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Introduction

Quantum groups, from a mathematical point of view, may be introduced
by making emphasis on their g—deformed enveloping algebra aspects [2], [3]
which leads to the quantized enveloping algebras, or by making emphasis in
the R—matrix formalism that describes the deformed group algebra. Also, they
are mathematically well defined in the framework of Hopf algebra [1]. Quan-
tum groups provide an interesting example of non-commutative geometry [8].
Non-commutative differential calculus on quantum groups is a fundamental tool
needed for many applications [7], [6].

S.L.Woronowicz [5] gave the general framework for bicovariant differential
calculus on quantum groups following general ideas of A.Connes. Also, He
showed that all important notions and formulae of classical Lie group theory
admit a generalization to the quantum group case and he has restricted himself
to compact matrix pseudogroups as introduced in [4].In contrast to the classical
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differential geometry on Lie groups, there is no functorial method to obtain a
unique bicovariant differential calculus on a given quantum group [9].

Recently, Quasitriangular Hopf m—coalgebras are introduced by Turaev [10].
He has showed that they give rise to crossed T—categories. Virelizier [11] studied
the algebraic properties of the Hopf m—coalgebras, also he has showed that the
existence of integrals and trace for such coalgebras and has generalized the
main properties of the quasitriangular Hopf algebras to the setting of Hopf
m—coalgebra.

In this paper we will use the concepts introduced by S.L.Woronowicz [5]
to construct the Differential calculus on the Hopf group coalgebra(introduced
by Turaev [10]). We briefly describe the content of the paper.In section one
we give the definition of Hopf group coalgebras [11]. In section two, we give
the main definitions and theorems concerning first order differential calculus.
Section three contains the construction of the m—graded Bicovariant bimodules.
Finally, in section four we construct the first order differential calculus on the
Hopf group coalgebra.

Now let us give some basic definitions about Hopf m—coalgebra where 7 is
a non-commutative discrete group.

1 Hopf Group Coalgebra

1 Definition. A m—coalgebra is a family C' = {Cy }aer of k—linear spaces
endowed with a family A = {A, 3 : Cap = Co ® Cglaper of k—linear maps
(the comultiplication) and a k—linear map ¢ : C; — k such that

e A is coassociative in the sense that for any «, 8,v € ,
(Do ®id)Aapy = ([d @A y)Ad gy

e for all o €,
(ld ®€)Aa71 = (8 & id)ALa.

2 Notation. [Sweedler’s notation] In the case of Hopf group coalgebra
Sweedler’s notations have been extended by Turaev [10] and Virelizier [11] in
the following way: for any «, 8 € 7 and ¢ € Cyg, they defined

Aaﬂ(c) = Z C(1,0) ® C(2,8) €Ch® Cﬂ,
(e)

or shortly, if we have the summation implicit

Aap(€) = c(1,0) ® C2,9)-
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The coassociativity axiom gives that , for any o, 8,7 € m and ¢ € Cog,

C1,a8)(La) @ €1,a8)(2,8) © C2) = C(1a) & €(2,6v)(1.8) © €(2,87)(2.7)-

Let C = ({Ca}aen, A, €) be a m—coalgebra and A be an algebra with mul-
tiplication m and unit element 14. The family A and the map m induce a
map

# 1 conv(C, A) ® conv(C, A) — conv(C, A)
defined by the composition

Hom(Ca, A) ® Hom(Cj, A) 5 Hom(Cy ® C, A 0 A) "™

Hom(Cos, A)

where p is the natural injection of Hom(Cy, A) ® Hom(Cj3, A) into Hom(Cy, ®
Cs, A® A)
The map * is called convolution product of f,g
Also, the maps
e:Cy— k and n: k— A

induce a map
Nconv(c,4) : k — Conv(C; A)
defined by
(Nconv(c,4)(A))(c) = e(c)n(A)
for all ¢ € C4.
3 Lemma. The k-space

Conv(C, A) = eaHom(Ca7 A)

aEm

endowed with the convolution product ¥ and the unit element €1 4 is a m—graded
algebra called the convolution algebra.

4 Remark. If we put A = k in the above lemma the m—graded algebra
Conv(C, k) = @ e, Ci is called dual to C and denoted by C*.

5 Definition. A Hopf m— coalgebra is a m—coalgebra H = ({Ha }aer, A, €)
endowed with a family

S = {Sa tHy — Ha*‘}a&r
of k—linear maps called the antipode such that

(1) Each H, is an algebra with multiplication m, and unit element 1, € H,,
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(2) The linear maps

Aa,ﬁ:Haﬁ *)HQ®HB,
e:Hy — k.

are algebra maps for all o, 5 € A,
(3) For any a € 7

ma(sa—l ® id)Aoﬁl’a = ma(id ®Sof1)Aa,cr1~

6 Remark. If H = ({Ha}aer,A,e,S5) is a Hopf m—coalgebra then
axiom (3) says that S, is the inverse of Iy, in the convolution algebra
Conv(H, H,-1).

7 Remark. (Hi,Aq1,¢,51) is a classical Hopf algebra

8 Lemma. Let H = ({Hy}aer, A, S) be a Hopf m—coalgebra. Then

(1) Ag-10-18ap = 0 a1 s-1(Sa ® Sg)Aqp for any o, B € 7,
(2) e(S1) =e¢,

(3) Sa(ab) = Sa(b)Sa(a) for any o € m and a,b € A,

(4) Si, =141 for any a € 7.

9 Definition. Let C = ({Cq}acn, A, €) be a m—coalgebra. A right 7—co-
module over C' is a family M = {M,}oer of k—linear spaces endowed with a
family p = {pa,p : Map — Ma @ Cg} of k—linear maps (the structure maps)
such that

e For any o, 5,y €m
(Pap @id)papy = (Id®Ap ) pa,py *

e Foranyaemn
(id ®e)pa,1 = 1id *K

10 Definition. A m—subcomodule of M is a family N = {N,}aer where
N, is a k—linear subspace of M, such that for all o, 5 € 7

Pa,s(Nap) C No ® Cp
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11 Definition. A m—comodule morphism between to right m—comodules
M and M’ over a m—coalgebra C' (with structure maps p and p’, respectively)
is a family f = {fa : My, —> M/} of k—linear maps such that for all o, 8 € 7

Pop(fop) = (fa ®id)pas

12 Notation. [Sweedler’s notation] For any o, € 7 and m € M,z we

write
pa,ﬁ(m) = M(0,a) ®M(18) € M, ® Cg
also the axiom
(Pap @ 1d)pasy = ([ ®As)papy

can be written as

m(O,aﬁ)(O,a) ® m(O,aﬂ)(l,B) ® m(L’Y) = m(o,a) ® m(l,ﬁf\/)(l,’bem) [ m(lwgw)@m

This elements of M, ® Cg @ C is written as mg,q) ® m1,8) ® M(24)

2 Basic Definitions of differential calculus

13 Definition. Let A = {4, }aer be a Hopf group coalgebra ,I' = {T'y }aer
be a m— graded bimodule over A | and

d={da: Aq — Ta} (2.1)

be a family of linear maps. We say that (I',d) is a m—graded first order
differential calculus over A if for any o € 7

(1) For any a,b € A,
do(ab) = do(a)b + ady(b) (2.2)

