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Abstract. Following the concept of statistical convergence, we define and study statistical
analogue concepts of convergence and Cauchy’s sequence on a probabilistic normed space that
is endowed with a strong topology. Some important properties of statistical convergence were
also extended in this new setting.
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1 Introduction

Probabilistic normed (PN) spaces are real linear spaces in which the norm of
each vector is an appropriate distribution function rather than a number. Such
spaces were first introduced by A. N. Serstnev in 1963 [17].

In recently, C. Alsina et al in [1] introduced a new definition of PN spaces
that includes Serstnev’s and leads naturally to the identification of the principle
class of PN spaces, the Menger spaces. In this paper we investigate questions
of statistical continuity in PN spaces under the new definition. We recall some
notation and terminology used in [20].

AT denote the set of all one-dimensional probability distributions whose
support is the positive half-line, i.e., AT is the set of all functions such that
Dom F = [0,4+o0], Ran F C [0,1], F(0) = 0, F(4+00) = 1, and F is non-
decreasing and left-continuous on (0, +00). The subset DT C AT is the set

Dt ={F e AT: " F(+o00) = 1}.
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Here [~ f(z) denotes the left limit of the function f at the point x, I~ f(z) =
limy_,,— f(t). The set A™ is ordered by the usual pointwise ordering of functions;
and g, is a special function in A" given by

<
cula) = {O, z < a,

1, z>a.

In [18], D. L. Sibley gave a useful modified Lévy metric dy in AT. For
F,GeAT,

dy(F,G) = inf{h € (0,1]: both [F,G;h] and [G, F;h] hold},

where [F, G; h] denote the condition G(z) < F(z+ h) + h, for @ € (0, +). There
is a natural topology on A* that is induced by the modified Lévy metric dy,
(see [20], Sect. 4.2). Convergence with respect to this metric is equivalent to
weak convergence of distribution functions. i.e., for any sequence {Fy} in A"
and F € A*, the sequence {dr(F}, F)} converges to 0 if and only if {F})(z)}
converges to F(x) at every point of continuity of the limit function F.

1 Lemma. The following statements hold:
(i) For any F € AT, dp(F,e0) = inf{h: F(h+) > 1— h},
(ii) For anyt >0, F(t)>1—1t if and only if dp(F,eo) < t,
(iii) If F,G € AT and F < G, then d(G, &) < dr(F,ep).

A triangle function is a binary operation on At that is commutative, asso-
ciative, non-decreasing in each place, and has ¢ as an identity element. Conti-
nuity of a triangle function means uniform continuity with respect to the natural
product topology on At x A*.

Typical continuous triangle functions are the operations 77 and 7g, which
are, respectively, given by

r(F,G)(z) = s T(F(u),G(v)),
and

7s(F,G)(z) = inf S(F(u),G(v)),

ut+v=x
for all F;G € A" and all z € R [20]. Here T is a continuous t-norm and S
is a continuous t-conorm, i.e., both are continuous binary operations on [0, 1]
that are commutative, associative and nondecreasing in each place; T has 1 as
identity and S has 0 as identity. If T"is a t-norm and 7™ is defined on [0, 1] x [0, 1]
via
T*(.%',y) =1- T(l e y)7
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then 7™ is a t-conorm, specifically the t-conorm of 7T'.
The most important t-norm are the functions W, Prod, and M which are
defined, respectively, by

W(a,b) = max(a + b —1,0),
Prod(a,b) = ab,
M (a,b) = min(a, b).

Their corresponding t-conorms are given, respectively, by

W*(a,b) = min(a + b, 1),
Prod*(a,b) = a+ b — ab,
M*(a,b) = max(a,b).

2 Definition. [1] A probabilistic normed space (briefly, a PN space) is a
quadruple (V,v,7,7%), where V is a real linear space, 7 and 7%, with 7 < 7* are
continuous triangle functions, and the probabilistic norm v is a mapping from
V into AT (writing v, for v(p)), the following conditions hold:

(N1) vp = g if and only if p = 0(the zero vector of V);

)
(N2) v_p =y forallp e V;

(N3) vptq > T(vp,vy) for all p,q € V;
(N4) v

N4 T*(Vap, V(1-a)q) for every p € V and for every o € [0, 1].

