Note di Matematica
Note Mat. 29 (2009), n. 1, 41-54
ISSN 1123-2536, e-ISSN 1590-0932
DOI 10.1285/i15900932v29n1p41
http://siba-ese.unisalento.it, © 2009 Università del Salento

Rotation hypersurfaces in $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$

Franki Dillen ${ }^{\text {i }}$
franki.dillen@wis.kuleuven. be
Johan Fastenakels ${ }^{\text {ii }}$
johan.fastenakels@wis.kuleuven.be
Joeri Van der Veken ${ }^{\text {iii }}$
Katholieke Universiteit Leuven, Department of Mathematics, Celestijnenlaan 200B Box 2400, BE-3001 Leuven, Belgium.
joeri.vanderveken@wis.kuleuven.be

Received: 14/11/2007; accepted: 07/04/2008.

Abstract

We introduce the notion of rotation hypersurfaces of $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$ and we prove a criterium for a hypersurface of one of these spaces to be a rotation hypersurface. Moreover, we classify minimal rotation hypersurfaces, flat rotation hypersurfaces and rotation hypersurfaces which are normally flat in the Euclidean resp. Lorentzian space containing $\mathbb{S}^{n} \times \mathbb{R}$ resp. $\mathbb{H}^{n} \times \mathbb{R}$.

Keywords: rotation hypersurface, flat, minimal
MSC 2000 classification: 53B25

1 Introduction

In [3] the classical notion of a rotation surface in \mathbb{E}^{3} was extended to rotation hypersurfaces of real space forms of arbitrary dimension. Motivated by the recent study of hypersurfaces of the Riemannian products $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$, see for example [2], [4], [5] and [6], we will extend the notion of rotation hypersurfaces to these spaces. Starting with a curve α on a totally geodesic cylinder $\mathbb{S}^{1} \times \mathbb{R}$ resp. $\mathbb{H}^{1} \times \mathbb{R}$ and a plane containing the axis of the cylinder, we will construct such a hypersurface and we will compute its principal curvatures. Moreover, we will prove a criterium for a hypersurface of $\mathbb{S}^{n} \times \mathbb{R}$ resp. $\mathbb{H}^{n} \times \mathbb{R}$ to be a rotation hypersurface and we will end the paper with some applications, including a classification of minimal rotation hypersurfaces of $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$.

[^0]
2 Preliminaries

Denote by \mathbb{E}^{n+2} the Euclidean space of dimension $n+2$ and by \mathbb{L}^{n+2} the Lorentzian space of dimension $n+2$, equipped with the metric $d s^{2}=-d x_{1}^{2}+$ $d x_{2}^{2}+\cdots+d x_{n+2}^{2}$. In order to study the spaces $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$, we use the following models:

$$
\begin{aligned}
\mathbb{S}^{n} \times \mathbb{R} & =\left\{\left(x_{1}, \ldots, x_{n+2}\right) \in \mathbb{E}^{n+2} \mid x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}=1\right\} \\
\mathbb{H}^{n} \times \mathbb{R} & =\left\{\left(x_{1}, \ldots, x_{n+2}\right) \in \mathbb{L}^{n+2} \mid-x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}=-1, x_{1}>0\right\}
\end{aligned}
$$

From now on, we denote by \mathbb{M} either \mathbb{S} or \mathbb{H} and we set $\varepsilon=1$ in the first case and $\varepsilon=-1$ in the second case. Remark that $\xi=\left(x_{1}, \ldots, x_{n+1}, 0\right)$ is a normal vector field on $\mathbb{M}^{n} \times \mathbb{R}$ with $\langle\xi, \xi\rangle=\varepsilon$ and that the Levi Civita connection $\widetilde{\nabla}$ of $\mathbb{M}^{n} \times \mathbb{R}$ is given by

$$
\widetilde{\nabla}_{X} Y=D_{X} Y+\varepsilon\left\langle X_{\mathbb{M}^{n}}, Y_{\mathbb{M}^{n}}\right\rangle \xi
$$

where D is the covariant derivative in \mathbb{E}^{n+2} resp. \mathbb{L}^{n+2} and $X_{\mathbb{M}^{n}}$ and $Y_{\mathbb{M}^{n}}$ denote $\underset{\sim}{\text { the }}$ projections of X and Y on the tangent space to \mathbb{M}^{n}. The curvature tensor \widetilde{R} of $\mathbb{M}^{n} \times \mathbb{R}$ is given by

$$
\langle\tilde{R}(X, Y) Z, W\rangle=\varepsilon\left(\left\langle Y_{\mathbb{M}^{n}}, Z_{\mathbb{M}^{n}}\right\rangle\left\langle X_{\mathbb{M}^{n}}, W_{\mathbb{M}^{n}}\right\rangle-\left\langle X_{\mathbb{M}^{n}}, Z_{\mathbb{M}^{n}}\right\rangle\left\langle Y_{\mathbb{M}^{n}}, W_{\mathbb{M}^{n}}\right\rangle\right)
$$