(2) Any element p € Ty is of the form

n
p= Zakdabk . ap, by € Ay
E=1

14 Definition. Two m—graded first order differential calculi are said to be
isomorphic if there exists a family of bimodule isomorphisms
i = {iq: Ty — I',} such that

ia(dqa) = d;a, foralla € Ay, a0 € .
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Let A= {A,}, . be a Hopf group coalgebra , mq : Ay ® Ay — A, be the
multiplication defined on A, for each . Define A% = {Aa}a o, Such that

A?x = {q €Ay ® Aa>ma(q) = 0} (2.3)

By definition A2 is a linear subspace of A, ® A, for each a € 7. On A2
define an A—bimodule structure as
For any o € m,c € Aq, Y a1 @by, € A2

c (Z ap @ bk) = Z cay, ® by (24)
k k

(Zak®bk> c= Zak ® brc (2.5)
k k

Define D = {Dy} ¢, by
Do(b) =1, ®b—b® 14,

forallbe Ay,a en
It is clear that ma(Da (b)) = 0,i.e.Dq(b) € A2. Moreover

Dy (ab) = Dy(a)b + aDy(b)

15 Proposition. Let N = {N,}aer be a m—graded sub-bimodule of A%, T =
A2/N | 1 = {ma : A2 — T4} be the family of canonical epimorphisms , and
d = {dy = o © Do}acrn. Then T' = ({Totaer,d) is a first order differential
calculus over A. Any other m—graded first order differential calculus over A can
be obtained in this way.

PrROOF. By definition of I' = {I'y }aenr, I’ is a m—graded bimodule over A.
Moreover, by definition of d = {dy = T4 0 D4 }acr we find that T' = ({Ts }aer, d)
is a m—graded first order differential calculus over A. It remains to show that
any m—graded first order differential calculus over A can be obtained in this
way.

Let I' = ({T'w }aer, d) be any other m—graded first order differential calculus
over A. We have for each a € m, >, ar, ® by € A2, c € A,

Z cakdabk =cC (Z akdabk>
k k
and

Z agdy (bge) = (Z akd,,bk> c
k k
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i.e. the family m = {7, : A2 — T }defined by the formula

Ta (Z ap ® bk> = Z agdoby (2.6)
% %

is a bimodule morphism. We will show that 7, is surjective for each a € 7.
Let p € I',, such that

p= Zakdabk, ag, by € Aq
%

Define an element ¢ € A,® A, by

q=2ak®bkfakbk®1a
k

It is clear that maq =0 , i.e. ¢ € A2. Moreover,
Ta(q) = p
therefore 7, is surjective for each o € 7.

ker m = {ker 7y}

aEem

= {Zak R by € A?y, Zakdabk = 0}
k k aET

Taking

N ={Ny=kermo ={> ap®b; € A2> ardobp =0}}aer  (2.7)
k k

then I' can be identified by A%/N and for any b € A,
TaDa(b) = dab.

QED

16 Definition. Let I' = ({T'q }acnr, d) be a m—graded first order differential
calculus over A. We say that I' = ({T's }aer, d) is left covariant if for any o, € 7

> ardagby = 0=y Aq glar)(id @dg) A g(b) = 0 (2.8)
k k

for any ag, by € Aag, k=1,2,...,n.


sibauser
Linea


8 A. S. Hegazi, W. Morsi, M. Mansour

17 Proposition. Let I' = ({T}aer, d) be a left covariant m—graded first
order differential calculus over A. Then there exists a family of linear mappings
Al {Agﬁ Tos — Ag @ FB} (2.9)
such that
(1) For any a € Ay, p € Tap

Al slap) = Ag p(a)Al, 5(p) (2.10)
Ag s(pa) = Ag 5(p)Aapla) (2.11)
(2) For any o, B,y €
(Do ®id)AL, . = (id@AL )AL 4, (2.12)
(3) For any p € T,
(e @id)AL 4 (p) = p (2.13)

(4) For any a,B € m

Aix.ﬁdozﬂ = (id ®d5)Aa¢B (a)

ProOOF. Let Al = {Aé"ﬁ}aﬁew where Alaﬁ :Tag — Aq ®1'3 is defined by

Afx,ﬂ <Z akdaﬁbk> = Z Aq glar)(id ®dg)Aq, (k)
k=1

k=1
where ay, by, € Ang, @, 8 € m. Then by definition for each o, 8 € ™ Ala,ﬁ is a well
defined linear map.

(1) Let a € Aaﬂ ,pElag, p= 2221 apdasby, ag, b € Aa[j

Agﬁ(pa) = Alaﬂ (Z apdag(bra) — Z akbkdaﬁa>
k k

= Z A g(ar) (b(1,0)0(1,0) @ dpbr2,8)0(2,8))
%

- (Z A, plax)(id @dﬂ)Aaﬁ(bk)> Ag5la)

k
= Ala,ﬂ (p)Aa.ﬂ (a)
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Similarly,
Al plap) = D pla)Ag 5(p)

(2) Let adapy b € I'apy,with a,b € Ayp,y, then we have
(Aaﬁ ® ld)Afxﬁw(a’daﬁ’Y b) =
(Aa, ®1d)Agp4(a)(id ®id @dy)(Aa,p © 1d)Aag,y (b)
On the other hand

(id®AG )AL g, (adagy b) =
(id®Apg4)Aa,py(a)(id ®id @dy ) (id ©Ag4) Aq gy (b)

(3) For a € wlet ady b € Ty, a,b € A,

(e ®id)AL ,(ada b) = £(ag,1))ae,me(b 1)) dabe,q)
= adq b.

(4) Let a € Aup

Al gdagla) = Mg p(lap) (id @ds) Ag 5(a)
= (id®dg)Aq 5(a)

QED

18 Definition. Let I' = ({I'q }acnr, d) be a m—graded first order differential
calculus over A. We say that I' = ({T}aen,d) is right covariant if for any
a,ferm

D ardagbe = 0= Ay par)(da @ id)Ag g(br) = 0 (2.14)
k=1 k=1

We say that I' = ({T'a }aer, d) is bicovariant if it is left and right covariant.

19 Proposition. Let I' = ({Ta}aen,d) be a right covariant m—graded first
order differential calculus over A. Then there exists a family of linear mappings

A" ={Al 5:Top — Ta® Ag} (2.15)

such that
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(1) For any a € Ang, p € Tup

AL 5(pa) = A7 4(p)Barsla (216
(2) for any o, B,y €7
(1d ®Ap )AL 5y = (AL s @1d) AL, (2.17)
(3) For any p €Ty
(id®e)Ag,1(p) = p (2.18)

(4) for any a, B,y €
AL gldap = (do ®id)Ay g

PRrROOF. Similar to that of proposition 17 , where for any «, 8,7 € 7 ay, by, €
Anp

T8 (Z akdaﬂbk> =" Aqplar)(da @id)Aq p(br) (2.19)
k k

QED

20 Proposition. Let I' = ({T}aer, d) be a bicovariant m—graded first or-
der differential calculus overA, Al A" be the families of linear mappings intro-
duced in proposition 17 and 19. Then we have