If 7 = 70 and 7 = 7p+ for some continuous t-norm 7' and its associated
t-conorm T, then (V, v, 7p, 7p+) is a Menger PN space.
Let (V,v,7,7*) be a PN space. Since 7 is continuous, the system of strong
neighborhoods of zero
{No(N): A > 0}, 1)
where
No(N) ={p e V:dr(vp,20) < A} (2)
determines a first countable Hausdorff topology on V', called the strong topology
(briefly, S-topology). Thus, the S-topology can be completely specified by means
of S-convergence of sequences.
3 Theorem. [20] In the simple space (S,d,G), the strong topology is equiv-
alent to the d-metric topology when G € DT. If G ¢ DY, then the strong topology
coincides with the discrete topology.

The following lemma is an immediate consequence of the definition of neigh-
borhood of zero and Lemma 1.1(ii).
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4 Lemma. In a PN space (V,v,7,7%), for each p € V, we have
vp(t) >1—t <= peN(t). (3)

5 Definition. [20] (i) A sequence {py} of elements of V is said to be S-
convergent to 6, the null vector of V, in the S-topology if for any A > 0 there
is an integer K (A\) € N such that py € Np(\) whenever k£ > K (). In this case
we write pj i) 0 or S — limy pp = 0.

(if) A sequence {px} is said to be a S-Cauchy sequence if for any A > 0, there
is an integer M(\) € N such that py — p; € My()\) whenever k,1 > M()\)

6 Remark. Of course, there is nothing special about 6 as a limit; if one
wishes to consider the convergence of the sequences {py} to the vector p in the
S-topology, then it suffices to consider the sequence {py —p} and its convergence
to 0. In other word, S — limy, py = p is equivalent to S — limg(pr — p) = 6.

7 Lemma. [2] For any a € R, any p € V, and any € > 0, there exists a
A > 0 such that

ap € Ny(e) whenever p € Ny(\). (4)
8 Lemma. [2/If0<a <1, then
Vap 2 Vp (5)

foranypeV.

We observe that, in view of Lemma 1.2 and (N3), we have the following
lemma.

9 Lemma. Let (V,v,7,7*) be a PN space. For every p,q,r €V,
dr(Vp—r;20) < dL(T(vp—q; Vg—r), €0)- (6)
10 Definition. Let (V,v,7,7*) and (V',v/, 7, 7*) be two PN spaces with the
S-topology. A map f: V — V is said to be S-continuous at u € V if for every
neighborhood of f(u) € V/, N}(u>(s), there exists a neighborhood of u € V,
N#)(t) such that
flz) € ./\/‘Ji(u)(s) whenever z € N, (t). (7)

The map f is said to be a S-continuous map if it is S-continuous at every
element of V.
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2 Statistical Convergence of real/complex numbers

The idea of the statistical convergence of real numbers ware independently
introduced by Fast [6] and Steinhaus [19]. But the rapid developments started
after the papers of Salat [15], Fridy [8] and Connor [5]. This concept was further
extended to Banach spaces by Kolk [12], to locally convex spaces by Maddox [13]
and to fuzzy numbers by Savag [16]. Recently, many papers published on the
study of statistical convergence in many aspects of real numbers and fuzzy
numbers by numerous authors (see ( [3,4,9,14]).

In this section, we list some of the basic concepts of statistical convergence
of real numbers and we refer to [7-9] for more details.

11 Definition. [7] If K is a subset of the positive integers N, then K,
denotes the set {k € K: k < n} and |K,| denotes the number of elements in
K,.

The natural density of K is given by

0(K) = lim ‘K"‘

n—oco N

(®)

12 Remark. Clearly, finite subsets have zero natural density and 6(K*¢) =
1 —0(K) where K¢ = N\K.
13 Definition. K is said to be statistically dense if

§(K)=1. 9)

The set {k € K: k # m? m = 1,2,...} is statistically dense, while the set
{3k: k = 1,2,---} is not. A subsequence of a sequence is called statistically
dense if the set of all indices of its elements is statistically dense.

