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Abstract. A Toeplitz operator with respect to a contractive representation {Ts} of an
abelian semigroup Σ in a Hilbert space H is an operator X ∈ B(H) such that X = TsXT ∗

s

for all s ∈ Σ. We show that if {Ts} has a minimal isometric dilation {Us} ⊂ B(K), then
Toeplitz operators can be obtained in a unique way as compressions of operators Y ∈ B(K),
called Toeplitz symbols, such that Y = UsY U∗

s . This approach to lifting the Toeplitz equation
X = TsXT ∗

s is shown to be unitarily equivalent to the one proposed by Muhly in 1972. We use
our approach to extend to this case a number of theorems about classical Toeplitz operators
and, finally, we show that some classes of well-known operators —like Wiener-Hopf operators,
Toeplitz operators in H2(Td) or Toeplitz operators in the sense of Murphy— fall within the
class studied in this paper. The main objective of this paper is to provide a general framework
that, we hope, will be useful in order to extend to wider classes of operators some of the more
recent and deep advances in the theory of Toeplitz operators.
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To the memory of Klaus Floret, a fine mathematician and a good man

1 Introduction

Let {Ts} be a semigroup of contractions having a minimal isometric dila-
tion {Us}. Can one lift simultaneously a collection of Toeplitz type equations
X = TsXT

∗
s to the corresponding collection Y = UsY U

∗
s and recover X as

the compression of Y ? It is widely known that the answer is affirmative for
the semigroup {Bn : n = 0, 1, 2, . . . }, where B is the co-isometric unilateral
backward shift in H2(T), and that the solutions of the simultaneous equations
X = BnXB∗n are the classical Toeplitz operators.

iThis work has been partially supported by Consejeŕıa de Educación y Ciencia de la Junta
de Andalućıa and by la Dirección General de Investigación del Ministerio de Ciencia y Tec-
noloǵıa, project number BFM2001-3735
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Every function φ ∈ L∞(T) defines a Toeplitz operator Tφ : H2(T)→ H2(T)
by means of Tφf := P (φ · f) where P is the orthogonal projection from L2(T)
onto H2(T). In the language of dilation theory, Tφ is the compression of the
multiplication operator Mφ induced by φ; this function φ is called the symbol
of Tφ and it is unique. Toeplitz operators satisfy a simple characteristic relation
given by Brown and Halmos in 1963 [6]; it tells us that a bounded linear map
X : H2(T) → H2(T) is a Toeplitz operator if, and only if, X = BXB∗, where
B is the backward shift in H2(T). The development of the theory of Toeplitz
operators in the last decades can be found in [2], [5], [7], [18] or [19].

It is no wonder that a number of possible generalizations of the notion of
a Toeplitz operator have been proposed in the literature. We shall concentrate
on generalizations made by exploiting the properties of the characteristic re-
lation. Namely, take a contraction T defined on a Hilbert space H and study
the properties of the operators X : H → H, called generalized Toeplitz opera-
tors, that satisfy X = TXT ∗. The purpose of this line of research —started by
Douglas and Pearcy [13], Douglas [14] and [15], Rosenblum [41] and Sz.-Nagy
and Foiaş [46] and [47], and continued by Muhly [26], Pták and Vrbová [39],
Pták [38], two of the present authors [24] and [25], and Kérchy [22] and [23]— is
two-fold: on one hand, to obtain new operators that share some of the properties
that make the class of Toeplitz operators important and, on the other hand, to
find out which of these interesting properties of the classical case depend only
on the characteristic relation. Hyponormal operators and operators with one
dimensional self-commutators are examples of generalized Toeplitz operators
(see, respectively, [46] and [47], and [10]).

To study up to what point the properties of classical Toeplitz operators are
valid within this approach, an essential problem is to find out what operators
play the role of symbols. In the classical case, the symbols are multiplication
operators induced by functions from L∞(T) or, equivalently, operators Y such
that Y = UY U∗ where U is the unitary bilateral backward shift in L2(T). From
the point of view of dilation theory, U is both the minimal isometric dilation and
the minimal unitary dilation of B, and U ∗ is the minimal unitary extension of
the unilateral forward shift S = B∗, hence the key step is lifting the solutions of
BXB∗ = X to solutions of UY U ∗ = Y , and these families of solutions are one-
to-one related by the fact that each X is the compression of a Y to H2(T), that
is X = PY |H2(T). This suggests that in the generalized setting the symbols
should be solutions of a suitable lifting of the equation X = TXT ∗ involving
the minimal isometric-or-unitary dilation-or-extension of T .