(id®AG )AL 45, (adapy b) = (AL 5 @1d)AL 5 (adasy b) (2.20)
Proor. Let a,b € Ang,

(id @A) A 5, (adagy b) =
(14 ©A5,) A i (0) (id 05 © id)(d @A 5,) A ()
On the other hand
(&L 5 ®1d) Al (adasy b) =
(Aa’ﬂ ® id)Aaﬁﬂ(a) (id ®d5 ® id) (Aaﬂ ® id)Aaﬁ»Y(b)

Using the coassociativity property we find that equation 2.20 holds. QED
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3 mw—graded Bicovariant bimodules

Throughout this section let A = {A,}aer be a hopf group coalgebra

21 Definition. let I' = {T'4t}aer be a m—graded bimodule over A , Al =
{Afyﬂ :Tap — Aa @ I'gtaper be a family of linear maps. We say that I' =
({Tataers Al is a left covariant 7-graded bimodule over A if

(1) Forany a € Agg ,p€lap a,B €T

AL 5(ap) = Agp(a) Ag 5(p) (3.1)
A g(pa) = AL 5(p) A p(a) (3.2)
(2) For all a, 3,~ € .
(Anp @id)AL; = (ide@Ah )AL 4, (3.3)
(3) Forany peTy,a€em
(e @id)Al,(p) = p (3.4)

22 Definition. Let I' = {I'y}aerbe a m—graded bimodule over A, A" =
{AL s : Tap — Ta ® Ag} be a family of linear maps. We say that
I' = ({Ta}aen, A") is a right covariant m—graded bimodule over A if

(1) For any a € Ay, p € Tap

Ag slap) = Aap(a)Ag 5(p) (3.5)
AL s(pa) = Ag 5(p)Ac,s(a) (3.6)

(2) For a, 8,7 € .
(Ao @id)ALg., = (Id@AG )AL 5, (3.7)

(3) Forany peTy,aem

(id@e)Ag 1 (p) = p (3.8)
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23 Definition. let T' = {T'4}qer be a m—graded bimodule over A , Al =
{AL 5 : Tag — Aa @ Tglager, and AT = {A 5 : Top — T'o @ Aglbe two
families of linear maps. We say that I' = ({T's}aer, A, A7) is a bicovariant
m-graded bimodule over A if

(1) T'= ({Tu}aer, Al) is a left covariant m-graded bimodule over A.
(2) T' = ({Tataer, A7) is a right covariant 7-graded bimodule over A.
(3) For all v, B,y € .

(AL s ®id)AL; = ([d®AL )AL 4, (3.9)

24 Definition. Let I' = ({T'q }aer, Al) be a left covariant 7-graded bimod-
ule over A. For any o € 7 an element p € 'y, is said to be left invariant if

Al (p)=1L@p (3.10)

Denote by inyI’ = {inwIl'a}acr the set of all left invariant elements of T
Clearly , inv['y is a linear subspace of 'y, for each a € 7.

25 Lemma. Let T' = ({To}aer, A) be a left covariant w-graded bimodule
over AyinyT' = {invLataer be the linear subspace of all left invariant elements
of I'. Then there exists a family

P={Py:T1 —Ta}er (3.11)
of mappings such that
Pa(bp) = £(6) Pa(p) (3.12)
for any be Ay, peTl,a €.
Moreover, for any p € I'y ,a € ™ we have
p=_ arPul(pr) (3.13)
k
where ay, , pr are elements of Ay , 'y respectively such that
ALi(p) =D ar® pr (3.14)
k

and equation 3.13 can be uniquely written in this form.
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ProoF. For any a € 7, p € I'y set
Palp) = Sa-1(ar)pr (3.15)
k

where

Al ()= ak@pp
k=1

Recall that for any a, 8 € 7, a € Ag1 where Ag-14-1,(a) = ag g-14-1)®
a(a,q)we have

Aaﬁ(Sﬁflaq(a(lﬁqaq)))(a(z,a) ® 15) =1, ® Sﬂ—l(a) (3.16)

For any p € I'y | o € 7 set
Al () =) ar®pi
k
Al o(or) =D bk @ pa
l

Aa’l,l (Clk-) = chm & dkm

m
Using equation 3.3 we have
Zak®bkl ® pr = chm®dkm ® pi, (3.17)
kil k,m

We compute
AL (Pa(p) = 3 Ara(Sa-1(ar) Al 4 (o1)
- gma(s&-l(okm»(dkm ® )
= (11 ® Su-1(ar)) (11 ® pr)

k
=1 ® Pa(p)

This shows that P, (p) is left invariant element in I'y, for each o € 7.


sibauser
Linea


14 A. S. Hegazi, W. Morsi, M. Mansour

To prove Equation 3.12 ;let be Ay , pe 'y, set

al Zbk®dk
AL (p) = Zcz®m

l
ALy (bp) = Dt (DAL ()

= Z brc; @ dipy
[

a1

Then
= Su-1(c)Sa-1 (bi)dipy
k1l

= E(b)Pa(p)

To prove equation 3.13. Let a € m,p € I',. Set

All,a(p) = Z dm ® om
71 o pk) Z ben @ Pkn

m = del & Cmi
l

where

Abi(p) = ar®pi (3.18)
K

using equation 3.3 we have

(Aaﬁa‘l ® ld)All,a - (ld ®Aa 1 a)Afx,l
ie.

> ot @ ot @ 0m =Y 1 @ b, @ pen (3.19)

m,l k,n

Then using equation 3.4 we have

p="> c(dm)om

= Z aksoz‘l (bkn)pkn
k.

= Z arPo(pr)

m
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Finally, to prove the uniqueness of expression 3.13 let P = {P(; Ty —iny T}
be another family of mappings satisfying that for p € I,

p="> axPl(px) (3.20)
k
where ag, , pi are elements of A, , I'1 respectively such that
ALi(p) = ar®px
k
Let p € T, such that Ala’l(p) = > ;. @ ® pi. Then using 3.13
pP= Z arPo(pr)
k
But using equation 3.20 we have
p=>_arP(p)
k

Subtracting the above two equations we obtain

0= ar(Palpr) — Polpr))
k

Assuming that all aj s all linearly independent we get

Palpr) = Pipr)  k=1,2,...,n.

which proves the uniqueness of the expression 3.13.

26 Lemma. Let T' = ({T'o}aer; A!) be a left covariant m-graded bimodule
over A. Then, for any o, € T, p Einy Lag we have

ALslp) =1a®o (3.21)

where ¢ €y L.

PRrROOF. Let o, 8 € T, p Einy Lo, then using lemma 3, and since the map-
pings P, are onto for each o € 7 then there exists an element £ € I'; such
that

p = Pas(§) (3.22)
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Set
Aiﬁ—la—l,ag(f) = Z ap @ &
k
Al (&) =D cm@&n
]
A1 g(6) =D b ® pm
and

Af{?*‘a*‘,a(bm) = Z binn @ dimn, (323)
n
Using equation 3.3

Z ar @ Cp & §kl = Z bmn ® dmn & Pm (324)

k,l m,n

Applying Alaﬂ to both sides of equation 3.22, using equations 3.24 and 3.16, we
get

ALs(p) = Aap(Ss-1a-1(ar) AL 5(6k)
k
= Z Aaﬁ(sﬁﬂoﬁl (bmn))(dmn ® pm)

= Z(la ® Sﬁfl(bm))(la & pm)
- 1a ® Pﬁ(é)

But from lemma 3 Pg(§) €inv I'g and hence the lemma is proved. QED

Let A = ({Aataen,A,e,S) be a hopf m—coalgebra. Throughout the next
dealing we will consider that A is endowed with a family of linear maps ¥ =
{Uy: Ay — A1} of k-linear maps such that for each a € 7 , ¥, is an algebra
map.For each o € 7 ,define the map E, to be the composition

Ay — A1 — k

Eq =, (3.25)

Clearly, for each o € m E,, is an algebra map for let a,b € A,. Then
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Ea(ab) = E(\I/a(a) “I}u(b))
= Ea(a)EOé(b)
E,(1,) =1k

Moreover, F,, is linear being the composition of two linear maps.

