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Abstract. In this paper we consider the ideal of p-semi-integral n-linear mappings, which
is a natural multilinear extension of the ideal of p-summing linear operators. The space of
p-semi-integral multilinear mappings is characterized by means of a suitable tensor norm up
to an isometric isomorphism. In this connection we also consider tensor products of linear
operators and multilinear mappings of finite type.
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Introduction

Semi-integral multilinear mappings between Banach spaces were introduced
by R. Alencar and M. Matos [1] as a natural multilinear extension of the classical
ideal of absolutely summing linear operators. The extension of this notion to
p-semi-integral multilinear mappings, 1 < p < +oo is immediate [see [2, 11]].
It is shown in [11] that the class of p-semi-integral multilinear mappings has
many good properties, e.g. the ideal property [11, Proposi¢ao 5.1.11], inclusion
property [11, Proposicao 5.1.9], etc. [see also [2]]. Also it follows from a result of
V. Dimant [4] that p-semi integral multilinear mappings have good properties
with respect to the Aron-Berner extensions. As well, R. Alencar and M. Matos
in [1] show that every multilinear vector-valued Pietsch-integral mapping is
semi integral. We refer to [2] and [11] for the relation between p-semi-integral
multilinear mappings and other classes of p-summing multilinear mappings, such
as dominated, multiple (or, fully), strongly and absolutely summing mappings.

The aim of this paper is to obtain characterizations of the space

Lip(En, ..., En; F) of p-semi-integral n-linear mappings from Ei x --- x By,
to F. In Section 2 we introduce a reasonable crossnorm &, such that the space
Lsip(Er, ..., En; F') of p-semi-integral n-linear mappings is isometric to the dual
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of By ® -+ ® E, ® F endowed with &,. A corresponding reasonable crossnorm
op for scalar-valued p-semi-integral mappings is also studied. In Section 3 we
study the continuity of the tensor product of linear operators with respect to
the norm ¢, (and o},). Finally, in Section 4 we consider the norm &, (and
op) in connection with spaces of multilinear mappings of finite type. Stronger
representation results are obtained for multilinear mappings of finite type on
reflexive spaces.

The symbols E, E, ..., E,,G1,...,Gp,F, Fy represent (real or complex) Ba-
nach spaces, E’ denotes the topological dual of E, K represents the scalar field
and N represents the set of all positive integers. Given a natural number n > 2,
the Banach space of all continuous n-linear mappings from Ej X - - - x E,, into F'
endowed with the sup norm will be denoted by L(Ex, ..., E;F) (L(Ey, ..., Ey)
if F =K). For p > 1, [,,(E) denotes the linear space of absolutely p-summable

1

sequences (z;)32; in E with the norm |[|(2;)324[l, = (Z;’il ||T]Hp)JD < 0.
Also, I;(E) denotes the linear space of the sequences (z;)72; in £ such that
(p(x5))32 €l for every € E'. The expression

(@5)521llwp = sup [[(0(z5))521 [l
p€EBE

defines a norm on [;)(E). If p = oo we are restricted to the case of bounded
sequences and in I (F) we use the sup norm. The symbol £ ®- - -® E,, denotes
the algebraic tensor product of the Banach spaces F, ..., E,.

Let p > 1. An n-linear mapping T € L(E1,...,Ey; F) is p-semi-integral
(T € Lsip(En,...,En; F))if there exist C' > 0 and a regular probability measure
p on the Borel o—algebra of B, x -+ x B I endowed with the product of the

1
weak star topologies o(E}, Ey), I = 1,...,n, such that
1/p

IT (1, ... aa)| < C / 1) - onlea) Pdp(pr, - o)
BEi ><~-~><BE/"

for every x; € Ej and j = 1,...,n. The infimum of the constants C' working in

the inequality defines a norm ||-||; , on Lsip(En, ..., En; F).

1 p-Semi-Integral Mappings and Tensor Products of
Banach Spaces

The following characterization of p-semi-integral mappings, which was proved
in [11] [see also [2]] will be important in this paper:
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1 Theorem. [11], [2] Let E, ..., E, and F be Banach spaces and letp > 1.
Then, T € Leip(En, ..., En; F) if and only if there exists C > 0 such that

1/p
D@y ma )P | <C| sup Y lei(@ig) - pnlwng)P (1)
j=1 %’leBE; j=1
I=1,..n
for everym € N, x;; € By withl =1,...,n and j = 1,...,m. Moreover, the

infimum of the C in (1) is ||T|sip-

A standard argument shows that Ly ,(E1, ..., Ep; F) is complete with re-
spect to the norm || - ||s; p. Next we introduce a reasonable crossnorm [see [14, p.
127]] on By ® - - - ® E, ® F so that the topological dual of the resulting space is
isometric to (Lgip(E1, ..., En; F'), || - lsip)-

2 Proposition. Let E1,...,E, and F' be Banach spaces and let p > 1. Let

1/p

m
Gp(u) == inf [(\)7ally | sup D lei(@g) - enl@ag)l” | 107 llos
LPIEBEZ =1
1=1,...,n
where the infimum is taken over all representations of u € B1 ®---®@ E, @ F in
the form

m
U= Aj@1L @ @ T Db
j=1

withm eN, xj; € B, l=1,...,n, \; €K, b; € F, j=1,...,m, and ¢ > 1
with 1/p+1/q=1.