Let $f: M^{n} \rightarrow \mathbb{M}^{n} \times \mathbb{R}$ be a hypersurface with unit normal N. Let T denote the projection of $\frac{\partial}{\partial x_{n+2}}$ on the tangent space to M^{n} and denote by θ an angle function such that $\cos \theta=\left\langle N, \frac{\partial}{\partial x_{n+2}}\right\rangle$. This means that

$$
\frac{\partial}{\partial x_{n+2}}=f_{*} T+\cos \theta N
$$

Let ∇ and R denote the Levi Civita connection and the Riemann Christoffel curvature tensor of M^{n} respectively and let S be the shape operator of the hypersurface. Then the equations of Gauss and Codazzi are given by

$$
\begin{align*}
\langle R(X, Y) Z, W\rangle= & \langle S X, W\rangle\langle S Y, Z\rangle-\langle S X, Z\rangle\langle S Y, W\rangle \tag{1}\\
& +\varepsilon(\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle \\
& +\langle Y, T\rangle\langle W, T\rangle\langle X, Z\rangle+\langle X, T\rangle\langle Z, T\rangle\langle Y, W\rangle \\
& -\langle X, T\rangle\langle W, T\rangle\langle Y, Z\rangle-\langle Y, T\rangle\langle Z, T\rangle\langle X, W\rangle) \\
\nabla_{X} S Y-\nabla_{Y} S X- & S[X, Y]=\varepsilon \cos \theta(\langle Y, T\rangle X-\langle X, T\rangle Y) \tag{2}
\end{align*}
$$

where X, Y, Z, W are vector fields tangent to M^{n}. Moreover, by using the fact that $\frac{\partial}{\partial x_{n+2}}$ is parallel in $\mathbb{M}^{n} \times \mathbb{R}$, we obtain

$$
\begin{equation*}
\nabla_{X} T=\cos \theta S X, \quad X[\cos \theta]=-\langle S X, T\rangle \tag{3}
\end{equation*}
$$

3 Definition and calculation of the principal curvatures

Consider a three-dimensional subspace P^{3} of \mathbb{E}^{n+2} resp. \mathbb{L}^{n+2}, containing the x_{n+2}-axis. Then $\left(\mathbb{M}^{n} \times \mathbb{R}\right) \cap P^{3}=\mathbb{M}^{1} \times \mathbb{R}$. Let P^{2} be a two-dimensional subspace of P^{3}, also through the x_{n+2}-axis. Denote by \mathcal{I} the group of isometries of \mathbb{E}^{n+2}, resp. \mathbb{L}^{n+2}, which leave $\mathbb{M}^{n} \times \mathbb{R}$ globally invariant and which leave P^{2} pointwise fixed. Finally, let α be a curve in $\mathbb{M}^{1} \times \mathbb{R}$ which does not intersect P^{2}.

1 Definition. The rotation hypersurface M^{n} in $\mathbb{M}^{n} \times \mathbb{R}$ with profile curve α and axis P^{2} is defined as the \mathcal{I}-orbit of α.

Remark that rotation hypersurfaces of $\mathbb{S}^{n} \times \mathbb{R}$ are foliated by spheres. Rotation hypersurfaces of $\mathbb{H}^{n} \times \mathbb{R}$ are foliated by spheres if P^{2} is Lorentzian, by hyperbolic spaces if P^{2} is Riemannian and by horospheres if P^{2} is degenerate. It is clear from the definition that the velocity vector of α is proportional to T, unless α lies in a plane orthogonal to $\frac{\partial}{\partial x_{n+2}}$, in which case $T=0$.

We will now construct an explicit parametrisation for a rotation hypersurface M^{n}. To do this, we distinguish four cases. In all cases we will assume that P^{3} is spanned by $\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{n+1}}$ and $\frac{\partial}{\partial x_{n+2}}$.

1 Case. $\mathbb{M}^{n}=\mathbb{S}^{n}$
We may assume that P^{2} is spanned by $\frac{\partial}{\partial x_{1}}$ and $\frac{\partial}{\partial x_{n+2}}$. First, we consider the case that the profile curve is not a vertical line on $\mathbb{S}^{1} \times \mathbb{R}$. Then it can be parametrized as follows:

$$
\alpha(s)=(\cos (s), 0, \ldots, 0, \sin (s), a(s)),
$$

for a certain function a. Since α should not intersect P^{2}, one has to choose the parametrisation interval such that $\sin (s)$ never vanishes.

An explicit parametrisation of the rotation hypersurface is given by
$f\left(s, t_{1}, \ldots, t_{n-1}\right)=\left(\cos (s), \sin (s) \varphi_{1}\left(t_{1}, \ldots, t_{n-1}\right), \ldots, \sin (s) \varphi_{n}\left(t_{1}, \ldots, t_{n-1}\right), a(s)\right)$,
where $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ is an orthogonal parametrisation of the unit sphere $\mathbb{S}^{n-1}(1)$ in \mathbb{E}^{n}, i.e. $\varphi_{1}^{2}+\cdots+\varphi_{n}^{2}=1$ and $\frac{\partial \varphi_{1}}{\partial t_{i}} \frac{\partial \varphi_{1}}{\partial t_{j}}+\cdots+\frac{\partial \varphi_{n}}{\partial t_{i}} \frac{\partial \varphi_{n}}{\partial t_{j}}=\delta_{i j}\left\|\frac{\partial \varphi}{\partial t_{i}}\right\|^{2}$. Remark that

$$
\begin{aligned}
\frac{\partial f}{\partial s} & =\left(-\sin (s), \cos (s) \varphi_{1}, \ldots, \cos (s) \varphi_{n}, a^{\prime}(s)\right), \\
\frac{\partial f}{\partial t_{i}} & =\left(0, \sin (s) \frac{\partial \varphi_{1}}{\partial t_{i}}, \ldots, \sin (s) \frac{\partial \varphi_{n}}{\partial t_{i}}, 0\right), \\
\xi & =\left(\cos (s), \sin (s) \varphi_{1}, \ldots, \sin (s) \varphi_{n}, 0\right) .
\end{aligned}
$$