27 Theorem. LetT' = ({T'o}aen, Al) be a 7—graded left covariant bimodule
over A, {wf}aerbe a basis of i, of all left invariant elements of T'y for each
aemn. Then

(1) For any a € 7 ,any element p € T, is of the form
p= Za,;wz— (3.26)
i

where a; °s € Ay are uniquely determined , w}s €iny Lo ,for any o € m.

(2) For any a € 7 ,any element p € T, is of the form
p=> wb; (3.27)
i

where b; °s € Ay are uniquely determined , w}s €y 'y ,for any a € 7.

(3) There exists linear functionals fi; € A' = ®uer A, such that for any o € T

J
awi =3 Swi((fig o ST + ) (3:29)

where a,b € Amw;s,w}s Einv L. These functionals are uniquely deter-
mined by equation 3.28. They satisfy the following relations

fijab) = fir(a) fi; (b) (3.30)
e

foranyi,jel, abe A,. Moreover
fij(1a) = 045 (3.31)

28 Remark. Any functional f;; € A = @aeﬂA;
i‘;‘- where

is of the form fij; = >

(o3

@) =0 ifa¢ Ay
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Proor. To prove 1: For any a € 7 let p € I',. Using equation 3.13 we
have that p = >, aw; , with w}s €y I'a. To prove uniqueness assume that
p =, ajw;. Then, using equations 3.1 and 3.21

(p) = Z Ai(1,0) ® Gi2,&i
i
Applying (id ®P;) to both sides of the above equation ,we get

(deP)AlL ()= ae&

since Pi(§;) = & for any & €y 1. Since w;s i € I are linearly independent
, then by linearity of Afx,l , &s are also linearly independent and so the co-
efficients a}s are uniquely determined, and this proves the uniqueness of the
decomposition 3.26. To prove (3): For any o € 7, let b € Ay, w;j Einy Lo, j € 1.
Then w;b admits a decomposition in the of the form 3.26. Let F5(b) be the
coefficients preceding w; in the decomposition 3.26 i.e.

wib = Z Fi(b)w; (3.32)

Clearly, Fﬁ(b) are linear mappings acting on A,. For any a,b € A, ,and any
j € I we have

ZFO‘ ab)w; = wjab

- Z a)Fh7 b)wl

h,i

using the uniqueness of the decomposition 3.26 we have

1 (ab) = Z a)Fii(b (3:33)

for all i, € I, € m,a,b € A,. Let fﬁ be linear functionals defined on A,
introduced by the formula

ji (@) = Ea(Fji(a)) = e(Va(Fji(a))) (3.34)

Define f;; € A’ by

f]lzzfﬁ

aem
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where for any f € m,a € Ag

fiila) =3 £5 (a) = fii(a) (3.35)

aEmT

Applying E, to both sides of equation 3.33 and using equations 3.34 and 3.35
we have

fiiab) =" fin(a) fai(b)
h
for any a,b € A,, and hence equation 3.30 is proven. From equation 3.30 we get

fiima(a®b) =Y (fin ® fs)(a@b)

h

fjima = Z(fjh ® fhi) (3.36)

h
Inserting b = 1, in equation 3.32 we get

=D Fiila)ws

Fii(1a) = d5ila

Applying E, to both sides of the above equation ,and summing over o we get
fiila) = dji

and hence 3.31 is proven. To prove 3.28 Recall that from equation 3.32 for any
Q€ T,wj €iny Lo, b€ Ay
wjb S5 Z Fﬁ(b)wl
i
Applying Afm,l to both sides of the above equation we obtain
A - a 1(2 wl)
(1o ® &)A Z Al a®&)

where &;,& €inv I't , 4,7 € 1. On the other hand using equation 3.32

(la @ &)An1(b) = Y (1[d@F})Aa1(b)(la @ &)

i
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Comparing the last two equations we get
Ao 1 (Fj3(0) = (1d @Fj;) A (b)

Applying (id ®¢) to both sides of the above equation , using equation 3.35 we
get

Fﬁ(b) = ([d®fji)Aa,1(b)
= fjixb

Inserting this result into equation 3.32 we obtain equation 3.28. In order to
prove equation 3.29 we have to show that

Z(fji * frj o STY) = bine (3.37)
J
Let a € A;. Then

J

U+ oy 0 ST @) = 3 fusela) 1)

= 0nie(S1(a))

> fiiw (frgo Syt = dine
J
Similarly, one can check that
> (fino ST fij = Onic (3.38)
J
From equation 3.28 we have that for any o € 7, b € Ay, wj €y T

wib ="y (fin*b)wn
I

Inserting in this equation b = (fjn0S; Y« a for some a € A, and summing over
J we obtain

Ji:h

S wilfno Sty xa =Y "((fin* (finoSr) * a)wy
i
= aw;

Recall that € x a = (id ®)Aq,1(a) = a , and hence equation 3.29 follows.
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To prove (2): For any a € w, p € Ty, we have from statement 1 and formula
3.29 that

p= Zaiwi, a; € Ao, Wi €y Lo, i €1
i
=D _wibj,
J
where

bj=> (fijoS') xa;i € A, Vi€l

2

For uniqueness:
Assume that for some b; (i € I only finite number of b}s are different from

zero) we have:
Z wlbl =0
2
We have to show that all bs = 0(i € I ). Using the uniqueness of decomposition
3.26 we have
2

Then
> (fig # biJw; =0

Y]

S(figxb)=0  Vjel

2

Computing the convolution product with f;,057 ! summing over j and using
equation 3.38

0= ((fjnoSi) * fis) *bi
i.J
= b;
ie. b; =0 for each 7 € I.

Theorem 27 gives the complete description of left covariant m—graded bi-
modules. Using equations 3.28 and 3.1 we have

O awi)b =Y ai(wib) = > ai(fij * bw (3.39)
i i,.J

i
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Aix,ﬂ(z aiw;) = Z Agp(ai) A, g(wi) = ZAu,B(ai)(la ®&),& €y s

(3.40)

If (fij)ijer is a family of linear functionals in A = GBQGWA; satisfying re-

lations 3.30, 3.31, then considering the left module I' = {T'y }aer generated by

wi',a € m,i € I, and using the above formulae to introduce the right multi-

plication by elements of A , and the left action of A we obtain a left covariant
m—graded bimodule.

