}) \cdot \cdot \cdot \phi_{n}(\varphi_{n,j})|^{p}.$$

So, it follows that $||T_u(x_1,\ldots,x_n)|| \leq ||T_u||_{f,p}||x_1||\cdots||x_n||$ and we have (a).

(b) Take $\varphi_l \in E'_l$, $l = 1, \ldots, n$, and $b \in F$. It is immediate that $\|\varphi_1 \times \cdots \times \varphi_n b\|_{f,p} \leq \|\varphi_1\| \cdots \|\varphi_n\| \cdot \|b\|$. To prove the reverse inequality we use (a). For every $x_l \in E_l$, $l = 1, \ldots, n$, we have

$$|\varphi_1(x_1)| \cdots |\varphi_n(x_n)| ||b|| \le ||\varphi_1 \times \cdots \times \varphi_n b|| ||x_1|| \cdots ||x_n||$$

$$\le ||\varphi_1 \times \cdots \times \varphi_n b||_{f,p} ||x_1|| \cdots ||x_n||.$$

Taking the supremum over B_{E_l} , $l=1,\ldots,n$, we see that $\|\varphi_1\|\cdots\|\varphi_n\|\cdot\|b\| \leq \|\varphi_1\times\cdots\times\varphi_nb\|_{f,p}$.

QED

By Proposition 12(b) we see that $\|\varphi_1 \times \cdots \times \varphi_n b\|_{f,p} = \|\varphi_1 \times \cdots \times \varphi_n b\|_{si,p}$ for every $\varphi_l \in E'_l$, $l = 1, \ldots, n$, and every $b \in F$ with $p \ge 1$. We do not know if $\|T\|_{f,p} = \|T\|_{si,p}$ whenever $T \in L_f(E_1, \ldots, E_n; F)$.

13 Remark. When E_1, \ldots, E_n are reflexive Banach spaces the norm $\|\cdot\|_{f,p}$ on $\mathcal{L}_f(E_1, \ldots, E_n; F)$ reduces to the following equivalent formulation: Given $T \in \mathcal{L}_f(E_1, \ldots, E_n; F)$, we have that

$$||T||_{f,p} = \inf ||(\lambda_j)_{j=1}^m||_q \left(\sup_{\substack{x_l \in B_{E_l} \\ l=1,\dots,n}} \sum_{j=1}^m |\varphi_{1,j}(x_1) \cdots \varphi_{n,j}(x_n)|^p \right)^{1/p} ||(b_j)_{j=1}^m||_{\infty}$$

where the infimum is taken over all representations of T as in (2), and $q \ge 1$ with $\frac{1}{p} + \frac{1}{q} = 1$.

Next result provides a relation between $(\mathcal{L}_{si,p}(E'_1,\ldots,E'_n;F'),\|\cdot\|_{si,p})$ and $(\mathcal{L}_f(E_1,\ldots,E_n;F),\|\cdot\|_{f,p})$, which gives a predual of $(\mathcal{L}_{si,p}(E'_1,\ldots,E'_n;F'),\|\cdot\|_{si,p})$, and also shows another predual of $(\mathcal{L}_{si,p}(E_1,\ldots,E_n;F'),\|\cdot\|_{si,p})$ in case of E_1,\ldots,E_n being reflexive spaces.

- **14 Proposition.** Let E_1, \ldots, E_n be Banach spaces and let $p \geq 1$.
- (a) Then $(\mathcal{L}_{si,p}(E'_1,\ldots,E'_n;F'), \|\cdot\|_{si,p})$ is isometrically isomorphic to $(\mathcal{L}_f(E_1,\ldots,E_n;F), \|\cdot\|_{f,p})'$ by the mapping

$$T(\psi)(\varphi_1, \dots \varphi_n)(b) = \psi(\varphi_1 \times \dots \times \varphi_n b),$$

where $b \in F$, $\varphi_l \in E'_l$, l = 1, ..., n, and $\psi \in (L_f(E_1, ..., E_n; F), || \cdot ||_{f,p})'$. If, in addition, $E_1, ..., E_n$ are reflexive Banach spaces then