Hence the unit normal vector field N on M^{n}, tangent to $\mathbb{M}^{n} \times \mathbb{R}$ is given by

$$
N=\frac{1}{\sqrt{1+a^{\prime}(s)^{2}}}\left(-\sin (s) a^{\prime}(s), \cos (s) a^{\prime}(s) \varphi_{1}, \ldots, \cos (s) a^{\prime}(s) \varphi_{n},-1\right)
$$

We will now compute the shape operator S of M^{n}. Observe that for X, Y tangent to M^{n}

$$
\langle S X, Y\rangle=\left\langle-\widetilde{\nabla}_{X} N, Y\right\rangle=\left\langle\widetilde{\nabla}_{X} Y, N\right\rangle=\left\langle D_{X} Y, N\right\rangle
$$

where $\widetilde{\nabla}$ is the Levi Civita connection of $\mathbb{M}^{n} \times \mathbb{R}$ and D that of \mathbb{E}^{n+2}, resp. \mathbb{L}^{n+2}. Now using the fact that φ is an orthogonal parametrisation of a unit sphere, we find

$$
\begin{aligned}
\left\langle S \frac{\partial f}{\partial t_{i}}, \frac{\partial f}{\partial t_{j}}\right\rangle & =\left\langle\frac{\partial^{2} f}{\partial t_{i} \partial t_{j}}, N\right\rangle=0 \\
\left\langle S \frac{\partial f}{\partial t_{i}}, \frac{\partial f}{\partial s}\right\rangle & =\left\langle\frac{\partial^{2} f}{\partial t_{i} \partial s}, N\right\rangle=0 .
\end{aligned}
$$

This implies that the basis $\left\{\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t_{1}}, \ldots, \frac{\partial f}{\partial t_{n-1}}\right\}$ diagonalizes S. We compute the principal curvatures as follows:

$$
\begin{aligned}
\lambda & =\left\langle S \frac{\partial f}{\partial s}, \frac{\partial f}{\partial s}\right\rangle \frac{1}{\left\langle\frac{\partial f}{\partial s}, \frac{\partial f}{\partial s}\right\rangle} \\
& =\left\langle\frac{\partial^{2} f}{\partial s^{2}}, N\right\rangle \frac{1}{1+a^{\prime}(s)^{2}} \\
& =-\frac{a^{\prime \prime}(s)}{\left(1+a^{\prime}(s)^{2}\right)^{3 / 2}}, \\
\mu_{i} & =\left\langle S \frac{\partial f}{\partial t_{i}}, \frac{\partial f}{\partial t_{i}}\right\rangle \frac{1}{\left\langle\frac{\partial f}{\partial t_{i}}, \frac{\partial f}{\partial t_{i}}\right\rangle} \\
& =\left\langle\frac{\partial^{2} f}{\partial t_{i}^{2}}, N\right\rangle \frac{1}{\sin (s)^{2}\left\|\frac{\partial \varphi}{\partial t_{i}}\right\|^{2}} \\
& =-\frac{a^{\prime}(s) \cot (s)}{\left(1+a^{\prime}(s)^{2}\right)^{1 / 2}} .
\end{aligned}
$$

Since μ_{i} is independent of i, we denote it by μ.
If α is a vertical line $\alpha(s)=(\cos (c), 0, \ldots, 0, \sin (c), s)$, where c is a real constant such that $\sin (c) \neq 0$, we obtain from an analogous calculation

$$
\begin{aligned}
\lambda & =0 \\
\mu & =-\cot (c)
\end{aligned}
$$

We conclude that the shape operator S has at most two distinct eigenvalues and if there are exactly two, one of them has multiplicity 1 and the corresponding eigenspace is spanned by T.

2 Case. $\mathbb{M}^{n}=\mathbb{H}^{n}$ and P^{2} is Lorentzian

In this case we may assume again that P^{2} is spanned by $\frac{\partial}{\partial x_{1}}$ and $\frac{\partial}{\partial x_{n+2}}$. Starting with the curve

$$
\alpha(s)=(\cosh (s), 0, \ldots, 0, \sinh (s), a(s)),
$$

with $s \neq 0$, we can perform exactly the same calculation as in case 1 , yielding

$$
\begin{aligned}
\lambda & =-\frac{a^{\prime \prime}(s)}{\left(1+a^{\prime}(s)^{2}\right)^{3 / 2}} \\
\mu & =-\frac{a^{\prime}(s) \operatorname{coth}(s)}{\left(1+a^{\prime}(s)^{2}\right)^{1 / 2}}
\end{aligned}
$$

If α is a vertical line $\alpha(s)=(\cosh (c), 0, \ldots, 0, \sinh (c), s)$, where $c \neq 0$ is a real constant, we obtain

$$
\begin{aligned}
\lambda & =0 \\
\mu & =-\operatorname{coth}(c)
\end{aligned}
$$

