
Note di Matematica 29, n. 1, 2009, 99–111.

Normability of probabilistic normed spaces

Bernardo Lafuerza–Guillén i

Department of Statistics and Applied Mathematics,
University of Almeŕıa
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Abstract. Relying on Kolmogorov’s classical characterization of normable topological vector
spaces, we study the normability of those probabilistic normed spaces that are also topological
vector spaces and provide a characterization of normable Šerstnev spaces. We also study the
normability of other two classes of probabilistic normed spaces.
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1 Introduction

Probabilistic normed spaces were introduced by Šerstnev in [15]; their defi-
nition was generalized in [1], a paper that revived the study of these spaces. We
recall the definition, the properties and the examples of probabilistic normed
spaces that will be used in the following.

Let Δ be the space of distribution functions and Δ+ := {F ∈ Δ | F (0) = 0}
the subset of distance distribution functions [12]. The space Δ can be metrized in
several equivalent ways [11,13,16,17] in such a manner that the metric topology
coincides with the topology of weak convergence for distribution functions. Here,
we assume that Δ is metrized by the Sibley metric dS , which is the metric
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denoted by dL in [12]. We shall also consider the subset D+ ⊂ Δ+ of the proper
distance distribution functions, i.e. those F ∈ Δ+ for which limx→+∞ F (x) = 1.

A triangle function [10,12] is a mapping τ : Δ+×Δ+ → Δ+ that is commu-
tative, associative, nondecreasing in each variable and has ε0 as identity, where
εa (a ≤ +∞) is the distribution function defined by

εa(t) :=

{
0, t ≤ a,

1, t > a.

Given a nonempty set S, a mapping F from S × S into Δ+ and a triangle
function τ , a probabilistic metric space (briefly a PM space) is the triple (S,F , τ)
with the following properties, where we set Fp,q := F(p, q),
(M1) Fp,q = ε0 if, and only if, p = q;

(M2) Fp,q = Fq,p for all p and q in S;

(M3) Fp,r ≥ τ (Fp,q, Fq,r) for all p, q, r ∈ S.

A probabilistic normed space (briefly a PN space) is a quadruple (V, ν, τ, τ∗),
where V is a vector space, τ and τ∗ are continuous triangle functions such that
τ ≤ τ∗ and ν is a mapping from V into Δ+, called the probabilistic norm, such
that for every choice of p and q in V the following conditions hold:

(N1) νp = ε0 if, and only if, p = θ (θ is the null vector in V );

(N2) ν−p = νp;

(N3) νp+q ≥ τ (νp, νq);

(N4) νp ≤ τ∗
(
νλp, ν(1−λ)p

)
for every λ ∈ [0, 1].

If ν satisfies (N2), (N3), (N4) and νθ = ε0 (but not necessarily (N1)), then
(V, ν, τ, τ∗) is said to be a probabilistic pseudonormed space (briefly, a PPN
space). The pair (V, ν) is called a probabilistic seminormed space (PSN space
for short) if ν satisfies (N1) and (N2).

Now we list several special classes of PN spaces (see [7] for details).
When there is a continuous t–norm T (see [3, 12]) such that τ = τT and

τ∗ = τT ∗ , where T ∗(x, y) := 1− T (1− x, 1− y),

τT (F,G)(x) := sup
s+t=x

T (F (s), G(t)) and τT ∗(F,G)(x) := inf
s+t=x

T ∗ (F (s), G(t))

the PN space (V, ν, τT , τT ∗) is called a Menger PN space, and is denoted by
(V, ν, T ). Recall that the maximum and minimum continuous t–norm are re-
spectively given by M(x, y) := min{x, y} and W (x, y) := max{x+y−1, 0}; and
another important continuous t–norm is Π(x, y) := xy.
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Normability of probabilistic normed spaces 101

If a PN space (V, ν, τ, τ∗) satisfies the following condition

(Š) ∀ p ∈ V ∀λ ∈ R \ {0} ∀x > 0 νλp(x) = νp

(
x

|λ|
)
,

then it is called a Šerstnev PN space; the condition (Š) implies that the best-
possible selection for τ∗ is τ∗ = τM , which satisfies a stricter version of (N4),
namely

∀λ ∈ [0, 1] νp = τM
(
νλp, ν(1−λ)p

)
.