Then the function o, is a reasonable crossnorm on E1 ® --- @ E, @ F.

For the proof we will need the following lemma.

3 Lemma. Given u € E1 ® --- ® E, ® F, for any 6 > 0 we can find a
representation of u of the form

m
u= E TR @ Ty j X ayg,
j=1

such that
I ()7 llg< (1 + 8)Gp(u)]/7,

sup D @1(@1y) - palTng) P< (1+0)5y(u),
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I (@3)721 lloo= 1.
PROOF. Let us take a constant 6 > 0. It is clear, by the definition of &),
that we can choose a representation of u of the form

m
U= e @ @ ®aj,
=1

such that
1/p
m
Gp(w) <[l (@)fer g | sup D [er(mry) - pnlany) [P Il (a;)721 lloo
L,OZEBE/ =1
1
1=1,....,n

*)
< (1+8)3p(u) = [(1+6)7,(w)] V(1 + 8)5p(w)] /7.
Thus as a first step we can rearrange the representation of u by multiplying and
dividing || (a;)72; |l with a suitable constant ¢ > 0 so that || (a})7L; [lec:=|
(caz)Ty lloo= 1, and || ()72 [lg:=]] (%aj);-”:l |lq- Observe that the representa-
tion u = Tzn:l ATy ® - @ Ty ® af satisfies (x) with
=

1/p

m
Il (e5)iz1 llg sup S ler(@g) - enlan,) P
@1

F‘L/ j=1
=1,...,n
< [(1+ 8)3p(w)] V(L + 8)3,(w)] /7.
Now as a second step, for this representation of u, for example, if

1/p

m
sup Y | pi(@rg) - pnl@ag) P | > [(L+0F )P (*)
<Pz€BE’/ j=1
=1,...,n
again we can choose a suitable constant C' > 0 so that

1/p

sup > [ @1(Carg) - paleng) P | = [(1+8)F,(w)] 7.

%zEBEZ =1
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Hence, we have that

1/p
1 m
H@)iialla 5 | sup D1 ea(Cang)nlany) | 11 (@5)7 oo
A,a;EBE/ 1
o) j=
I=1,...n
< [0+ 895, )] 7101 + )5, ()7
and this will imply that || ()7, [lg & < [(1+ 6)5,(u)]*/?. Now taking
Il (o) [le=ll (%a; 7 llg and 27 ; = Cx1y, j = 1,...,m we obtain a
m
representation of u of the form u = 3~ aj*z] ; ® -+ ® 2, ; ® a] satisfying (x)
j=1

and conditions
I ()7 llg< [(1+ 6)F,(u)] 9,

J
m
sup Y | pi(ai ;) pnl@ng) P< (14 0)5,(u),
WGBE; j=1
1=1,....,n

Il (@5)7% [loo= 1.

Note that, in the second step above, if, instead of (**), it would be
Il (af)iiy [lg> [(1 +6)5, ()1, (%%)

then we would proceed completely in a similar way to obtain a suitable rep-
resentation of u satisfying (*) and the above conditions. Note also that, as a
consequence of the inequality (*), it cannot happen (**) and (***) simultane-
ously. QED

PROOF OF PROPOSITION 2. First we show that 6,(u) = 0 implies u = 0.
Suppose that o,(u) = 0. Then, for every e > 0, there is a representation
m

Z AjT1; @+ ® Ty ; @ b; of u such that
j=1

1/p

m
IO llg | osup D Ter(@ig) .- pnlan) P | (6j)j1lloc< €.
SOZEBEII =1

l=1,...,n
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Hence it follows from the Holder’s inequality that

m
sup Q1 X X o X P(Y N1, @ @ T @ by)
LPIEBEz,LpEBF/ i=1
1=1,...,n

m
= sup > o1(Njarg) - onlang)e(by)
golEBEZ,ApEBFr =1

I=1,...n
1/p

<I O0)7) ool )7t llg | sup Y- [ pr(@rg) - enlza) IP | <e

WEBE; =1
I=1,..,n
Thus we have that
m
D er(Narg) - n(@n)eb)| < el el [l enllll @ |,
j=1

for every oy € B/, 1 =1,...,nand p € F'.
m
Since the value of the sum [p1 X -+ X o, X @(Z ATl Q-+ ® Tpj Qb))
j=1
is independent of the representation of u, it follows that

m
Z ©1(Njx15) - n(@n,g)e(b;) =0,
j=1

for every oy € Ej, l=1,...,n, p € F'.