(b) $(\mathcal{L}_{si,p}(E_1,\ldots,E_n;F'),\|\cdot\|_{si,p})$ and $(\mathcal{L}_f(E'_1,\ldots,E'_n;F),\|\cdot\|_{f,p})'$ are isometric via the mapping

$$T(\psi)(x_1,\ldots x_n)(b) = \psi(x_1 \times \cdots \times x_n b),$$

where
$$b \in F$$
, $x_l \in E_l$, $l = 1, ..., n$, and $\psi \in (\mathcal{L}_f(E'_1, ..., E'_n; F), ||\cdot||_{f,n})'$.

PROOF. (a) follows from Propositions 6 and 12 and (b) is a straightforward consequence of (a) \overline{QED}

In the next by combining the previous results and taking $F = \mathbb{K}$, in particular, we obtain the following.

- **15** Corollary. Let E_1, \ldots, E_n be Banach spaces and let $p \geq 1$. Then the following isometries hold true:
 - (a) $(\mathcal{L}_{si,p}(E'_1,\ldots,E'_n),\|\cdot\|_{si,p}) \cong (E'_1 \otimes \cdots \otimes E'_n;\sigma_p)' \cong (E'_1 \otimes \cdots \otimes E'_n \otimes \mathbb{K};\widetilde{\sigma}_p)' \cong (\mathcal{L}_f(E_1,\ldots,E_n),\|\cdot\|_{f,p})'.$

If, in addition, E_1, \ldots, E_n are reflexive Banach spaces then the following isometries hold true:

(b) $(\mathcal{L}_{si,p}(E_1,\ldots,E_n),\|\cdot\|_{si,p}) \cong (E_1 \otimes \cdots \otimes E_n; \sigma_p)' \cong (E_1 \otimes \cdots \otimes E_n \otimes \mathbb{K}; \widetilde{\sigma}_p)' \cong (\mathcal{L}_f(E'_1,\ldots,E'_n),\|\cdot\|_{f,p})'.$

References

- R. ALENCAR, M.C. MATOS: Some classes of multilinear mappings between Banach spaces, Publicaciones Departamento Análisis Matematico, Universidad Complutense Madrid, Section 1, no. 12 (1989).
- [2] E. Çalışkan, D. M. Pellegrino: On the multilinear generalizations of the concept of absolutely summing operators, Rocky Mountain J. Math. 37 (2007), 1137–1154.
- [3] J. DIESTEL, H. JARCHOW, A. TONGE: Absolutely Summing Operators, Cambridge Stud. Adv. Math., Cambridge University Press, Cambridge 43 (1995).
- [4] V. DIMANT: Strongly p-summing multilinear operators, J. Math. Anal. Appl., 278 (2003), 182–193.
- [5] S. DINEEN: Complex Analysis on Infinite Dimensional Spaces, Springer Monographs in Math. Springer, Berlin 1999.
- [6] H. Jarchow: Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981.
- [7] G. KÖTHE: Topological Vector Spaces II, Springer-Verlag, New York Heidelberg Berlin, 1979
- [8] J. LINDENSTRAUSS, L. TZAFRIRI: Classical Banach Spaces I, Springer, Berlin, 1977.
- [9] M.C. MATOS: On multilinear mappings of nuclear type, Rev. Mat. Univ. Complut. Madrid, 6 (1993), 61–81
- [10] M.C. Matos: Fully absolutely summing mappings and Hilbert Schmidt operators, Collect. Mat. 54 (2003), 111–136.
- [11] D.M. Pellegrino: Aplicações entre espaços de Banach relacionadas à convergência de séries, Doctoral thesis, Universidade Estadual de Campinas, UNICAMP, (2002).
- [12] D. Pérez-García: Operadores Multilineales absolutamente sumantes, Dissertation, Universidad Complutense de Madrid (2002).
- [13] A. Pietsch: Operator Ideals, North Holland Publishing Company, Amsterdam, 1980.
- [14] R. RYAN: Introduction to Tensor Product of Banach Spaces, Springer-Verlag, London, 2002.