One speaks of an equilateral PN space when there is F ∈ Δ+ different from
both ε0 and ε∞ such that, for every p �= θ, νp = F , and when τ = τ∗ = ΠM ,
which is the triangle function defined for G and H in Δ+ by ΠM (G,H)(x) :=
M(G(x), H(x)). This equilateral PN space will be denoted by (V, F,ΠM ).

Let G ∈ Δ+ be different from ε0 and from ε∞ and let (V, ‖ · ‖) be a normed
space; then, define, for p �= θ,

νp(x) := G

(
x

‖p‖
)
.

Then (V, ν,M) is a Menger PN space denoted by (V, ‖ · ‖, G,M). This type of
Menger PN spaces are known as simple PN spaces. Observe that simple PN
spaces belongs to the class of Šerstnev spaces. In the same conditions, if ν is
defined by

νp(x) := G

(
x

‖p‖α
)
,

with α ≥ 0, then the pair (V, ν) is a PSN space called α–simple and it is denoted
by (V, ‖ · ‖, G;α). The α–simple spaces can be endowed with a structure of PN
space in a very general setting (G should be a continuous and strictly increasing
function in D+, see [7]).

Let (Ω,A, P ) be a probability space, (V, ‖·‖) a normed space and S a vector
space of V –valued random variables (possibly, the entire space). For every p ∈ S
and for every x ∈ R+, let ν : S → Δ+ be defined by

νp(x) := P{ω ∈ Ω | ‖p(ω)‖ < x};

then (S, ν) is called an E–normed space (briefly, EN space) with base (Ω,A, P )
and target (V, ‖ · ‖). Every EN space (S, ν) is a PPN space under τW and τM . It
is said to be canonical if it is a PN space under the same two triangle functions.
In this latter case, it is a Šerstnev space.

See [6, 8, 14] for properties of PN spaces.
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If (V, ν, τ, τ∗) is a PN space, a mapping F : V × V → Δ+ can be defined
through

F(p, q) := νp−q. (1)

This function F makes (V,F , τ) a PM space. Every PM space can be endowed
with the strong topology, i.e., the topology generated by the strong neighbour-
hoods. For (V,F , τ), the strong neighbourhoods are defined as follows: for every
t > 0, the neighbourhood Np(t) at a point p of V is defined by

Np(t) := {q ∈ V | dS(Fp,q, ε0) < t} = {q ∈ V | νp−q(t) > 1− t} .

It is known (see [12]) that (V,F , τ), where F is defined by (1), and therefore
(V, ν, τ, τ∗), is a Hausdorff space, and hence, a T1 space; moreover, it is metriz-
able. But we do not know whether (V, ν, τ, τ∗) is normable.

2 PN spaces and topological vector spaces

A result from [2] can be rephrased for the purpose of the present paper in
the following form:

1 Theorem. [Alsina, Schweizer, Sklar] Every PN space (V, ν, τ, τ∗), when
it is endowed with the strong topology induced by the probabilistic norm ν, is a
topological vector space if, and only if, for every p ∈ V the map from R into V
defined by

λ �→ λ p (2)

is continuous.

It was proved in [2, Theorem 4] that, if the triangle function τ∗ is Archimede-
an, i.e. if τ∗ admits no idempotents other than ε0 and ε∞ [12], then the mapping
(2) is continuous and, as a consequence, the PN space (V, ν, τ, τ∗) is a topological
vector space.

The following theorem studies whether certain classes of spaces are topolog-
ical vector spaces.

2 Theorem. (a) No equilateral space (V, F,ΠM ) is a topological vector
space.

(b) A Šerstnev space (V, ν, τ) is a topological vector space if, and only if, the
probabilistic norm ν maps V into D+ rather than into Δ+, viz. ν(V ) ⊆
D+.

(c) A simple space (V, ‖ · ‖, G,M) is a topological vector space if, and only if,
G belongs to D+.
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(d) If G is a distribution function different form ε0 and ε∞, then the α–simple
space (V, ‖ · ‖, G;α) is a topological vector space, if, and only if, G belongs
to D+.

(e) An EN space (S, ν) is a topological vector space if, and only if, νp belongs
to D+ for every p ∈ S.

Proof. Let θ denote the null vector of the vector space V . Since any PM
space and, hence, any PN space, can be metrized, one can limit oneself to inves-
tigating the behaviour of sequences. Moreover, because of the linear structure
of V , one can take p �= θ and an arbitrary sequence (λn) with λn �= 0 (n ∈ N)
such that λn → 0 as n tends to +∞.