Hence, since Ef, ..., E], and F' are separating subsets of the respective al-
gebraic duals, by the multilinear version of [14, Proposition 1.2] it follows that
u = 0.

To prove the triangular inequality, take u,v € F4 ® --- ® E, ® F. For any
6 > 0, by Lemma 3 we can find representations

m m
1¢:Zajx1,j®~~®rcn7j®aj and szﬁjyu@m@yn,j@bj
J=1 J=1

such that
(o) 7allg < [(1+ 8)Fp(u)] 9,
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108)7allq < [(1+ 6)Fp(0)] 7,

sup lor(@5) - pn ()P < (1+0)ap(u),
wzéBE;j 1

1=1,....,n

m
sup Y |01(yrg) - enlyn )P < (14 0)5(v),
WGBE; i=1

1=1,...,n

(@3)filloo = 1 = 1[(bj) 1 lloo-

Then it follows that

1
m m /a

Fplu+v) < [ D logl7+ > |87

Jj=1 Jj=1
1/p

m m
< | osup | ler(@g) en(@a )P+ ler(yig) - nyng) P
j=1

WEBEZ/ j=1

1=1,...,n
< (148)Y9Gy(w) +Fp(v) V(1 + 8)/P(G(u) +Fp(v)) /7
= (1+8)p(w) + 5,(v)),
which shows the triangular inequality. Hence 7, is a norm on B4 ®@---® E, ® F.
It is easily seen that o, (21®- - -®@z,®b) < ||z1]| - - - ||z -]|0]| for every z; € E,

I=1,...,nand b€ F. To show that [l¢1 @~ @¢n @ ¢l < [leall - [lenll - 4]
let ¢ € E; with ¢ # 0,1 =1,...,n, let ¢ € F' with ¢ # 0, and let v =
m

Z AjT1; @ -+ ® Xy ; ®bj. Then by the Holder’s inequality we get
j=1
o1 @ -~ @ en(u)] < llellll(05)7alloollonll - lenllll(A)7E1llg
1/p

m
x| sup Y i) el
‘PZEBEZ’ j=1

Therefore we obtain that o1 ® -+ ® ¢n @ @(u)| < |1l - - - lenllll¢llop(n), and
we have shown that o, is a reasonable crossnorm. QED
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Note that when n = 1, in particular, the norm &, is reduced to the Chevet-
Saphar norm dg on £y ® F' [see [14, pg. 135]].

In the previous proposition if we take F' = K, then we identify £1®---Q E, ®
K with F4 ® --- ® E,, and in this case the corresponding reasonable crossnorm
will be denoted by o, which is described as follows:

1/p

m
ap(u) = inf [\l [ sup D> ler(w1,) - onl@n,)P
WzEBEl/ =1

where the infimum is taken over all representations of u € F; ® - -- ® E,, in the
m

form u = Y Njw1; ® - @@y withm e N, a5 € B, L =1,...,n, \j € K|
j=1
j=1...,m, andqzlwith%Jr%:l.

4 Remark. (Commutativity and associativity of o) Let E, F' and G be
Banach spaces. Since the algebraic isomorphisms £ ® F' = F ® F and £ ®
(F®G) = (E®F)®G are well known [see, for example, [7, p. 179]] then
it follows by the very definition of o, that, the normed (resp. Banach) spaces
(E® F,0p) and (F ® E, 0,) (resp. (E®QF,0,) and (FQF,d,)) are isometrically
isomorphic, and the normed (resp. Banach) spaces ((E ® F,o0p) ® G,0p) and
(E® (F ®G,o0p),0p) (tesp. (E®F,0,)0G,0p) and (EQ(FRG,0,),0,)) are
isometrically isomorphic in the canonical way, where the symbol @ denotes the
completion of the corresponding normed space.

The above remark assures that the (reasonable) crossnorm o, is symmetric,
that is, if we interchange the factor spaces the value of the norm does not alter.
Although o, and ¢, share many properties, let us see that, contrary to the case
of o, commutativity and associativity do not hold for &,: take a tensor w in
E ® F and consider the infima

1/p

p > le@)P | 11w)7lleo and

inf H(Aj);n:l“q su
pEBR =1

m 1/p
inf |\ llg | sup Y le(y)lP Il (25) 21 Moo
$€Bp =

m
where the infima are taken over all representations u = Y \jz; ® y; with
j=1

j=
N eEK, ;€ B, y; € F,j=1,...,m. The fact that these infima are different
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in general shows that &, is not a symmetric norm. Its non-associativity follows
analogously.
5 Remark. Let F1,..., E, and F' be Banach spaces and let p > 1.