29 Definition. Let (', A”) be a right covariant m-graded bimodule over A.
An element n € 'y, is said to be right invariant if

Ani(m=n®L (3.41)

Denote by Tiny = {T'¢,} the set of all left invariant elements of I'. Clearly,

mv

I'¢ is a linear subspace of I', for each a € 7.

inv

30 Theorem. LetT' = ({T'*}oer, A") be a right covariant 7—graded bimod-
ule over A {n{}aexbe a basis of 'Y, of all right invariant elements of Iy for
each o € m. Then

(1) For any a € 7 ,any element o € Ty, is of the form

0= Z a;n; (3.42)

i

[e

e ofor any a € .

where a; 's € Ay are uniquely determined , n;s € T’

(2) For any « € 7, any element p € Ty, is of the form
0= mnibi (3.43)
i

where b; °s € Ay are uniquely determined , n;s € Iy, for any a € 7.

v’

3) There exists linear functionals g;; € 4 = @GEWA/ such that for any o € w
J a

J

an; =Y mj(ax(gioS")) (3.45)
j
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- These functionals are uniquely determined
by equation 3.44. They satisfy the following relations

gij(ab) =~ gix(a)gr; (b) (3.46)
e

where a,b € Aa,m;s,m;5 € I

foranyi,j el ,abe Ay. Moreover
9ij(1a) = di; (3.47)

The proof is similar to that of theorem 27.

31 Remark. Any functional g;; € A = @perA

« is of the form g;; = >
gi; ¢ where

fe3

gija) =0 ifag¢ A,

32 Theorem. Let T = ({Tg}acn, Al, A7) be a m—graded bicovariant bimod-
ule over A {(w$)ic 1}aer be a basis of i = {iwlataer of all left invariant
elements of I'. Then

(1) For anyie[,a,ﬂew,wfﬂ €las

@) =" we @ Ry; (3.48)
J

where i,j € m, Rj; € Ag satisfy the following relation

Nas(Rji) =Y Rjn @ R (3.49)
h

and for Rj; € Ay
e(Rji) = bji (3.50)

(2) For each o € 7 there exists a basis (n;)icr of all right invariant elements
of I'y such that for w; € Ty,

wi =Y iR Viel (3.51)
J

(3) For any j,h el ,a€ Ay
Rij(ax fin) = (gji x a)Rpi, 1,5 €1 (3.52)

where fij, gij are functionals introduced in theorems 27 , 30
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ProOF. Using equation 3.9 for any «, 3,7 € m we have

(AL 5 ®id)AL,, = (id@AS )AL 4

Let w" € Tog,

(Al ﬁ®1d) a,B'y( QB'Y) (1d®Aﬁ'y)Aaﬁ'y( aﬁ'Y)
= 1a & A/B’,\/(w,l: )

Agﬂﬁ(wi) Sinv Faﬁ ® Av

Then for wf‘ﬁ T e Capy

a,

AT /3"/ aﬁw Zw ® Rji
Applying (id ®Ag ) to both sides of the above equation
Dol @ g (Ry) = (Als ® )AL (w8™)
= W ®Rjn® Ry
j,h

Comparing both sides of the above equation

Apa( Z Rjn @ R
h
and hence equation 3.49 is proven. Let wi* € Ty
Aal Ew ®Rjz 7R]26A1
J
Applying (id ®e) to both sides of the above equation
(id®e)Aq 1 (W) = wj
= Z w}’ ® 5(Rji)
J
=
e(Rji) = bji
To prove statement 2: First we have that for R;; € Aj,aen

me(id ®Sa—1)Aa7a—1 =ma(Se-1® id)Aafl,a =cly
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By using equations 3.49 and 3.50 we obtain

> Sa-1(Rin) Rij = 6ijla (3.53)
h

ZRihSafl(th) = 0jjla (3.54)
h
For any a € m,j € I, let
nj = Zwisa—l(Ri]') (3455)

Multiplying both sides of equation 3.55 by Rj; and summing over j then
using equation 3.53 we obtain

> niRji = wiSa-1(Rij) Ry
J i,
= Ww;
and equation 3.51 follows. It remains to show that 7; defined in equation 3.55
is right invariant
Let nj € Ta, nj = 21 wiS(fl(Rij),wi Cinv La, Rij € Aa—l.
AL () =D AL (@) Aa(Sa-1(Rij))
i
=n;®1
For any o € m,let n € 'y, be a right invariant element. According to theorem 30
n= Z%‘Cz‘ ,¢i € Ag
i
= ZﬁjRjz‘qu ,Rjz‘ S A,1
i,

then
n=> by, bj€ Ay (3.56)
j

If n = >, wiSe-1(Rij), then using equation 3.55 we have

Z wq;Sa—l (Rq,])bj =0
)
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Using theorem 27 we have
ZS(I*I(Rij)bj =0 foreachiel
J

Multiplying both sides of the above equation by Rj; we obtain

by =0

for any j € 1.
This means that the decomposition 3.56 is unique.
Applying A7 , to both sides of decomposition 3.56

AT () = AT (D myby)
i

E@la=Y (€ ®1a)ALalby)

J

Comparing this formula with decomposition 3.56 we get that

Apa(b) = bj1,1) ® La
Applying ¢ ® id we get that b; = £(b;(1,1))1a. This way we proved that for

any a € m, any 7 € I') is unique linear combination of 7;(j € I). Therefore,

(n;)jer is a basis in T and statement 2 is proven.
To prove statement (3):
Using equation 3.45 we have for any o € m,a € A, 1n; € T

inv
anj = mila* (g5 ST1))
Using equation 3.55 we get Z
> awiSa-1(Rij) = > wiSa-1(Rni)(ax (gji o S71))
i

i,h
Using equation 3.31 we get

D wnl(fino S *a)Sa-1(Rij) = > wnSa-1(Bpi)(a* (gjio Si1))
ih ih

Using theorem 27 we get

3

(o 571 = @)Sumr (i) = 3 Sumt (Rui)(o % (0 517))
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Applying S, (Sa = S;,ll) to both sides of this equation, using that S, is
antimultiplicative we get:

D RijSal(fino Si1)x @) = 3 Salax (gji 0 ST1)) i (3.57)

‘We compute

Sal(fin o STY) *a) = (Id@fin)(S, 1 ® ST A1 (a)
= S;L (a) * fin

Similarly, we have

Sala* (gjio ST1) = gji+ S 1 (a)

> Rij(S 1 (a) * fin) = Z(gﬁ «S71 () R

i i

Replacing a by S;,ll(a) we obtain
> Rij(ax fin) = >_(gji* a)Ra;
i i

And equation 3.52 follows. Note that if a, R;j, Ry; € Ay, then applying € to both
sides of equation 3.52 and using equation 3.50 we obtain:

5(2 Rij(ax fin)) = (Y _(9ji * a)Ry:)

ZE(Rij)E(a * fin) = Z e(gji * a)e(Rp;)
Z dije(ax fin) = Z e(gji * a)opi
But
elax fin) = fin(a)
Similarly: e(gj; * a) = gji(a) ie. fij(a) = gij(a), for any a € A;. From which we
get that

Z Rij(ax fin) =Y (fji* a)Ru; (3.58)

2

QED
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For any o, 3 € m,m; € s

inys applying Al o5 to both sides of equation 3.55 we
obtain:

Al 5(n)) ZA JAa,5(S(ap)-1 (Bhj))

= Z (Rij) @ wy Sp-1 (Rns)

ih

Al () =Y Sa-1(Rip) @] (3.59)
i
Using equations 3.5 and 3.48

(D awi) = ZAQB (w§ ® Ryj) (3.60)

33 Theorem. Let (fij)ijer be the family of functionals defined on A sat-
isfying relations 3.30, 3.31, (R})ijerbe a family of elements of A = {Aa}aer
satisfying relations 3.49, 3.50, 3.58 for each o € w. Consider the left module
I'={Ta}aer over A ={Aq}acr generated by wy¥ ,i €I, a € for each a € T,
and using formulae 3.39, 3.40, 3.60 to introduce right multiplication by elements
of A, left and right actions of A on T then T = ({T }aer, AL, A”) is a 71— graded
bicovariant bimodule over A.