(a) For every n ∈ N, one has νλnp = F while νθ = ε0. Therefore the map (2)
is not continuous.

(b) If ν maps V into D+, then, for every t > 0, one has

νλnp(t) = νp

(
t

|λn|
)
−−−−−→
n→+∞ 1,

whence the assertion. Conversely, if there exists at least one p ∈ V such
that νp ∈ Δ+ \D+, namely such that νp(x) −−−−→

x→+∞ γ < 1, then, for x > 0,

νλnp(x) = νp

(
x

|λn|
)
−−−−−→
n→+∞ γ < 1,

so that the mapping λ �→ λp is not continuous.

(c) It is a trivial consequence of part (b), since every simple space is a Šerstnev
space.

(d) Let (λn) be a sequence of real numbers that tends to 0, when n goes to
+∞. Then, for all p ∈ V and x > 0, one has, for every n ∈ N,

νλnp(x) = G

(
x

‖λnp‖α
)

= G

(
x

|λn|α‖p‖α
)
.

Therefore limn→+∞ νλnp(x) = 1 if, and only if, G belongs to D+.

(e) The proof is analogous to that of part (b).

QED
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For every PN space (V, ν, τ, τ∗), if p ∈ V and x ≥ 0, then νp(x) may be
thought of as the probability P (‖p‖ < x), where ‖ · ‖ is a norm for V . So the
fact that νp does not belong to D+ means that P (‖p‖ < +∞) < 1; this is to be
regarded as being “odd”. Therefore we shall call strict any PN space (V, ν, τ, τ∗)
such that ν(V ) ⊆ D+, i.e., such that νp belongs to D+ for every p ∈ V . This
definition can be extended to PPN and PSN spaces. Thus, Theorem 2 (b), (c),
(d) and (e) can be rephrased as follows.

3 Theorem. Šerstnev spaces, simple spaces, α–simple spaces and EN spaces
are topological vector spaces if, and only if, they are strict.

However, in general PN spaces, the condition ν(V ) ⊆ D+ is not necessary
to obtain a topological vector space: see Theorem 11 below.

3 Normability of PN spaces

If (V, ν, τ, τ∗) is a topological vector space, the question naturally arises of
whether it is also normable; in other words, whether there is a norm on V that
generates the strong topology. This question had been broached by Prochaska [9]
in the case of Šerstnev PN spaces. For this case, we shall provide a complete
characterization of those strict Šerstnev PN spaces that are indeed normable
(see Theorem 6 further on). In the process, we shall need Kolmogorov’s classical
characterization of normability for T1 spaces [4].

4 Theorem. [Kolmogorov] A T1 topological vector space is normable if, and
only if, there is a neighbourhood of the origin θ that is convex and topologically
bounded.

Here, we have called topologically bounded a set A in a topological vector
space E when, for every sequence (λn) of real numbers that converges to 0 as n
tends to +∞ and for every sequence (pn) of elements of A, one has λnpn → θ
in the topology of E.

We recall that the probabilistic radius of a set A in a PN space (V, ν, τ, τ∗)
is the distance distribution function RA given by

RA(x) := �−ΦA(x) (:= lim
u→x−

ΦA(u)) for all x ∈ ]0,∞[ ,

where ΦA(u) := inf{νp(u) | p ∈ A} for all u ∈ ]0,∞[ (see [8]). A subset A of
a PN space (V, ν, τ, τ∗) is said to be D–bounded if, and only if, there exists a
distribution function G ∈ D+ such that νp ≥ G for every p ∈ A. One can take
G = RA, when RA belongs to D+.
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3.1 The case of Šerstnev spaces

In characterizing normable Šerstnev spaces we shall need the following result.

5 Theorem. In a strict Šerstnev space (V, ν, τ) the following statements
are equivalent for a subset A of V :

(a) A is D–bounded;
(b) A is topologically bounded.

Proof. (a) =⇒ (b) Let A any D–bounded subset of V and let (pn) be any
sequence of elements of A and (λn) any sequence of real numbers that converges
to 0; there is no loss of generality in assuming λn �= 0 for every n ∈ N. Then,
for every x > 0, and for every n ∈ N,

νλnpn(x) = νpn

(
x

|λn|
)
≥ RA

(
x

|λn|
)
−−−−−→
n→+∞ 1.