3 Case. $\mathbb{M}^{n}=\mathbb{H}^{n}$ and P^{2} is Riemannian
We may suppose that P^{2} is spanned by $\frac{\partial}{\partial x_{n+1}}$ and $\frac{\partial}{\partial x_{n+2}}$ and that the profile curve is given by

$$
\alpha(s)=(\cosh (s), 0, \ldots, 0, \sinh (s), a(s)) .
$$

Remark that α does not intersect P^{2}.
An explicit parametrisation of the rotation hypersurface is given by
$f\left(s, t_{1}, \ldots, t_{n-1}\right)=\left(\cosh (s) \varphi_{1}\left(t_{1}, \ldots, t_{n-1}\right), \ldots, \cosh (s) \varphi_{n}\left(t_{1}, \ldots, t_{n-1}\right), \sinh (s), a(s)\right)$,
where $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ is an orthogonal parametrisation of the hyperbolic space $\mathbb{H}^{n-1}(-1)$ in \mathbb{L}^{n}. This means $-\varphi_{1}^{2}+\varphi_{2}^{2}+\cdots+\varphi_{n}^{2}=-1, \varphi_{1}>0$ and $-\frac{\partial \varphi_{1}}{\partial t_{i}} \frac{\partial \varphi_{1}}{\partial t_{j}}+$ $\cdots+\frac{\partial \varphi_{n}}{\partial t_{i}} \frac{\partial \varphi_{n}}{\partial t_{j}}=\delta_{i j}\left\|\frac{\partial \varphi}{\partial t_{i}}\right\|^{2}$. Hence we obtain

$$
\begin{aligned}
\frac{\partial f}{\partial s} & =\left(\sinh (s) \varphi_{1}, \ldots, \sinh (s) \varphi_{n}, \cosh (s), a^{\prime}(s)\right) \\
\frac{\partial f}{\partial t_{i}} & =\left(\cosh (s) \frac{\partial \varphi_{1}}{\partial t_{i}}, \ldots, \cosh (s) \frac{\partial \varphi_{n}}{\partial t_{i}}, 0,0\right) \\
\xi & =\left(\cosh (s) \varphi_{1}, \ldots, \cosh (s) \varphi_{n}, \sinh (s), 0\right) \\
N & =\frac{1}{\sqrt{1+a^{\prime}(s)^{2}}}\left(\sinh (s) a^{\prime}(s) \varphi_{1}, \ldots, \sinh (s) a^{\prime}(s) \varphi_{n}, \cosh (s) a^{\prime}(s),-1\right)
\end{aligned}
$$

It turns out that the basis $\left\{\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t_{1}}, \ldots, \frac{\partial f}{\partial t_{n-1}}\right\}$ diagonalizes the shape operator and the principal curvatures can be computed in the same way as above, yielding

$$
S=\left(\begin{array}{cccc}
\lambda & & & \\
& \mu & & \\
& & \ddots & \\
& & & \mu
\end{array}\right)
$$

with $S T=\lambda T$ and

$$
\begin{aligned}
\lambda & =-\frac{a^{\prime \prime}(s)}{\left(1+a^{\prime}(s)^{2}\right)^{3 / 2}} \\
\mu & =-\frac{a^{\prime}(s) \tanh (s)}{\left(1+a^{\prime}(s)^{2}\right)^{1 / 2}}
\end{aligned}
$$

In the case that α is a vertical line $\alpha(s)=(\cosh (c), 0, \ldots, 0, \sinh (c), s)$, with $c \in \mathbb{R}$, we have

$$
\begin{aligned}
& \lambda=0 \\
& \mu=-\tanh (c)
\end{aligned}
$$

4 Case. $\mathbb{M}^{n}=\mathbb{H}^{n}$ and P^{2} is degenerate
In this case we work with the following pseudo-orthonormal basis for \mathbb{L}^{n+2} :

$$
e_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{n+1}}\right), \quad e_{n+1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{n+1}}\right), \quad e_{k}=\frac{\partial}{\partial x_{k}}
$$

for $k \in\{2, \ldots, n, n+2\}$ and we may assume that P^{2} is spanned by e_{n+1} and e_{n+2}. Remark that $\left\langle e_{1}, e_{1}\right\rangle=\left\langle e_{n+1}, e_{n+1}\right\rangle=0$ and $\left\langle e_{1}, e_{n+1}\right\rangle=1$. If α is not a vertical line, we may assume that it is given by

$$
\alpha(s)=\left(s, 0, \ldots, 0,-\frac{1}{2 s}, a(s)\right)
$$

with respect to the basis $\left\{e_{1}, \ldots, e_{n+2}\right\}$.
In [3], it was proven that the group \mathcal{I} consists in this case of transformations of the form $A_{(t, i)}$, with $t \in \mathbb{R}, i \in\{2, \ldots, n\}$, whose action on α is given by

$$
A_{(t, i)} \alpha(s)=(s, 0, \ldots, 0, \underbrace{t s}_{i}, 0, \ldots, 0,-\frac{1}{2 s}-s \frac{t^{2}}{2}, a(s)) .
$$

This means that a parametrisation of the rotation hypersurface is given by

$$
f\left(s, t_{2}, \ldots, t_{n}\right)=\left(s, s t_{2}, \ldots, s t_{n},-\frac{1}{2 s}-\frac{s}{2} \sum_{i=2}^{n} t_{i}^{2}, a(s)\right) .
$$

Hence we obtain

$$
\begin{aligned}
\frac{\partial f}{\partial s} & =\left(1, t_{2}, \ldots, t_{n}, \frac{1}{2 s^{2}}-\frac{1}{2} \sum t_{i}^{2}, a^{\prime}(s)\right), \\
\frac{\partial f}{\partial t_{i}} & =(0,0, \ldots, 0, \underbrace{s}_{i}, 0, \ldots, 0,-s t_{i}, 0), \\
\xi & =\left(s, s t_{2}, \ldots, s t_{n},-\frac{1}{2 s}-\frac{s}{2} \sum t_{i}^{2}, 0\right), \\
N & =\frac{1}{\sqrt{\frac{1}{s^{2}}+a^{\prime}(s)^{2}}}\left(s a^{\prime}(s), s a^{\prime}(s) t_{2}, \ldots, s a^{\prime}(s) t_{n}, \frac{1}{2 s} a^{\prime}(s)-\right. \\
& \left.\frac{s}{2} a^{\prime}(s) \sum t_{i}^{2},-\frac{1}{s}\right) .
\end{aligned}
$$

The principal curvatures can be computed in an analogous way as before:

$$
\begin{aligned}
\lambda & =-\frac{s a^{\prime}(s)+s^{2} a^{\prime \prime}(s)}{\left(1+s^{2} a^{\prime}(s)^{2}\right)^{3 / 2}} \\
\mu & =-\frac{s a^{\prime}(s)}{\left(1+s^{2} a^{\prime}(s)^{2}\right)^{1 / 2}}
\end{aligned}
$$

where λ has, in general, multiplicity 1 and T is an eigenvector with eigenvalue λ.