ProoF. Using formula 3.39 to introduce right multiplication by elements
of A, one can easily check that I' is also a m—graded right module over A.,
i.el’ = {T4}aex is a m—graded bimodule over A.

Using 3.40 to define a left action of A on I' ;taking into consideration theorem
27 we find that equations 3.1 and 3.2 are satisfied. For p € I'ng,b € Ayp and
a, 3 € m, using theorem 27 so p =3, aiwf"g, a; € Aag,wf‘ﬁ Einv L'ap

A 5(0p) = A5 (3 (bas)f)
= Bas(0) D Aapla) A ()

= Aa,ﬁ (b)Afyﬁ (p)

Similarly,
Afm,[}(pb) = Ala,/s(P)Aa,ﬁ(b)
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Moreover, using theorem 27 for any o, f, v € m ,p € Iapy and p = 3, ajw;
where a; € Angy , Wi €inv Tapy we have:

(Au,ﬁ ® ld)Afxﬂ,’y(p) = Z(Au,ﬂ ® id)Aaﬁ,’Y(ai)Afxﬁ,'\/(W?ﬁ’y)

k3

= (Do ®id)Aasy(ai))(la ® 1g ® w])

k3

Similarly, we have

(id ®A1517)A517ﬂ7(p) = Z(Aaﬂ ® id)Aaﬂ,'y(ai)(la ®1z® w;y)

(Aap@id)Al,; = (id@Al )AL 45,

which means that equation 3.3 of definition 10 is satisfied.
Finally, for any o € m, letting p € T's, then using 3.26 p = >, a;w, a; €
A, wi €iny T

(e @id)Al L (p) = D (e ®id) A1 a(a;) Al (wi)

k3

=Y (e ®id)(Ara(a))(e ®id)(A] 4(wi)

K2
=p

i.e. 3.4 is satisfied.

This means that I' = ({T'a }aer, A!) is a m—graded left covariant bimodule
over A.

Using formula 3.60 to introduce right action of A on I' one can easily check
that I' = ({Ta }aer, A7) is a m—graded right covariant bimodule over A, for let
p€Tap,be Ayg,a, B € m, using theorem 27, for p =3, ajw;, a; € Aag, wi Einy
Lo

n5(bp) =D Agpbai) AL, 5(w;)
=Dap(0) Y Aaplai) Al s(wi)

= Ao p(0)AG 5(0)

Simﬂarl}’? for p e Fa,@yb S Au,&a,ﬁ cm, using theorem 27 p = ZZ a;jwi, a; €
App,wi Einy Tag. Using 3.44 we get

AL5(Pb) = AG 5(p)Aa,s(b)
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and thus equations 3.5 and 3.6 are satisfied. Moreover, using theorem 27 for any
a,B,yempelagy,p=>;aw; 7 where a; € Aapy,w; afy €inv [apy we have:

(A6 @1d)Ags ,(p) = Z(Na,/a @id)(Aap(ai) Ang y (wi))

=D (Bap ©id)(Dag(a:) (W] @ Rij © Ry;)

.4,k
Similarly,
(id ®Ag) A7 5,(p) = Y ([ ®As,) (Aapy(a:)) (Wf @ Rij ® Rys)
.4,k
e. (AL p®id)AL ;= (id®Ag,)A] 5 which means that equation 3.7 is satis-

ﬁed Finally, for any a € 7, letting p € Ty, then using 3.26 p € T'n, p = >, aiw;
where a; € Ay, w; Einy Lo
(id ®e)A Z aiw;

=p
i.e. 3.8 is satisfied. This means that I' = ({T'g}aer, A7) is a m—graded right
covariant bimodule over A. To prove the bicovariance conditions , for any
a,B,7 € © ,p € Tapy, using theorem 27, for p = Ziaiw?’gv, a; € Aapy,
W €inv ['apy We compute

(id ®A} )AL 45, (p) Z(m&aAW(Aam() Las )

= Z(ld @A4)(Aapy(ai) (1o ® Wf ® Rji)
]
Similarly,
(AL s @id)A%Lg (p) =Y (Aap @id)(Aags(ai)(la @ w) @ Rjy)
0]

and hence equation 3.9 is proved and T' = ({T'a}aer, AL, AT)is a m—graded
bicovariant bimodule over A. QED

4 First order differential calculus on Hopf Group
Coalgebras

Let A2 = {A2}aer be the m—graded bimodule introduced in section 2.
We introduce left and right actions of A on A2. For any o, € 7 let ¢ €
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Anp @ Aggrand (A @ Ao p)(q) = Dopar @ by @ ¢ @ di, where ag, ¢, € Aq,
b, di, € A57 k=1,2,...,n. We set

® 5(q) = Y axcr ® by, @ dy (4.1)
B

ns(Q) = Z ar @ ¢ @ bdy, (4.2)
k

We compute

(id ®mp) (P4, 5(4)) = Das(mas(a))

Il
o

Similarly we have
(ma @1d)(27, 5(q)) =0
Therefore,
aﬂ AﬂHAQtXJAﬂ (4.3)

and
gt Ay — AL ® Ag (4.4)

Clearly, both are linear map. We will show that A? = ({42} aer, @, ") is a 71—
graded bicovariant bimodule over A.

First, we will prove that A2 = ({42} aex, @, @) is a 7— graded left covariant
bimodule over A.

Let a,f €m,q € Aiﬁ,q =b®c, then

2,8)) - (b(1,0)¢(1,0) ® b2,8) ® C(2,8))

!, 5(aq) = (a(1,q) ® a(
a) -, 5(q)

=Aap(a
Similarly
!, 5(qa) = @, 45(q) - Mg p(a)

Moreover, for any «, 3,y € m,q € A%, q = a® b we compute

aBy’

(Aa[g@ld) aﬁ’y( ) ( aﬁ®1d)q)aﬁ'y( ®b)
= (Aa,s @1d)(a(1,a8)b(1,08) @ A(2.) @ bi2y))
= 0(1,0)0(1,0) © 4(2,8)D(2,8) @ A(3,7) ® b(3,9)

Similarly,

(id @@ ;)4 5, (9) = 0(1,0)P(1,0) @ G(2,0)b(2,) © A(3.7) @ b3 )
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(Ras ® id)(pix,ﬁv = (id ®(I)lﬁ,7)q>la5rv