(a) It follows from the definitions of o}, and &, that o,(u) < 7p(u) for every
uebi® --®FE,QF.

(b) To each tensor u € E{®---@E!, corresponds a canonical operator T),: E; x
-+ X B, — K given by

m m
W= N1 @ ®@pnj > Tu=Y_ Njp1; X+ X Pnj,
j=1 Jj=1

with A\; € K, ¢y ; € El/7 l=1,...,n,j=1,...,m. By an easy application
of Holder’s inequality we see that || T,|| < op,(u) for every u € E{®---QFE},.

Below by combining the argument of the proof of [9, Theorem 3.7] with
Theorem 1 we prove the following result. This result characterizes the space
of p-semi integral mappings as the topological dual of the space of the tensor
product (E1 ® --- ® E, ® F,0,) up to an isometric isomorphism.

6 Proposition. Let Fy,..., E, be Banach spaces. Then, for every Banach
space F and p > 1, the space (Lsip(E1,..., En; F'), || - |lsip) is isometrically
isomorphic to (1 ® --- ® E, ® F, Gp)/ through the mapping T — ¢, where
Oor(r1 @ - @@y, @b) = T(x1,...,2,)(b), for every x € Ej, 1 =1,...,n, and
beF.

PROOF. It is easy to see that the correspondence

TE[,SZ'VP(El,..A,En;F/) —)¢T S (E1®"’®En®F7&p)/
defined by
or(r1 @ Q@ xy @b) :=T(x1,...,2,)(b), ;y €E, 1=1,....,nand b€ F,

is linear and injective. To show the surjectivity let ¢ € (E1®---®E,®F, 7)) and
consider the corresponding n-linear mapping Ty, € L(E1, ..., Ey; F'), defined by
To(x1,...,2n)(b) = (21 ® - @z, ®b), for oy € Ej, 1 =1,...,n,and b € F.
Let us consider x;; € Ey, [ =1,...,n, j = 1,...,m. For every € > 0 there are
bj € F, with ||bj|]| =1, j =1,...,m, such that

m
(T, ) fallls =D I To(@rg, -2y |1P
j=1

m
et 3 |Ts(@rg,- s mng)(b))7 = (#).

=1
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Now we can choose \; € K, with [X\j| =1, j =1,...,m, such that

(%) =€+ Z (@1 @ @ apny @by)P
=1

m
=t D (a1, @ @0y @)A1 ® - @ wp @ by)| = (%)
j=1
Proceeding from this point, by continuity of ¢ and the Holder’s inequality we
get

(#%) <e + |8l (Br0--0E.0F5,)0p
m

D Nl@1; @ @ @) @ @ ® by
=1

<e+ 18l (mo-0E.0r8)

Wl @ @z, @ bm"‘l);ilHq

1/p
m
< | sup D (@) enl@a )P | 10D o
SOIEBE; =1
1=1,....,n
m ||P/4
=+ ol me-emeray | To@ o)) |
1/p

m
sup Y [pr(w1y) - nlwn )P
‘PZEBE; j=1

=1,...n
Since € is arbitrary and p — (p/q) = 1 we obtain

(T (@15, 1)) iy < 10l (Bro--0E.0F5,)
1/p

m
sup Y [pr(@rg) (@) |,
npleBE/ j=1
1
=1,...n

showing that [|Tslsip < l|¢/l(5&--2E,eF5,) and therefore
T¢ S (ﬁsi,p(Eh ey En; Fl)v ” : Hsi,p)~
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To show the reverse inequality let T € Lg; ,(E1, ..., Ey; F') and consider the
linear functional ¢ on B ® --- ® E, @ F given by

dr(u) = NT(1j,-. ., 7n;)(b;)
j=1

m
foru:Zijl,j®-~~®:rn7j®bj,wheremeN, NeK k=1,...,n,b; € F,
j=1

j=1,...,m. Hence, by Holder’s inequality and Theorem 1 it follows that

m
p Y ler(@y) e nlan )

lor ()P < ()7 Bl BTt BTN, su
piEB

B j=1

Thus |¢r(w)| < ||T|sip0p(u), showing that ¢p is op-continuous with
o7l (Brg-2EaFz)y < T sip: =

Making F' = K| in the previous Proposition we obtain that for every Ba-
nach spaces FEi,...,E,, and p > 1, the space of p-semi-integral forms
(Lsip(Bry s En), || - |lsip) is isometric to (B1 @ -+~ ® E, @ K, 5,)".