If α is a vertical line $\alpha(s)=\left(c, 0, \ldots, 0,-\frac{1}{2 c}, s\right)$, with $c \in \mathbb{R}$, we obtain

$$
\begin{aligned}
\lambda & =0 \\
\mu & =-1
\end{aligned}
$$

4 Criterium

We prove the following criterium for a hypersurface of $\mathbb{M}^{n} \times \mathbb{R}$ to be a rotation hypersurface:

2 Theorem. Take $n \geq 3$ and let $f: M^{n} \rightarrow \mathbb{M}^{n} \times \mathbb{R}$ be a hypersurface with shape operator

$$
S=\left(\begin{array}{llll}
\lambda & & & \\
& \mu & & \\
& & \ddots & \\
& & & \mu
\end{array}\right)
$$

with $\lambda \neq \mu$ and suppose that $S T=\lambda T$. Assume moreover that there is a functional relation $\lambda(\mu)$. Then M^{n} is an open part of a rotation hypersurface.

Proof. Let D_{λ} and D_{μ} be the distributions spanned by the eigenspaces of λ and μ respectively. These distributions are involutive. For D_{λ} this is clear, since it is one-dimensional. For D_{μ}, we use the equation of Codazzi (2). Take linearly independent vector fields X and Y in D_{μ}. Then

$$
\begin{aligned}
S[X, Y] & =\nabla_{X} S Y-\nabla_{Y} S X-\varepsilon \cos \theta(\langle Y, T\rangle X-\langle X, T\rangle Y) \\
& =\nabla_{X}(\mu Y)-\nabla_{Y}(\mu X) \\
& =X[\mu] Y-Y[\mu] X+\mu[X, Y]
\end{aligned}
$$

Now $X[\mu] Y-Y[\mu] X \in D_{\mu}$, whereas $(S-\mu \mathrm{id})[X, Y] \in D_{\lambda}$, since $(S-\lambda \mathrm{id})(S-$ $\mu \mathrm{id})=0$. This implies that $X[\mu]=Y[\mu]=(S-\mu \mathrm{id})[X, Y]=0$. Hence D_{μ} is involutive and μ is constant along the leaves of D_{μ}. Due to the relation $\lambda(\mu)$, we find that λ is also constant along the leaves of D_{μ}.

Fix a point $p \in M^{n}$ and denote by $M_{\lambda}(p)$ and $M_{\mu}(p)$ the leaves of D_{λ} and D_{μ} through p. On a neighbourhood of p in M^{n} we choose coordinates $\left(t, u_{1}, \ldots, u_{n-1}\right)$ such that $T=\frac{\partial}{\partial t}$ and such that $\left(u_{1}, \ldots, u_{n-1}\right)$ are local coordinates on $M_{\mu}(p)$. Let $U_{i}=\frac{\partial}{\partial u_{i}}$ for $i=1, \ldots, n-1$ and denote by N a unit normal on the hypersurface.

First we will show that $M_{\mu}(p)$ is totally umbilical in \mathbb{E}^{n+2}, resp. \mathbb{L}^{n+2}. Denote by D the covariant derivative in \mathbb{E}^{n+2}, resp. \mathbb{L}^{n+2} and by $\widetilde{\nabla}$ the Levi Civita connection of $\mathbb{M}^{n} \times \mathbb{R}$. Then

$$
\begin{align*}
& D_{U_{i}} N=\widetilde{\nabla}_{U_{i}} N=-\mu U_{i} \tag{4}\\
& D_{T} N=\widetilde{\nabla}_{T} N=-\lambda T \tag{5}
\end{align*}
$$

Denoting by λ^{\prime} and μ^{\prime} the derivatives of λ and μ with respect to t, we find

$$
\begin{aligned}
0 & =D_{T} D_{U_{i}} N-D_{U_{i}} D_{T} N-D_{\left[U_{i}, T\right]} N \\
& =D_{T}\left(-\mu U_{i}\right)-D_{U_{i}}(-\lambda T) \\
& =-\mu^{\prime} U_{i}-\mu D_{T} U_{i}+\lambda D_{U_{i}} T \\
& =-\mu^{\prime} U_{i}+(\lambda-\mu) D_{U_{i}} T
\end{aligned}
$$

from which

$$
\begin{equation*}
D_{U_{i}} T=\frac{\mu^{\prime}}{\lambda-\mu} U_{i} \tag{6}
\end{equation*}
$$

Finally, we have

$$
\begin{equation*}
D_{U_{i}} \xi=\left(U_{i}\right)_{\mathbb{M}^{n}}=U_{i} . \tag{7}
\end{equation*}
$$

Equations (4), (6) and (7) yield that $M_{\mu}(p)$ is totally umbilical in \mathbb{E}^{n+2}, resp. \mathbb{L}^{n+2}. This implies that $M_{\mu}(p) \subset P^{n}(p)$, where $P^{n}(p)$ is an n-dimensional affine subspace of \mathbb{E}^{n+2}, resp. \mathbb{L}^{n+2}. We will now show that these subspaces are parallel for different leaves of D_{μ}, i.e. if we vary the point p.