Thus λnpn → θ in the strong topology and A is topologically bounded.
(b) =⇒ (a) Let A be a subset of V which is not D–bounded. Then

RA(x) −−−−→
x→+∞ γ < 1.

By definition of RA, for every n ∈ N there is pn ∈ A such that

νpn(n
2) <

1 + γ

2
< 1.

If λn = 1/n, then, for every n ∈ N,

νλnpn(1/2) ≤ νλnpn(n) = νpn(n
2) <

1 + γ

2
< 1,

which shows that (νλnpn) does not tend to ε0, even if it has a weak limit, viz.
(λnpn) does not tend to θ in the strong topology; in other words, A is not
topologically bounded. QED

As a consequence of the previous results, it is now possible to characterize
normability for strict Šerstnev spaces according to the following criterion.

6 Theorem. A strict Šerstnev space (V, ν, τ) is normable if, and only if,
the null vector θ has a convex D–bounded neighbourhood.

The following (restrictive) sufficient condition is in [9]; we prove it here not
only for the sake of completeness, but also because Prochaska’s thesis is not
easily accessible and, moreover, because the notation there adopted is different
from the one that has become usual after the publication of [12].
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7 Theorem. [Prochaska] A strict Šerstnev space (V, ν, τ) with τ = τM is
locally convex.

Proof. It suffices to consider the family of neighbourhoods of the origin θ,
Nθ(t), with t > 0. Let t > 0, p, q ∈ Nθ(t) and λ ∈ [0, 1]. Then

νλp+(1−λ)q(t) ≥ τM
(
νλp, ν(1−λ)q

)
(t)

= sup
μ∈[0,1]

M
(
νλp(μt), ν(1−λ)q ((1− μ)t)

)
≥M

(
νλp(λt), ν(1−λ)q ((1− λ)t)

)
= M (νp(t), νq(t)) > 1− t.

Thus λp+ (1− λ)q belongs to Nθ(t) for every λ ∈ [0, 1]. QED

As a consequence of Theorems 4 and 7, every simple PN space (V, ‖·‖, G,M)
with G ∈ D+ is trivially normable, since their strong topology coincides with
the topology of their classical norm. In general, it is to be expected that most
of the PN spaces considered in Theorem 7 will be normable, as shown by the
following corollary.

8 Corollary. Let (V, ν, τM ) be a strict Šerstnev space. If Nθ(t) is D–bounded
for some t ∈ ]0, 1[, then (V, ν, τM ) is normable.

3.2 Other cases

Apart from the Šerstnev spaces, we can also determine whether an α–simple
space is normable, as the following result shows.

9 Theorem. Let G be a continuous and strictly increasing distribution func-
tion in D+. Then, the α–simple space (V, ‖ · ‖, G;α) is normable.

Proof. It follows from the assumptions that the α–simple space (V, ‖ · ‖,
G;α) is a Menger space under a suitable t–norm T (see [7]). Let Nθ(t) be a
neighbourhood of the origin θ with t ∈ ]0, 1[; then

Nθ(t) =

{
p ∈ V | G

(
t

‖p‖α
)

> 1− t

}
=

{
p ∈ V | ‖p‖ <

(
t

G−1(1− t)

)1/α
}
.

Since h(t) =
(
t/G−1(1− t)

)1/α
is a continuous function such that limt→0+ h(t) =

0 and limt→1− h(t) = ∞, then it is clear that the strong topology for V coin-
cides with the topology of the norm ‖ · ‖ in V . Therefore, (V, ‖ · ‖, G;α) is
normable. QED

It is natural to ask whether results similar to that of Theorem 6 hold for
general PN spaces. The conditions of Theorem 5 need not be equivalent; for,
there are PN spaces in which a set A may be topologically bounded without
being D–bounded. On the other hand, even in those cases, sometimes it is
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possible to establish directly whether a PN space that is also a topological
vector space is normable. To illustrate both facts, we next introduce a new class
of PN spaces whose interest goes deeper than just to provide an example to this
point. Recall that only a few types of PN spaces are known: finding a new type
is useful in order to deepen our knowledge of these spaces.

Before introducing the new class of PN spaces we need the following technical
lemma.

10 Lemma. Let f : [0,+∞[ → [0, 1] be a right–continuous nonincreasing
function. Define f [−1](1) := 0 and f [−1](y) := sup{x | f(x) > y} for all y ∈ [0, 1[
(f [−1](y) might be infinite). For x0 ∈ [0,+∞[ and y0 ∈ [0, 1], the following facts
are equivalent: (a) f(x0) > y0; (b) x0 < f [−1](y0).