On the other hand, by a slight modification of the proof of Proposition 6,
alternatively, we obtain the representation of the space of p-semi-integral forms
as the dual of the tensor product endowed with the o),-norm.

7 Proposition. Let Eq,..., E, be Banach spaces, and let p > 1. Then
(Lsip(Er, ..., En), || - |lsip) is isometrically isomorphic to (B4 ® -+ @ En, O‘p)/
through the mapping T — ¢, where ¢pp(r1 @ - @ xy) = T(x1,...,2y) for
everyx; € B, 1=1,...,n.

It is interesting to observe that (F1 ® -+ ® E, @ K, Ep)/ is not isometric to
(B1® - Q E,, Ep)/, but as a consequence of Propositions 6 and 7 we see that
(B1®--- @ E, ®K,5,) is isometric to (E1 @ - ® Ep,0p) .

Recall that a linear operator v : ' — F' is said to be absolutely p-summing
it (u(z;))52, € lp(F) whenever (z;)32; € I;)(E). The vector space (operator
ideal) composed by all absolutely p-summing operators from F to F' is denoted
by Lasp(E; F). Hence the class of absolutely p-summing linear mappings coin-
cides with the class of p-semi integral linear mappings. So in the linear case we
prefer to write Lasp(E; F) (vesp. || . |las,p) instead of Ly ,(E; F) (resp. || .
For the theory of absolutely summing operators we refer to [3].

Below, inspired by a result of D. Pérez-Garcfa [12], we show that the norm
op is well behaved in connection with p-semi integral mappings.

si,p)-

8 Proposition. Let Fy,...,E, and F be Banach spaces and let p > 1.
Then we have the following:
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(a)

(b)

IfT: E1®---®FE, — F is a linear operator, then
TeL(E\®- - QFp,0p); F) if and only if oo T € (E1\®@ -+ QFE,,0p)" for
every ¢ € Bpr. In this case we have:

1T (B o0 B0y = By oo T e ey

A multilinear mapping T : Ey X --+ X E, — F is p-semi integral if its
associated linear mapping T : B1 @ -+ @ E,, — F, given by T(21 @ -+ ®
xn) =T (x1,...,2n) for every x; € By, 1 =1,...,n, is o,-continuous and
p-semi integral. In this case we have

[T A< T Nlsip<IIT llsip -

Conversely, if T € Ly p(En, ..., Ep; F), then the associated linear mapping

T is op-continuous, that is, T € L((E1®--- @ Ey,0p); F). In this case we
have:

[ TINSNT || (v wBnoy) ) ST lsip -

PROOF. (a) The non-trivial implication of the first assertion is an easy

consequence of the closed graph theorem. To show the second assertion
let up € F1 ® -+ - ® E,, with Tug # 0. Then by the Hanh-Banach Theorem
there exists a ¢g € Bpr such that ¢o(Tug) =|| Tug ||. Therefore for every
¢ € Bpr we have that

Tug [|[< sup [@oT(ug) |[< sup [[¢oT || 5w w5 oy Tp(to
I Tuo 1< sup 1¢oT(w) 1S 30 11907 lgie. o, oy Oolto):

which shows that

< sup

T ”L((E@-@E,ap);F)* @EBp lpeT ”(51@“@5;,%)' :

Since the reverse inequality is immediate we have (a).

Suppose T € Lsip((F1 ® -+ ® Ey,0p); F). Then by Proposition 7 and
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Theorem 1 it follows that

m 1/p

DT, I

j=1

- m 1/p
<IN T lsip sup ZW(%J@'”@LLJ)\”
CEB(1, @ 0B 0p) j=1
m 1/P

=|| T Ilsi.p p sup Z 1S(21,- 20 g)

EB(Ly; p (B En) i) j—1

1/p

m
SUT lsip | sup D ler(@y) - ealeay)P |

<Pt€BE; =1
I=1,...,n

which shows that T' € Ly p(E1, ..., Ep; F) with | T [|sip<|| T ||sip- The
fact that || T ||<|| T ||si,p follows easily from Theorem 1.