Consider the following vector field along $M_{\mu}(p)$:

$$
X=\frac{\mu^{\prime}}{\lambda-\mu} N+\mu T
$$

Remark that $\left\langle U_{i}, X\right\rangle=0$ and $D_{U_{i}} X=0$. This means that X is a constant vector field along $M_{\mu}(p)$, orthogonal to $P^{n}(p)$. Next consider

$$
Y=\xi+\frac{1}{\mu} N .
$$

Again, we observe $\left\langle U_{i}, Y\right\rangle=0$ and $D_{U_{i}} Y=0$, such that Y is also constant along $M_{\mu}(p)$ and orthogonal to $P^{n}(p)$. Since X and Y are linearly independent, we can consider the plane $\pi(p)$ spanned by $X(p)$ and $Y(p)$, which is the orthogonal complement of $P^{n}(p)$ for every point $p \in M^{n}$. To prove the parallelism of the subspaces $P^{n}(p)$, it suffices to prove the parallelism of the planes $\pi(p)$. Therefore, we have to show that $D_{T} X$ and $D_{T} Y$ are in the direction of $\pi(p)$. Remark that from $\left[T, U_{i}\right]=0$, we obtain

$$
\begin{aligned}
& D_{U_{i}} D_{T} X=D_{T} D_{U_{i}} X=D_{T} 0=0, \\
& D_{U_{i}} D_{T} Y=D_{T} D_{U_{i}} Y=D_{T} 0=0
\end{aligned}
$$

Thus $D_{T} X$ and $D_{T} Y$ are vector fields which are constant along $M_{\mu}(p)$ and which are orthogonal to $P^{n}(p)$. This means that they are in the direction $\pi(p)$, such that the spaces $\pi(p)$ and hence $P^{n}(p)$ are parallel.

Now if we move P^{n} along $M_{\lambda}(p)$, the intersection with $\mathbb{M}^{n} \times \mathbb{R}$ gives a rotation hypersurface with axis π.

5 Some applications

In this last section, we will first classify the rotation hypersurfaces of $\mathbb{M}^{n} \times \mathbb{R}$ which are intrinsically flat. Then we will prove that all rotation hypersurfaces of $\mathbb{M}^{n} \times \mathbb{R}$ are normally flat in \mathbb{E}^{n+2} resp. \mathbb{L}^{n+2}, and to conclude we give a classification of minimal rotation hypersurfaces of $\mathbb{M}^{n} \times \mathbb{R}$.

5.1 Rotation hypersurfaces which are intrinsically flat

Rotation hypersurfaces of \mathbb{E}^{n+1} are flat if and only if $n=2$ and the profile curve is an open part of a line. We will now classify flat rotation hypersurfaces of $\mathbb{S}^{n} \times \mathbb{R}$.

3 Theorem. Let M^{n} be a rotation hypersurface of $\mathbb{S}^{n} \times \mathbb{R}$, with axis P^{2} as above, which is intrinsically flat. Then $n=2$ and the profile curve is either a vertical line on $\mathbb{S}^{1} \times \mathbb{R}$ or it is parametrized as follows:

$$
\begin{equation*}
\alpha(s)=\left(\cos (s), 0, \sin (s), \pm \int_{s_{0}}^{s} \sqrt{C \cos (\sigma)^{2}-1} d \sigma\right) \tag{8}
\end{equation*}
$$

with $C \in \mathbb{R}$.
Proof. Let M^{n} be a flat rotation hypersurface of $\mathbb{S}^{n} \times \mathbb{R}$.
If $n \geq 3$, the equation of Gauss (1) yields

$$
\left\{\begin{array}{l}
\lambda \mu+1-\|T\|^{2}=0 \tag{9}\\
\mu^{2}+1=0
\end{array}\right.
$$

It is clear that this system has no solutions for λ and μ.
For $n=2$, the equation of Gauss only yields the first equation of (9), which is equivalent to

$$
\begin{equation*}
\lambda \mu=-\cos ^{2} \theta \tag{10}
\end{equation*}
$$

Using the results from section 3 , we see that this equation is satisfied if α is a vertical line. If α is not a vertical line, and it is parametrized as before, one sees that the left-hand side of this equation can be rewritten as

$$
\lambda \mu=\frac{a^{\prime}(s) a^{\prime \prime}(s) \cot (s)}{\left(1+a^{\prime}(s)^{2}\right)^{2}}
$$

and the right-hand side as

$$
\begin{aligned}
-\cos ^{2} \theta=\sin ^{2} \theta-1=\left\langle\frac{\partial}{\partial x_{n+2}}, \frac{T}{\|T\|}\right\rangle^{2}-1 & =\left\langle\frac{\partial}{\partial x_{n+2}}, \frac{\alpha^{\prime}}{\left\|\alpha^{\prime}\right\|}\right\rangle^{2}-1 \\
& =\frac{a^{\prime}(s)^{2}}{1+a^{\prime}(s)^{2}}-1=-\frac{1}{1+a^{\prime}(s)^{2}}
\end{aligned}
$$

This means that equation (10) is equivalent to

$$
\left(a^{\prime}(s)^{2}\right)^{\prime}+2 \tan (s) a^{\prime}(s)^{2}=-2 \tan (s)
$$

for which the general solution is given by

$$
a^{\prime}(s)^{2}=C \cos (s)^{2}-1, \quad C \in \mathbb{R}
$$

Thus an explicit parametrisation of α is given by (8).
Next, we look at the flat rotation hypersurfaces of $\mathbb{H}^{n} \times \mathbb{R}$.