Proof. If f(x0) > y0 then f [−1](y0) = sup{x | f(x) > y0} ≥ x0. If we
suppose that sup{x | f(x) > y0} = x0, then f(x) ≤ y0 for every x > x0. Thus
f(x0) = �+f(x0) ≤ y0 (�+f(x0) = limx→x0+ f(x)), against the assumption;
whence (a) =⇒ (b). The converse result is an immediate consequence of the
monotonicity of f . QED

The following theorem introduces a new class of PN spaces that generalizes
an example in [5] and which also provides some properties of the spaces in that
class. As has been said above, such properties are interesting for the purposes
of this paper. It may be useful to recall that τT ∗ ≥ τM∗ = τM for every t–norm
T (see [12]).

11 Theorem. Let (V, ‖ · ‖) a normed space and let T be a continuous t–
norm. Let f be a function as in Lemma 10, and satisfying the following two
properties:

(a) f(x) = 1 if, and only if, x = 0;

(b) f (‖p+ q‖) ≥ T (f (‖p‖) , f (‖q‖)) for all p, q ∈ V .

If ν : V → Δ+ is given by

νp(x) =

⎧⎪⎨⎪⎩
0, x ≤ 0,

f(‖p‖), x ∈ ]0,+∞[ ,

1, x = +∞,

(3)

for every p ∈ V , then (V, ν, τT , τM ) is a Menger PN space satisfying the following
properties:

(F1) (V, ν, τT , τM ) is a topological vector space;

(F2) (V, ν, τT , τM ) is normable;
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(F3) If p ∈ V and t > 0, then the strong neighbourhood Np(t) in (V, ν, τT , τM )
is not D–bounded, but Np(t) is topologically bounded whenever Np(t) �= V ;

(F4) (V, ν, τT , τM ) is not a Šerstnev space;

(F5) (V, ν, τT , τM ) is not a strict PN space.

Proof. First, we prove that (V, ν, τT , τM ) is a Menger PN space:

(N1) νp = ε0 ⇐⇒ f(‖p‖) = 1⇐⇒ ‖p‖ = 0⇐⇒ p = θ.

(N2) Trivial.

(N3) For all p, q ∈ V , the inequality νp+q ≥ τT (νp, νq) means that one has

νp+q(x) ≥ τT (νp, νq) (x) = sup
s+t=x

T (νp(s), νq(t))

for all x ∈ ]0,+∞[, or, equivalently,

f(‖p+ q‖) ≥ T (f(‖p‖), f(‖q‖)) ,
as assumed.

(N4) Let p ∈ V and let λ ∈ [0, 1]. Then, the inequality νp ≤ τM
(
νλp, ν(1−λ)p

)
is

equivalent, for all x ∈ ]0,+∞[, to

f(‖p‖) = νp(x) ≤ τM
(
νλp, ν(1−λ)p

)
(x) = sup

s+t=x
M
(
νλp(s), ν(1−λ)p(t)

)
= sup

s+t=x
M (f(λ‖p‖), f ((1− λ)‖p‖))

= M (f(λ‖p‖), f ((1− λ)‖p‖)) = min{f(λ‖p‖), f((1− λ)‖p‖)}.

Therefore, one has, for all p ∈ V and for all λ ∈ [0, 1], νp ≤ τM
(
νλp, ν(1−λ)p

)
if, and only if, f(‖p‖) ≤ f(α‖p‖) for all α ∈ [0, 1], namely if, and only if,
f is nonincreasing.

Now we prove properties (F1) through (F5):

(F1) Let p ∈ V . We only have to prove that the map from R into V defined by
λ �→ λp is continuous at every λ ∈ R. Let η > 0 (we shall suppose, without
loss of generality, that η ≤ 1). We must prove that there exists a number
δ > 0 such that dS(νλ′p−λp, ε0) < η whenever |λ′−λ| < δ; or, equivalently,
such that dS(νβp, ε0) < γ whenever |β| < δ. Since dS(νq, ε0) =
inf{h | �+νq(h) > 1−h} = 1−f(‖q‖), then one has dS(νβp, ε0) < γ if, and
only if, 1− f(|β|‖p‖) < γ, viz. f(|β|‖p‖) > 1− γ, or, again, by Lemma 10,
if, and only if, |β| < δ := f [−1](1− γ)/‖p‖.