To show the converse, suppose now T' € Ly ,(E1, ..., Ey; F), and let u €
FE1 ® -+ ® Fy,. Choosing a representation v = E;-"’:l AjT1j @ - @ T j,
from the Holder’s inequality and Theorem 1 it follows that

m
IT@IP < ATl > I T(@rgs - @ng) |7
j=1

m
) [C\¥) ¥y Fa e sup D ler@ry) - enlzn)P.
wle E/ j=1
1

1=1,....,n

Hence ||T(u)|| < 17| ss,pop(u), and so T is op-continuous with
| T I 2((Er0-@En,0p):7) S| T |lsip- Finally, since oy, is a reasonable cross-
norm, it readily follows that || T ||<|| T 218 B ,0,);), Which com-
pletes the proof of (b).
QED
Proposition 8(b) can be seen as a weak vector-valued version of Proposition
7. We do not know if, in general, T' € Ly ,((E1 ® -+ ® Ey, 0p); F) whenever
T € Lgp(En, ..., EnF).
We end this section by giving another property of the p-semi integral mul-
tilinear mappings.
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9 Proposition. [11, Teorema 5.1.14] If T € Lg,(E1, ..., En; F) then,
for each i = 1,...,n, the mapping T;: E; — ﬁ(El,.m.,En;F), defined by
T;(z)(x1, , ) =T (x1,...,2y), is absolutely p-summing with
Ti(z;) € Leip(En, . E,; F). Furthermore,

[T H:H T |< HTiHasm < ||THsi,p'
PROOF. A close examination of the proof of [11, Teorema 5.1.14] gives the

first part. Since it is readily seen that | T' [|=|| 7; || and, it follows by Proposition
8(b) that || T; ||<|| T; ||si,p, we have the proof. QED

2 Tensor Product of Operators

In this section we consider the tensor product of linear operators in connec-
tion with the reasonable crossnorm ¢, (and o,). We show that the reasonable
crossnorms 0, and o, are actually tensor norms. The results of this section
are similar to those ones given for the projective tensor product in connection
with bilinear mappings in [14] with the same patterns in corresponding proofs
[see [14, Propositions 2.3 and 2.4]].

In what follows we use the notation &g, ... g, to emphasize that the cross-
norm &, is considered on £y ® - - ® E,,.

10 Proposition. Let T; € L(E; Fy), i = 1,...,n, T € L(E;F) and p >
1. Then there is a unique continuous linear operator Ty ®z, -+ ®z, Tnh ®z,
T: (B1®-- ®E,QFE,0p) — (F1& - @F,®F,d,) such that

11 ®Ep T ®§p T, ®Ep T(zl Q- Q Ty ®$) = (Tl‘rl) @ (Tnl'n) ® (T‘T)
for every x; € By, i =1,...,n, and x € E. Moreover
1T @z, -+ ®5, Tn @5, Tl| = [T @ - @ T, @ T = | T1] - - | T [ | T']]-

PRrROOF. Given linear operators T; € L(E;F;), i = 1,...,n, and T €
L(E; F), there is a unique linear operator T1®- - -QT,®T: E1®-- - QFE,QE —
F®---® F, ® F such that

Ne el - Rr,@z)=(Tir)®@ & (Thr) ® (Tz)
forevery z; € E;, i =1,...,nand x € E [see [14, p. 7]]. We may suppose T; # 0,
m
t=1,...,nand T # 0. Let u € E1®---®E,®FE and let Z AjT1;®- Ry QT

Jj=1
be a representation of u. Hence the sum

m
Z /\jTl (1‘1,]') R Q Tn(In,j) & T(xj)
j=1
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is a representation of T} @ -+~ @ T, ® T'(u) in F} @ --- ® F,, @ F. Then, for every
p=>1

Opifr, o, F(T1 @ - @ T @ T(u))

1/p
m
< ||(/\j)}"=1||q sup Z |1(T1z15) - - - du(Ton )| ”(T'Tj);'nzlnoo
¢l€Bpl/ j=1
=1,...,n
1/p
m
<7l Tl T Petllg | osup D> [a(@ny) - dnlan ) (@)1 lloc
¢1€BEI/ j=1
=1,...n
and we have that
OpFis b, (11 @ - @ T, @ T(w)) < T - - TRl TN 0 ps ..o (),

so that the linear operator 71 ® - - - ® T}, ® T" is continuous for the crossnorms on
E® - -QFE,@F and F1®---@F,F and | Th @ - -QT,T|| < [T - - - |1 T || T|l-
On the other hand, as ¢, is an reasonable crossnorm we get that

1Ty (@) - [ To(zn) T (@) = Gpip... o b (T1(21) @ -+ @ Ti(n) © T())
< ||T1®"'®TH®TH gp;El ..... EH,E(II@)"'@ITL@SE)
=T @ @T @ T|||@all - llnllll],

[see [14, Proposition 6.1]], and therefore |11 ® - - - @ T, @T'|| > ||T1]| - - - [| Tn||[|T-
Hence we have that

1T @ @Tu @T| = Tall - [Tl T

Now taking the unique continuous extension of the operator 74 ® - - @ T, @ T'
to the completions of (B4 ® -+ ® E, ® E,0p) and (F1®---® I, ® F,0},), which
we denote by T1 ®;, - -+ @5, T, ®5, T, we obtain a unique linear operator from
(B1® - ®E,QF,d,) into (A ® - @F,&F,¢,) with the norm |7} ®z, O3,
T @z, Tl = |T0[] - - - 1 TR T