Finally, for any o € m,q € A2, g =a®b

(e ®id)®] ,(q) = e(aq1b(i1)a@,0) @ b.a)
a®b
=q

and thus the conditions of definition 10 are fulfilled and A? = ({A2},ex, @)
is a m— graded left covariant bimodule over A. Similarly, one can check that
A% = ({A2),er, @) is a m— graded right covariant bimodule over A. Finally,
we check the bicovariance condition

For any o, 8,y € m,q € Aiﬂﬂ/,q = a ® b we compute

(id@®p )P, 5 (9) = ([d@Pj ) (a(1,0)b(1.0) @ A2,87) @ b2,6y))
= a,a)b(1,0) @ a(2,8) @ bi2,8) @ a(37)b(3,9)

Similarly,
(5 ® id)Phs.,(4) = a(1,0)D(1,0) ® (2,5) © bap) ® a(3.7)b(3.)

which proves that A2 = ({A2}aex, ®, @) is a 71— graded bicovariant bimodule
over A.
On A® A={As ® Aa}acr we define two families of linear mappings
r= {Toz F Ay ® Ay — Aa ®A1}a€7r
t= {ta : Aa ®Aa — A ® Aa}aEﬂ'
For any o € 7, a,b € A, we set
ro(a®b) = (a ® 11)An1(D) (4.5)
fala®b) = (1, © )Aya(b) (4.6)
It is clear that r,, t, are bijections for each o € 7 for example for a € A,, b € Ay
the inverse of r,, is given by

ra (@ ®b) = (a® 1a)(Sa 1 @id)Ag 1 4(b) (4.7)

Similarly , for a € A;,b € A, the inverse of t, is given by

ta (a®b) = (b®@1a)(Sa-1 @id)oa__, 4, A0a-1(b) (4.8)
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One can easily show that for each o € m ,74(A2) = A, @ kere , for let a € 7,
a € Ay, b € kere

MaTa(a®b) = aS, (b(1,0-1))0(2,0)
=0

From which we get 75 (A, @ kere) = A2 i.e.
ra(A2) = A, @ kere (4.9)
Similarly, one can prove that
to(A2) =kere @ A, (4.10)
34 Proposition. For any a,fB,v €

(A ®@id)rap = (id @rg) @}, 4 (4.11)

(id ®Aa75)ta5 = (to, ® id) 71;,[5’ (4.12)

Proor. We will prove that for any o € m
7o = (id®e ®id)®!, | (4.13)
ta = (e ®id®id)®] , (4.14)

For any a € m,a,0 € Ag,a®b € Ay @ Ay

(id@e ®id)®!, ;(a @ b)

a,a)b(1,0)E(az,1)) @bz

(a ® 11)Aa,1(b)
=ro(a®Db)

Similarly,
(e®id®id)®] ,(a®b) = ta(a @ b)

To prove equation 4.11

(Aa s ®id)ras = (id®id @e @ id)(id @@4 )@, 4
= (id ®@rg)®, 4

Similarly, one can prove equation 4.12. QED
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35 Proposition. For any a € 7 an element of A2 is left- (right- respec-
tively) invariant if and only if it is of the form r5 (1o ® ) (5 (y ® 1) respec-
tively) where x € kere (y € kere respectively).

PRrROOF. For any a € 7 , let @ € kere. We compute

Doy (la ®2)) = 11 @ e(2(21)) Y01 (T(1,0-1)) © T(3.0)
=1 @ (ly®)

i.e. r;1(1, ® x) is left -invariant element.

Conversely, if r;1(1, ® z) is left -invariant element for some o € 7 , let
x € kere,

a € A,. Equation 4.11 implies that

([d @re)®) o (ry (4 ® 7)) = (A1e @id)ra(ry (e ® x))
From which we obtain

Lha®er=A7A4(a)®@

ALa(a) =11 ®a
From which we obtain
a=1q.
QED
36 Theorem. Let R be a right ideal of Ay contained in kere, N = {Ng4 }acr,
where for each a € m, Ny = 17 (A ® R) is a sub-bimodule of A*> = {A2}ex.
Moreover, let T = {To}aern, Lo = A2/Ny, 11 = {11, : A2 — A2/N,} be the
family of canonical epimorphisms, d = {dy, : do = Ila0Dy}. Then the m—graded
first order differential calculus T = ({Ta }aen,d) is left covariant. Any 71— graded
left covariant first order differential calculus on A can be obtained in this way.
PRrROOF. For any a € 7w,let R be a right ideal of A; contained in kere. We
shall prove that 7;'(A, ® R) is a sub-bimodule of A2. For any a € , let
gerH(Aa @ R), ie. =1 (b®@¢),b € Ap,c € R. For a € A,

q-a=r"(bag ) ®capr)
€ry'(Aa ® R)

which proves that N, = r!(A, ® R) is a sub-bimodule of A2.
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To prove that it is left covariant we have to prove that for any o, € m,
@, 5(Nap) C Ag ® Np.
Using 4.11 we have

<I>51,,8 = (id ®TEI)(A%/3 ®id)rop
Now, for any «, 3 € w, consider Nog = T;E(Auﬂ ® R)
&), 5(Nag) = (1d@r;")(Aa,s(Aas) © R)
c (id ®r[;1)(Aa ® Az ®R)
=A.® Nﬂ

Conversely, if N = ({Na}aer, @) is a left covariant bimodule, then , using
theorem 27 and proposition 35 there exists a family (x;);er of elements of kere
such that for any o € 7, q € N,, can be written as ¢ = Y, a;- 75 (1o ® 7;),a; €
A, . But for each i € I we have

a; - r;l(la ® ;) = r;l(ra(ai ®1a) (1o ® 24))
=1y (ai ® ;)
Denoting by R, the linear span of all 2s we obtain that N, = o (As ® Ry)
We shall show that all Rjs coincide with R;. From proposition 35 we have
invlNo = T;I(loz &® Ra)
and since N, is a left covariant bimodule we have
(I)fx,l(invNu) = 1o Oy N1
=1, ®r7 (11 ® Ry)
Now let 75 (1o ® %) €iny Na , T; € Rq
Ol 1 (ra (1o ®24) = So-1(Tig2,0-1))Ti(3,0) ® S1-1(Ti(1,1)) ® Tia)
=10 ® S11(Ti(1,1)) ® Ti2,1)
=1,@r (1 @)

r;, € Ri — R, C Ry

Similarly we can show that Ry C R,, and hence R, = R; for each o € 7.
Denote by R to any of the Rys, then

Ny =7 (44 ® R)
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It remains to show that R is a right ideal of A;. Let x € R,a € Aj, then
7’1_](11 ®1}) € Ny.

rfl(ll ®x)-a= rfl((ll ®@z)ri(l1 ®a))
e Ny = Tfl(Al [0z R)
(N7 is a bimodule)

i.e
(Lhez)r(li®a) € Ay QR
therefore
(L@ a)r (L @a) =ri(r; (L @ 2)A1(a)))
=l ®z)A11(a) e 1O R
and (¢ ®id)((11 ® x)A11(a)) =za € R QED

37 Theorem. Let R be a right ideal of Ay contained in kere, N = {Nq }acnr,
where for each a € 7, N, = t;'(Aq ® R) is a sub-bimodule of A% = {A2},ex.
Moreover, let T' = {La}aen; Lo = A2/No, 11 = {Il, : A2 — A2/N,} be the
family of canonical epimorphisms ,d = {dy : do = Hn0Ds}. Then the first order
differential calculus T = ({Tq }aenr, d) is right covariant. Any right covariant first
order differential calculus on A can be obtained in this way.