sibauser
Linea



Normability of probabilistic normed spaces 109

(F2) Let p ∈ V . Let t > 0 (we shall suppose, without loss of generality, that
t < 1− limx→∞ f(x)). Then, because of Lemma 10,

Np(t) = {q ∈ V | dS(νp−q, ε0) < t} = {q ∈ V | f(‖p− q‖) > 1− t}
= {q ∈ V | ‖p− q‖ < f [−1](1− t)} = B(p, f [−1](1− t)),

i.e., the strong neighbourhood Np(t) is a ball in (V, ‖ · ‖) with centre at p.
Conversely, let r > 0. If t = 1− f(r), then f [−1](1− t) < r, whence

Np(t) = B(p, f [−1](1− t)) ⊂ B(p, r).

Therefore, the strong topology for (V, ν, τT , τT ∗) coincides with the topol-
ogy of the norm in (V, ‖ · ‖).

(F3) If p ∈ V and 0 < t < 1− limx→∞ f(x), then Np(t) = B(p, f [−1](1− t)) is
a ball in (V, ‖ · ‖), whence Np(t) is topologically bounded. On the other
hand, if 0 < x <∞ then

ΦNp(t)(x) = inf{νq(x) | q ∈ Np(t)} = inf{f(‖q‖) | ‖p− q‖ < f [−1](1− t)}
= f
(
‖p‖+ f [−1](1− t)

)
.

Thus, limx→∞RNp(t)(x) = f
(‖p‖+ f [−1](1− t)

)
< 1, i.e., Np(t) is not

D–bounded.

(F4) It is immediate to check that (V, ν, τT , τT ∗) is a Šerstnev space if, and only
if, the function f is constant on ]0,∞[. From assumption (a) this constant
should be less than 1, which contradicts the right–continuity of f at x = 0.
Thus, (V, ν, τT , τM ) is not a Šerstnev space.

(F5) It is immediate that ν(V \ {θ}) ⊂ Δ+ \ D+.

QED

Now we consider some special cases and use the preceding theorem in order
to give some examples.

12 Example. Suppose that, in Theorem 11, T = Π. Then, property (b)
reads f (‖p+ q‖) ≥ f (‖p‖) f (‖q‖) for all p, q ∈ V . It is not difficult to prove
that, under the given assumptions on f , property (b) is equivalent to the fol-
lowing one:

f(x+ y) ≥ f(x)f(y), for all x, y ∈ [0,∞[ . (4)
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The following are examples of functions f satisfying the assumptions of Theorem
11 in this case:

fα,β(x) := 1− β

α
+

β

x+ α
, 0 ≤ β ≤ α,

gα,β(x) := 1− α+ α exp
(
−xβ
)
, 0 < α ≤ 1, β > 0.

13 Example. Take T = W in Theorem 11. In this case property (b) reads

∀ p, q ∈ V f (‖p+ q‖) ≥ f (‖p‖) + f (‖q‖)− 1,

which is equivalent to the following one

∀x, y ∈ [0,+∞[ 1 + f(x+ y) ≥ f(x) + f(y),

namely to the fact that the function x �→ f(x) − 1 is superadditive. For in-
stance, the following functions satisfy these properties but not those considered
in Example 12, since they do not satisfy (4):

hα,β(x) :=

{
1− αx, 0 ≤ x ≤ β,

1− αβ, x > β,
0 < β ≤ 1/α.

4 Conclusion

In what precedes we have been able to characterize those Šerstnev spaces
that are normable topological vector spaces. Several questions remain open: to
give at least sufficient conditions under which a general PN space is normable;
more, to characterize (rather than just having a sufficient condition) the class
of PN spaces that are also topological vector spaces, and, once this has been
achieved, to study normability in the class thus determined.
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Räumes, Studia Math. 5 (1934), 29–33; English translation in V. M. Tikhomirov (Ed.),
Selected Works of A. N. Kolmogorov, Vol. I: Mathematics and Mechanics, Kluwer,
Dordrecht–Boston–London, (1991), 183–186.

sibauser
Linea



Normability of probabilistic normed spaces 111

[5] B. Lafuerza Guillén: Primeros resultados en el estudio de los espacios normados prob-
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[6] B. Lafuerza Guillén, J.A. Rodŕıguez Lallena, C. Sempi: Completion of probabilis-
tic normed spaces, Int. J. Math. Math. Sci. 18 (1995), 649–652.
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