4 Theorem. Let M^{n} be a rotation hypersurface of $\mathbb{H}^{n} \times \mathbb{R}$, with axis P^{2} as above, which is intrinsically flat. If $n \geq 3$, then P^{2} is either Lorentzian or degenerate and the profile curve α satisfies the following:
(i) $\alpha(s)=(\cosh (s), 0, \ldots, 0, \sinh (s), \pm \cosh (s)+C)$, with $C \in \mathbb{R}$, if P^{2} is Lorentzian,
(ii) α is a vertical line on $\mathbb{H}^{1} \times \mathbb{R}$ if P^{2} is degenerate.

If $n=2$, then the profile curve α is either a vertical line on $\mathbb{H}^{1} \times \mathbb{R}$ or it is parametrized as follows, with $C \in \mathbb{R}$:
(i) $\alpha(s)=\left(\cosh (s), 0, \sinh (s), \pm \int_{s_{0}}^{s} \sqrt{C \cosh (\sigma)^{2}-1} d \sigma\right)$ if P^{2} is Lorentzian,
(ii) $\alpha(s)=\left(\cosh (s), 0, \sinh (s), \pm \int_{s_{0}}^{s} \sqrt{C \sinh (\sigma)^{2}-1} d \sigma\right)$ if P^{2} is Riemannian,
(iii) $\alpha(s)=\left(s, 0,-\frac{1}{2 s}, \pm \int_{s_{0}}^{s} \sqrt{C-\frac{1}{\sigma^{2}}} d \sigma\right)$, with respect to the basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ defined above, if P^{2} is degenerate.

Proof. Let M^{n} be a flat rotation hypersurface of $\mathbb{H}^{n} \times \mathbb{R}$.
If $n \geq 3$, the equation of Gauss (1) yields

$$
\left\{\begin{array}{l}
\lambda \mu-1+\|T\|^{2}=0 \tag{11}\\
\mu^{2}-1=0
\end{array}\right.
$$

Remark that the first equation of this system is equivalent to

$$
\begin{equation*}
\lambda \mu=\cos ^{2} \theta \tag{12}
\end{equation*}
$$

If α is not a vertical line, it follows immediately from our results in section 3 that the equation $\mu^{2}=1$ only has a solution if P^{2} is Lorentzian, namely $a(s)= \pm \cosh (s)+C$. The formula for $\cos ^{2} \theta$, deduced in the proof of Theorem 3 , is still valid and hence it is easy to check that the resulting hypersurface also satisfies (12) and hence is indeed flat. If α is a vertical line, the equation $\mu^{2}=1$ has no solutions if P^{2} is non-degenerate. If P^{2} is degenerate, both equations of (11) are satisfied for every vertical line.

If $n=2$, the equation of Gauss only yields equation (12). We can then proceed as in the second part of the proof of Theorem 3

QED

5.2 Rotation hypersurfaces which are normally flat in \mathbb{E}^{n+2}, resp. \mathbb{L}^{n+2}

Let M^{n} be a hypersurface of $\mathbb{M}^{n} \times \mathbb{R}$ and denote, as above, by N a unit normal on M^{n}, tangent to $\mathbb{M}^{n} \times \mathbb{R}$, and by ξ a unit normal on $\mathbb{M}^{n} \times \mathbb{R}$. Let S_{N} and S_{ξ} be the corresponding shape operators.

The normal connection of M^{n} as a submanifold of \mathbb{E}^{n+2}, resp. \mathbb{L}^{n+2} is given by

$$
\begin{align*}
\nabla \frac{1}{X} \xi=\left\langle\nabla \frac{\perp}{X} \xi, N\right\rangle N= & \left\langle D_{X} \xi, N\right\rangle N \\
& =-\left\langle X, \frac{\partial}{\partial x_{n+2}}\right\rangle\left\langle N, \frac{\partial}{\partial x_{n+2}}\right\rangle N=-\langle X, T\rangle \cos \theta N \tag{13}
\end{align*}
$$

and

$$
\begin{equation*}
\nabla \frac{\perp}{X} N=\varepsilon\langle\nabla \stackrel{\perp}{X} N, \xi\rangle \xi=-\varepsilon\langle N, \nabla \stackrel{\perp}{X} \xi\rangle \xi=\varepsilon\langle X, T\rangle \cos \theta \xi \tag{14}
\end{equation*}
$$

We can now prove the following:
5 Theorem. Let M^{n} be a rotation hypersurface of $\mathbb{M}^{n} \times \mathbb{R}$. Then M^{n} is normally flat in \mathbb{E}^{n+2}, resp. \mathbb{L}^{n+2}.

Proof. Denote by R^{\perp} the normal curvature tensor of M^{n} as a submanifold of \mathbb{E}^{n+2}, resp. \mathbb{L}^{n+2} and let X and Y be tangent vector fields to M^{n}, which are orthogonal to T.