We will be particularly concerned with integer sets having natural density
zero. So,

14 Definition. If {z;} is a sequence such that zj, satisfies property P for
all k except a set of natural density zero, then we say that {z)} satisfies P for
”almost all £, and we abbreviate this by "a.a.k”.

15 Definition. A sequence {z;} of (real or complex) numbers is said to be
statistically convergent to some number L, if for every e > 0, the set K. = {k €
N: |z — L| > €} has natural density zero, viz.

5(K.) =0. (10)

. . . stat
In this case we write stat — limy, 2, = L or I
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16 Definition. A sequence {xy} is said to be a statistically Cauchy’s se-
quence if for each € > 0, there exists a number N = N (e) such that

d({k eN: |z —azn| > €}) =0, (11)

Le.|zg — an| < e for a.a.k.

Friday [8] proved that a sequence {x}} is statistically convergent if and only
if it is statistically Cauchy’s sequence.

3 Statistical Convergence on PN spaces

Recently, Karakus [11] has introduced statistical convergence in Serstnev
PN spaces. In this section, we extend the idea of statistical convergence to the
setting of sequences in a PN space endowed with S-topology.

17 Definition. Let (V,v,7,7*) be a PN space, let {x} be an V-valued
sequence, and L € V. The sequence {p;} is S-statistically convergent to 6
provided that for every t > 0

5({k: pr & Np(t)}) =0, (12)

or equivalently by (7)

At
hrrln EHk <n:pp ¢ Np()} =0,
ie., pi € Np(t), for a.a.k. In this case, we write py SZslet g or S-stat- limpp = 6,
where 6 is called the S-statistical limit (briefly, a S-stat-limit) of {ps}.
The following lemma is an immediate consequence of above definition and
the well-known density properties.
18 Lemma. Let (V,v,7,7*) be a PN space. Then, for every t > 0 the
following statements are equivalent:
(i) sst — limy(pg) = 0,
(ii) 5({k € N: p, ¢ Ny(t)}) = 0,
(i11) 0({k € N: dp(vp,,€0) > 1)) =0,
() 6({k € N: d,(vp,,e0) <t)) =1.
19 Theorem. Let (V,v,7,7*) be a PN space. If a sequence {py} is S-
statistically convergent in the S- topology, then S-stat-limit is unique.
PROOF. Assume that S — stat — limpy, = p and S — stat — limpy, = ¢ with
p # q. For any t > 0, define the following sets:

Ki(t) ={k eN:p, —p ¢ Ny(t)},
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Ks(t) = {k € N: p, — q & Ny(t)}.
Let K(t) = Ki(t)NKa(t). We observe that, since §(K7(t)) = 0 and 6(K2(t)) =0
for all ¢t > 0, we have §(K (t)) = 0 for all ¢ > 0 which implies that 6(N\ K (¢)) = 1
for all ¢ > 0. Let k; € N\ K(t), then py, — p € Ny(t). Let dp(vp, —p,€0) = a.
Then t —« > 0 and the uniform continuity of 7 implies that there exists a ¢’ > 0
such that
dL(T(VPkZ*IN G), Vpk,ﬁp) <t-a

whenever dr,(G,g0) < t'. Now let py, —q € Ny(t'), then dL(Upki,q,Eo) < t'. Thus,
by equation (6), we have

dr(vp—g,€0) < dL(T(VPkl -p> Vpkz—q)780)
< dp(T(Wpr,—ps Vo, —a)> Vpr,—p) + AL (Vpy,, —ps €0)
<t—-a+a«a
=1.

Hence p — g € Np(t). Since t > 0 is arbitrary, by (3), we get v,_, = €9 which
yields p — g = 0, i.e., p = ¢. This completes the proof. QED
20 Lemma. Let (V,v,7,7*) be a PN space. If S-stat-limpy = p and f :
V. — V', defined for all point in V, is a S-continuous function on V, then
S-stat-lm £ (py) — £(p)) = .
PROOF. Since f is S-continuous function, for every e > 0 there exists a
A > 0 such that

pr —p € Np(A\) implies  f(pr) — f(p) € No(e).
But then
f(or) — f(p) ¢ No(e) implies p —p & Np(N).