The G)-tensor product does not respect subspaces but respects 1-comple-
mented subspaces. Indeed; if Ej is a subspace of I, then Ey® F' is an algebraic
subspace of £ ® F', but the norm induced on Ey ® F' by (E ® F, ) is not, in
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general the 7, norm on Ey® F. In fact, if we take u € Eg ® F, then we see that

1/p
oy, p(w) = inf [|(A;)7L [l sup Z\@ 5)] (yi) 7t lloo
PEBR j=1
m 1/p
<inf [()Fylly | sup D> ()P (v5)j21 lloo = Op; o, (u)

since the set of representations of u become bigger when we enlarge the space
Ey to E. Similarly if Fy is a subspace of F', then F ® Fj is an algebraic subspace
of E® F, but the norm induced on E ® Fy by (E ® F,d,) is not, in general the
0p norm on £ ® Fy. Whereas for complemented subspaces we have:

11 Proposition. Let M, .. ]Wn, N be complemented subspaces of
Fr, ..., E,, F respectively. Then ]Wl ® @ M, @ N is complemented in (E, @

®En®F ()'p) and the norm on My ®--- @ M, ® N induced by o, .. B, F is
equwalent to Op:ary,... M, N - Moreover, if My, ..., M, and N are 1-complemented,
then (M ® - - ® M, @ N,7p) is I—complemented in(B1®- - ® E,®F,0p) as
well.

PRrROOF. Let Pi,...,P,, Q be projections from Ej,..., E,, F onto
M, ..., M,, N respectively. One can easily show that P, ® ---® P, ® Q is a
projection of (E1®- - -QE,®F,7p) onto M1 ®- - -@ M, @ N. We just have proved
above that oy, r(u) < opn(u) for u € M®N, and the same argument shows
that opp, . B, (W) < Tpny,.. M, N (w) for ue My ® - @ M, @ N.

Letue Mi®---@M,®N and let Z;Ll Ajr1j - ®@x, j®Y; be a representa-
tionof uin F1®-+--Q@E,®F. Thenu = P, ®---QP,2Q(u) = Z;nzl NP (z1)®

- ® Pp(n,5) @ Q(y;) is a representation of u in M; ® - - - ® M, ® N. Therefore,

by the argument used in the proof of Proposition 10 we obtain

Op M., My, N (W)
1/p

<IODPally | sup D [61(Prler)) - da(Palza))P | Qi) el

¢[EBJ\I' =1
1=1,...,n
1/p

< Bl PRI llg | sup Z|¢1(931,j)-~¢n(xn,j)lp 1Y) lloo-
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Since this holds for every representation of v in Fy @ --- ® E, ® F, it follows
that

Opin, B () < Oponty v, N (W) <P Pl QUG p; 4. 1, 1 (1)

Now, if My, ..., M, and N are complemented by projections of norm one, then
we have that 0.5, .. B, F() = Opny,... M, N (u) for every u € Mi®--- @M, ®N,
and by Proposition 10 it follows that ||Py®- - -@P,@Q|| = | Pi|| - -- | Pl Q] = 1,
as we desired. QED

‘We note that an analogous result to Proposition 10, in a similar way, can be
obtained for o, also. As well, like the case of 7,,, and with analogous reasonings,
the op-tensor product does not respect subspaces but respects 1-complemented
subspaces.

3 Connection with multilinear mappings
of finite type

We recall that a multilinear mapping T' € L(F1, ..., E,; F) is said to be of
finite type if it has a finite representation of the form

m
T= Z/\jt’pl’j X+ X (pn,jb]' (2)
j=1

where \; € K, ¢;; € El/7 l=1,...,n,b; € F, 5 = 1,...,m. We denote
by Ly(Ei,...,En; F) the vector subspace of L(Ey,..., Ep; F) of all n-linear
mappings of finite type. It is plain that multilinear mappings of finite type are
p-semi-integral, that is, Ly (E1, ..., En; F) C L p(E1, ..., En; F). It is clear that
to each operator in L¢(FE1, ..., Ey; F) corresponds a tensor in E; ®---QE &F
via the canonical mapping

m m
u = Z)\j@u @ ®n; b — Ty = Z)\ﬂpl‘j X -+ X pp jbj, (3)
j=1 J=1
where \; € K, ¢1; € B, 1 =1,...,n, b; € F, j = 1,...,m. Next we will see
that, in some cases, these mappings are isometries.
12 Proposition. Let Ey,...,E, and F be Banach spaces and let p > 1.
Gwen T € L§(Ey,...,En; F), define

1/p

m
Tl p == nf[[(Aj)72illg | sup [¢1(p1.5) - Dl )P | 11(Bj)jE1lloc
¢ EB
g El//jzl

1=1,....,n
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where the infimum is taken over all representations of T as in (2), and ¢ > 1
with & + ¢ =1.
Then || - ||lzp is a norm on Ly(Ey, ..., En; F) with the following properties :
(a) For everyu € E, @ ---® E,, ® F we have that |T,|| < 1Tull fp = op(u).
Consequently, (Ly(E1,...,En; F),| . |lpp) is isometrically isomorphic to
(B/® - QE,®F, op) via the mapping gwen in (3).