From (13) and (14), we see that $R^{\perp}(X, Y)=0$.
Remark that $[T, X]$ has no component in the direction of T. Indeed, using (3) we obtain

$$
\begin{aligned}
\langle[T, X], T\rangle & =\left\langle\nabla_{T} X-\nabla_{X} T, T\right\rangle \\
& =-\left\langle X, \nabla_{T} T\right\rangle-\frac{1}{2} X[\langle T, T\rangle] \\
& =-\langle X, \cos \theta \lambda T\rangle-\frac{1}{2} X\left[1-\cos ^{2} \theta\right] \\
& =\cos \theta X[\cos \theta] \\
& =-\cos \theta\langle\mu X, T\rangle \\
& =0
\end{aligned}
$$

This implies that

$$
\begin{aligned}
R^{\perp}(T, X) N & =\nabla \frac{\perp}{T} \nabla \frac{\perp}{X} N-\nabla \frac{\perp}{X} \nabla_{T}^{\perp} N-\nabla{ }_{[T, X]}^{\perp} N \\
& =-\nabla \frac{1}{X}\left(\varepsilon \cos \theta \sin ^{2} \theta N\right) \\
& =-\varepsilon X\left[\cos \theta \sin ^{2} \theta\right] N
\end{aligned}
$$

which is zero because θ is constant in all directions orthogonal to T, due to (3). We conclude that $R^{\perp}=0$.

5.3 Rotation hypersurfaces which are minimal

Minimal rotation surfaces in \mathbb{E}^{3} are catenoids, whereas minimal rotation hypersurfaces of \mathbb{E}^{n+1} are generalized catenoids in the sense of Blair, see for example [1]. The following theorem gives all minimal rotation hypersurfaces of $\mathbb{S}^{n} \times \mathbb{R}$.

6 Theorem. Let M^{n} be a minimal rotation hypersurface of $\mathbb{S}^{n} \times \mathbb{R}$, with axis P^{2} as above. Then the profile curve is either the vertical line

$$
\alpha(s)=(0, \ldots, 0,1, s)
$$

or it is given by

$$
\alpha(s)=\left(\cos (s), 0, \ldots, 0, \sin (s), \int_{s_{0}}^{s} \frac{C}{\sqrt{\sin (\sigma)^{2(n-1)}-C^{2}}} d \sigma\right)
$$

with $C \in \mathbb{R}$.
Proof. In order to find minimal rotation hypersurfaces, we have to solve the equation

$$
\begin{equation*}
\lambda+(n-1) \mu=0 \tag{15}
\end{equation*}
$$

If α is a vertical line, the equation reduces to $\cot (c)=0$, which gives the first profile curve in the theorem. Remark that the resulting rotation hypersurface is totally geodesic.

If α is not a vertical line, equation (15) becomes

$$
\frac{a^{\prime \prime}(s)}{\left(1+a^{\prime}(s)^{2}\right)^{3 / 2}}+(n-1) \frac{a^{\prime}(s) \cot (s)}{\left(1+a^{\prime}(s)^{2}\right)^{1 / 2}}=0
$$

which is equivalent to

$$
\frac{a^{\prime \prime}(s)}{a^{\prime}(s)\left(1+a^{\prime}(s)^{2}\right)}=-(n-1) \cot (s) .
$$

Integrating both sides of the equation yields

$$
a^{\prime}(s)=\frac{C}{\sqrt{\sin (s)^{2(n-1)}-C^{2}}}, \quad C \in \mathbb{R}
$$

In an analogous way, we can prove the following result.
7 Theorem. Let M^{n} be a minimal rotation hypersurface of $\mathbb{H}^{n} \times \mathbb{R}$, with axis P^{2} as above. Then the profile curve is described as follows, with $C \in \mathbb{R}$:
(i) $\alpha(s)=\left(\cosh (s), 0, \ldots, 0, \sinh (s), \pm \int_{s_{0}}^{s} \frac{C}{\sqrt{\sinh (\sigma)^{2(n-1)}-C^{2}}} d \sigma\right)$ if P^{2} is Lorentzian,
(ii) $\alpha(s)=\left(\cosh (s), 0, \ldots, 0, \sinh (s), \pm \int_{s_{0}}^{s} \frac{C}{\sqrt{\cosh (\sigma)^{2(n-1)}-C^{2}}} d \sigma\right)$ or $\alpha(s)=(1,0, \ldots, 0, s)$ if P^{2} is Riemannian,
 the basis $\left\{e_{1}, \ldots, e_{n+2}\right\}$ defined above, if P^{2} is degenerate.

References

[1] D. E. Blair: On a generalization of the catenoid, Can. J. Math. 27 (1975), 231-236.
[2] B. DANIEL: Isometric immersions into $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$ and applications to minimal surfaces, Trans. Amer. Math. Soc. 361 (2009), 6255-6282.
[3] M. Do Carmo, M. Dajczer: Rotation hypersurfaces in spaces of constant curvature, Trans. Amer. Math. Soc. 277 (1983), 685-709.
[4] F. Dillen, J. Fastenakels, J. Van der Veken, L. Vrancken: Constant angle surfaces in $\mathbb{S}^{2} \times \mathbb{R}$, Monatsh. Math. 152 (2007), 89-96.
[5] W. Meeks, H. Rosenberg: Stable minimal surfaces in $\mathbb{M}^{2} \times \mathbb{R}$, J. Differ. Geom. 68 (2004), 515-534.
[6] H. Rosenberg: Minimal surfaces in $\mathbb{M}^{2} \times \mathbb{R}$, Illinois J. Math. 46 (2002), 1177-1195.

[^0]: ${ }^{i}$ This research was supported by a Research Grant 1.5.134.05N of the Research Foundation - Flanders (FWO).
 ${ }^{\text {ii }} \mathrm{J}$. Fastenakels is a research assistant of the Research Foundation - Flanders (FWO).
 ${ }^{\text {iii }} \mathrm{J}$. Van der Veken is a postdoctoral researcher supported by the Research Foundation Flanders (FWO).