PrOOF. For any a € m, let R be a right ideal of A; contained in kere.
We shall prove that ¢, (R ® A,) is a sub-bimodule of A2. For any « € 7, let
qEtHR® AL, e q=t(d®e),d € R,e € A,. For a € A,

a-q=1t."(ta((a®1a)q))
=15 ((Lh ® a)ta(q))
=t 1(d @ ae)
ct; (R® Ay)
Similarly,
g-act;' (R®AL)

which proves that N, = t;1(R® A,) is a sub-bimodule of A2. To prove that it
is right covariant we have to prove that for any a, 8 € 7, (I)f%ﬁ(Naﬂ) C No® Ag.
Using equation 4.13 we have

np =ty ®id)(i[d ®Aq g)tas
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Now, for any «, 3 € m, consider Nyg = t;é(R ® Aug)

L, 5(Nag) = (t5' @id)(id ®Aq p)tap(ty4(R © Aag))
C (' ®@id)(R® Ay @ Ap)
=N,® Aﬁ

Conversely, if N = ({Na}aer, ®") is a right covariant bimodule then, using
theorem 27 and proposition 35 there exists a family (y;);es of elements of kere
such that for any a € m,q € N, can be written as ¢ = >, a;- t,1(y; ® 1a),a; €
A, . But for each i € I we have

a; - Tgl(yi ® la) = tgl(ta(la ® ai)(yi ® 1a))
=t (yi © a;)
Denoting by R, the linear span of all ;s we obtain that
No =t (R® Ay)
We shall show that all R s coincide with R;. From proposition 35 we have
N(ixnv = tgl(la ® Aa)
and since N, is a left covariant bimodule we have
(V) = N 5 1,
=t;H {R®A) @1,
Now let t; (y; @ 1) € NI |y € R,
‘I)i,a(t;l(yi ®1a)) = S11(Wi3,1) @ Yic1,1) @ Lac(Wic2,1))
=t/'yi®1)® 1,

ie.
Yi € Rl - Ra g Rl
Similarly we can show that Ry C R,, and hence R, = R; for each a € 7.
Denote by R to any of the Rjs, then N, =t;1(R® A,)
It remains to show that R is a right ideal of A;.
Let y € R,a € Ay, A then tl_l(y® 11) € Ny.

t'yel) a=t (y® L)t(li®a) € Ny
=t (R® Ay)
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i.e (y ® ll)tl(ll X (1) € R® A
therefore

(y@ 1)t ®a) =t (7 ((y © 11)Ar1(a)))
=@yo®h)Ai(a) e A1OR

and (id®e)((y ® 11)A1,1(a)) =ya € R

QED
We shall now formulate the concept of ad —invariance. Let
ady : A1 — A1 @ A,
be such that for any a € A;
ada(a) = ta(ryH(1e ® @) (4.15)
ie.
ada(a) = Q(2,1) ® Safl(a(l,afl))a(&a)
where
(i[d®A1La)An-14(a) = a1 a-1) @ A1) @ a3.q) (4.16)
such that
(ade ®id) adg(a) = (iId ®A4 g) adag (4.17)

Using equation 4.15, and the standard properties of comultiplication and
converse one can prove equation 4.17, for let a € A;. For any o, S € 7

(ad, ®1d) adg(a) = (adq ® id)(a(u) ® Sﬁ—1 (a(l’ﬂ—l))a(gﬁ))
= ag31) © Sa-1(a@,a-1))0(4,0) ® Sp-1(a(1,6-1))a(5,9)
Similarly,
(id ®Aaﬂ) adag =) ® Sa—l(a(27a—1))a(47a) ® Sﬂ—l (a(lﬁfl))a(g}ﬁ)

which proves equation 4.17. QED

A linear subset T' C A; is m — ad invariant if ad,(7T) C T ® A for any « € 7.

38 Lemma. Let T be m — ad invariant subset of A1, R be a right ideal of
Ay generated by T. Then R is m — ad invariant.
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PrROOF. Let a,b € Ay, we will prove that for any o € 7

ady (ab) = (11 ® -1 (b(l,oﬁl))) ada(a)ALu(b(ZQ)) (418)

7';1(104 & ab) = Sofl (a(l,ofl)b(l,ofl)) ® a(Z,a)b(Q,a)
= (Sa*‘ (b(LoFl)) ® 1(1)7';1(@)(1& ® b(?,a))

Applying t, to both sides of the above equation we get
tara (1o ® ab) = to(Sy-1(b1a-1)) ® La)tary (a)ta(la ® baa)) (4.19)

ada(ab) = (1o ® Sy 1 (br.a-1))) ada(@)ALa(ba) (4.20)

Thus for a,b € T,a,b,ab € R, R being an ideal in A;, T being m — ad
invariant we find that

ady(ab) € R® Ag

ada(R) CR® Ay
which means that R is 7 — ad invariant. QED

Let A% = ({A2}4er, @1, ®7) is a m7— graded bicovariant bimodule over A. By
virtue of condition 3 of definition 23 we have for any «, 5,7 € (<I>f171 ®id)¢)gﬂ =
(id @@ 5)®!, 5

Applying id ®e ®id ® id to both sides of the above equation and using equa-
tions 4.13 and 4.14 we get

hs = (ra' ®id)(id®tg) @), 5

Now let 2 € kere. From proposition 35 for any o € 7 we have 7;1(1, ® )
is a left invariant element then

07, 5(ros(las @ 7)) = (ry" @id)(id ®tp)(1a @ 75" (15 ® 7))
= (ry' ®1d)(1, ® ads(x))

39 Theorem. Let R be a right ideal of A1 contained in kere and I' =
({Ta}taer, d)be the m—graded left covariant first order differential calculus de-
scribed in theorem 5. Then I' = ({T4 }aex, d) is bicovariant if and only if R is
m—ad invariant.
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PROOF. Let for any @ € m R be a right ideal of Ajsuch that R C kere
and N, = 751 (A, ® R). Using theorem 35 we see that N = ({Na}aer, ol is a
m—graded left covariant bimodule. Assume that R is 7—ad invariant , let jn, NV
be the set of all left invariant elements of N, for each « € 7. Then formula 3.78
shows that for any o, 5 € 7

(D’;,,B(invNa/B) Cinv Na ® AB

Now decomposition 3.26 shows that @] ;(Nag) C Noa ® Ag,and this means
that implication 2.14 holds.

Conversely, assume that N = {N, }aer is a m—graded bicovariant bimodule.
This means that 2.14 holds.Then (see proof 37) for each o € m, N, = t; (R’ ®
A,) where R be a right ideal of A; such that R’ C kere. In particular, Ny =
tTH(R'® Ay). Using 3.78 and that (e ®id)t] (¢ ®b) = ag(b) ,and (id ®e)r7 ' (a®
b) = aS1(b). one can easily checks that R = R/.

So we have for any a €

7'(:1(‘404 ®R) = tgl(R ® Aa)
toary (Aa ® R) = R® A,
therefore ad, (R) = tar;1(1a ® R)

Clarg (A ® R) = R® A,
therefore R is m—ad invariant. QED
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