Thus
{keN: flpe) = f(p) € Nor(e)} S{k e N:p, —p & Np(N)}

and therefore

S({k € N: f(pr) — f(p) ¢ No(€))} <o({k € N: p —p ¢ Ny(N)}) =0
because S-stat-limy p, — p = 0. This proves S-stat-limy f(pr) — f(p) = 0).

21 Theorem. Let (V,v,7,7*) be a PN space. If S — lim(px) = 6, then
S — stat — lim(py) = 6.
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PRrOOF. By hypothesis, for every ¢ > 0, there is an integer K € N such that
pr € Ny(t) whenever & > N(t). This guaranties that for every ¢ > 0 the set
{k € N: p; ¢ Np(t)} has at most finitely many elements. Thus, by the property
of density, we get §({k € N: pi ¢ Np(t)}) = 0. Therefore S-stat-lim(py) = 0,
the conclusion.

22 Theorem. Let (V,v,7,7*) be a PN space. A sequence {p;} inV is S-
statistically convergent to 6 if and only if there exists a statistically dense subset
K ={ki <ky<---} CN such that S — lim,(pg,) = 6.

PrOOF. The proof of sufficiency is easy and can be omitted. Suppose that
S-stat-lim(pg) = 0. Put Ky, = {n € N: p, € Np(L),m € N}. Since Ny(t1) 2
Npy(t2) whenever t; > to, for each m € N we have

KiD2Ke 2D DKy 2 Kpy1 20+, (13)
and S-stat-lim(pg) = 6 implies
0(Ky) =1 foreach meN. (14)
Now, choose k; € Kj. According to (14), there exists a ko > ki, ko € Ko, such
that, for every n > ko
1 1 1
—{k <n: - -
Ltk <nepi e N3} > 2
Again by (14) there exists a k3 > ko, k3 € K3, such that, for every n > k3
1 1 2
—H{k <n: S =) > =
“|{k < gy € N3} >
and so on. So by induction we get an increasing index sequence
ki <kg<--- </€j EK]' (j:1,2,..,),
such that for every n > k;

1G] 1 1 j—-1 .

— =—{k<n:p; € - > =2,3,...). 15
L=k <mp e MY > T U )
Now, we construct the subset K C N as follows:

K:{?’LENZl§n<k‘1}U[U{TLEKjZkj§n<]€j+1}] (16)
jeN
We show that K C N is statistically dense,i.e., 6(K) = 1. Let n > k;. Then n
belongs to {n € K;: kj < n < kj1} for some j € N. Thus by (13), (14) we
conclude that,
K| V5| g

n - n i (17)
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and it follows that 6(K) = 1. Let A > 0 and choose an integer j € N such that
% < A. Let n > k; and n € K. Then, by definition of K, there exists an integer
m > j such that k,, <n < k,;41 and n € Kj;. Hence, for every A > 0, we get

P GNo(%) C Ny, (18)

for every n > k; and n € K. This proves that S — lim,, p, = 6 QED

23 Lemma. Let (V,v,7p,7r+) be a Menger PN space with T(z,z) > x
for every x € [0,1]. If S-stat-limg pr, = p, S-stat-limy ¢ = ¢ and « is a real
number, then

(i) S-stat-limy(pr +qr) =p + ¢,
(i) S-stat-limy(px —qx) =p — 4,
PROOF. (i) For every € > 0, define the following sets:
P={neN:p,—p¢Ny(e)},

Q={neN:q —q¢Ny(e)}.
Then, §(P) = 0 and 6(Q) = 0. Now, let K C (PN Q). Then, clearly §(K) =0
which implies §(N/K) = 1. If k € N/K, then we get

V(Pk+q1c)*(l>+q)(6) 2 iuP T (Vpy—p (1), Vgy—q(v))-

UTV=€

Now, we choose A < € such that A = min(u,v). We note that Np(X) C Np(e).
Then the above inequality becomes

V

Y(pr+ae)—(p+q) (6) = ililt)) T(Vp—p(N); Vg—q(N))

> T(Wp—p(N), Vgy—g(N)
> TI-XN1-X)>1-2X
> 1—e

This shows that

S({k e N: (pr +qr) — (P +q) & Nole)},

i.e., S-stat-limg(pr + qx) = p + ¢
(ii) Similar to (i). QED
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