(b) For every ¢, € E/, 1 = 1,...,n, and b € F we have that |1 x --- X
enbllrp = llerll - llonll - [10]].

ProOF. Following the lines of the proof of Proposition 2 it is easy to see
that || - ||, is a norm on Ly(Ey, ..., Ey; F).

(a) Since the equality || Ty, = 0p(u) is trivial we show that |7 < || Ty f,p-
Given z; € By with x; #0, 1 = 1,...,n, by Holder’s inequality we have

| Tu(r, .. zp)||P

m
< faal? - Il O Bl A )Feally sup D 1é1(e1) -+~ bulion)P-

¢1EBEI// =1

I=1,...n
So, it follows that | Ty (@1, ..., zn)| < [|Tullgpllzill---||znll and we have
(a).

(b) Take ¢; € E[, 1 =1,...,n, and b € F. It is immediate that [j¢1 x --- X
onbllrp < llerll - llenll - ||b]l. To prove the reverse inequality we use (a).
For every x; € Ey, Il =1,...,n, we have

ler (@) - lpn(zn) 1Bl < llor - - < @nbll[lza]l - - |2
< oy x - x onbll gpllaall - [lanl]-
Taking the supremum over Bg,, | = 1,...,n, we see that |[¢1| - [len| -

o]l < llgr x -+ X @nbll 7 p-

QED

By Proposition 12(b) we see that [[o1 X -+ X @ubl[rp = [l@1 X -+ X ©pb|[sip
for every ¢y € B}, 1 =1,...,n, and every b € F with p > 1. We do not know if
1Tl rp = IT||si,p whenever T' € Ly(Ey, ..., E,; F).
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13 Remark. When Fj,. .., E, are reflexive Banach spaces the norm || - |7,
on Ly(Ey,...,Ey; F) reduces to the following equivalent formulation: Given
T € L§(Er,...,Ey; F), we have that

1/p

1Tl p = mENOD T llg | sup D lon(@1) - eng(@a)lP | 11057 lloo
zlEBEl j=1

where the infimum is taken over all representations of 7" as in (2), and ¢ > 1
with % + é =1.

Next result provides a relation between (Lg;p(EY, ..., EL F'), || - ||sip) and
(Lf(Er, ..., En; F), || - |lfp), which gives a predual of (Lsip(Eq, ..., En; F'), || -
[lsi,p), and also shows another predual of (Ls;p(E1, ..., En; F'), || - |lsip) in case

of Fy,..., E, being reflexive spaces.
14 Proposition. Let Ey,..., E, be Banach spaces and let p > 1.

(a) Then (Lgip(EY, ... EL F') | - |lsip) is isometrically isomorphic to
(Ly(Ev, oo Eni F), |||l pp)" by the mapping

T(¥)(p15---n)(b) = ¥(p1 X -+ X @nb),
wherebe F, g€ B, l=1,...,n, andp € (Ly(E1,....En; F), |- |l 1p)-
If, in addition, E1, ..., E, are reflexive Banach spaces then

(0) (Lsip(Er,... s Eni F) |- llsip) and (Le(EL, ..., EW F), |-l £p) are isomet-
ric via the mapping

T(W)(x1,...xn)(b) = (x1 X -+ X zpb),
wherebe F,xp € By, l=1,...,n, and ¢ € (Ly(EL, ..., Ep F) -l f0)-
PROOF. (a) follows from Propositions 6 and 12 and (b) is a straightforward

consequence of (a) QED
In the next by combining the previous results and taking ' = K, in partic-
ular, we obtain the following.
15 Corollary. Let Ey,...,E, be Banach spaces and let p > 1. Then the
following isometries hold true:

(a) (Lsip(EL, - BRI llsip) = (B1®- - -@E,; 0p) = (B1®- - -Q L, ®K; 5y) =
(ﬂf(Elv ER) Eﬂ)v ” ’ ”f,P)/'

If, in addition, Fn, ..., E, are reflexive Banach spaces then the following
isometries hold true:
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(0) (Lsip(Ers- s Bn), [-lsip) = (B1®-- @ En;0p) & (E1®---QE,0K; 7)) =
(Ly(ELs - B M)
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