If T is a co-isometry, then the approaches taken by Douglas, Sz.-Nagy and
Foiaş, and Pták and Vrbová are formally the same, but there is a slight difference
in their points of view. They proved that if T is a co-isometry then every solution
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X of X = TXT ∗ is the compression of a solution Y of Y = UY U ∗ where,
for Sz.-Nagy, Foiaş, Pták and Vrbová, U is the minimal isometric dilation of
T [47, Thm. 2], [39, Thm. 2.11], [38, Thm. 2.5], whereas for Douglas, U ∗ is
the minimal unitary extension of T ∗ [14, Thm. 2]. These different points of
view produce, however, different approaches for the case when T is a general
contraction, namely

(DM) Douglas proposed the following approach. Let A :=
√

limn TnT ∗n be the
asymptotic modulus of T ∗ and denote by M the closure of the range of
A. Then there is an isometry V defined on M and such that V A = AT ∗

and every solution X of the equation X = TXT ∗ can be represented in
the form X = AX ′A where X ′ is a solution of the equation X ′ = V ∗X ′V .
Now, since V ∗ is a co-isometry, each of those X ′ can be represented as
the compression of a solution Z of the equation Z = WZW ∗ where W ∗

is the minimal unitary extension of V . This approach was later used by
Muhly [26] to show how to lift simultaneously a family of equations of the
form X = TsXT

∗
s where {Ts : s ∈ Σ} is a contractive representation of an

abelian semigroup Σ on a Hilbert space H.

(SF) Sz.-Nagy and Foiaş proposed the following approach. Let U ∈ B(K) be the
minimal isometric dilation of T , let R be the residual subspace of U , that
is, the largest reducing subspace where U is unitary, and denote by U |R
the unitary part of the Wold decomposition of U . Then every solution X of
the equationX = TXT ∗ can be obtained from a solution Y of the equation
Y = (U |R)Y (U |R)∗, by means of the equality X = P (H)Y P (R)|H, where
P (H) and P (R) denote the respective orthogonal projections from K.

(PV) Pták and Vrbová proposed the following approach. With the same nota-
tion as in (SF), every solution X of the equation X = TXT ∗ is uniquely
given as the compression X = P (H)Y |H of a solution Y of the equation
Y = UY U∗. Moreover, these operators Y are essentially defined in R, in
the sense that they satisfy the equalities Y = P (R)Y = Y P (R), and they
commute with U and U∗.

As it is described in the last sentence, for the case of an arbitrary contraction
T , the approaches (SF) and (PV) are essentially the same, although we prefer
the latter because the relation between X and Y is simpler in (PV) due to the
fact that H is a subspace of K but not necessarily a subspace of R. Within
this approach a number of theorems have been extended from the classical
to the generalized case in [24] and [25], complementing the results obtained
in [14], [15], [46], [47], [39] and [38].
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However, the approach (DM) is not, at least a priori, the same as the others
if T is not a co-isometry, and the starting purpose of this paper was to clarify the
situation. Then we realized, inspired essentially by the techniques used in [38],
that a (SF)-(PV) approach to lifting a family of equations X = TsXT

∗
s , where

{Ts} is a semigroup of contractions, could be developed; this is done in Section 2
and we want to thank Prof. R. Douglas for calling our attention to Muhly’s
paper [26] and for suggesting us to extend the (SF)-(PV) approach to the case
of semigroups. In Section 3 we prove that our approach is unitarily equivalent
to the approach (DM) used by Muhly. In Section 4 we give extensions to the
semigroup case of several theorems about classical Toeplitz operators. Finally,
in Section 5 we show that some classes of well-known operators —like Wiener-
Hopf operators, Toeplitz operators in H2(Td) or Toeplitz operators in the sense
of Murphy— fall within the class studied in this paper.

The main objective of this paper is, thus, to provide a general framework
that, we hope, will be useful in order to extend to wider classes of operators
some of the more recent and deep advances in the theory of Toeplitz operators.
We thank the referee for his helpful suggestions.

Notations. Our terminology and notations will be mostly standard, e.g.,
given two Hilbert spaces H1 and H2, we shall denote by B(H1,H2) the set of all
operators (bounded linear mappings) from H1 into H2 or simply B(H1) if H1 =
H2. The closure X(H1) of the range X(H) of an operator X ∈ B(H1,H2) will be
denoted by ran(X) and its kernel by ker(X). The spectrum, right-spectrum and
left-spectrum of X will be denoted, respectively, by σ(X), σr(X) and σl(X).
If H is a closed subspace of K, the orthogonal projection from K onto H will
be denoted by P (H). In general, we refer the reader to the excellent books by
Böttcher and Silbermann [7], Douglas [16], Halmos [20] and [21], Nikolski [35],
Sz.-Nagy and Foiaş [45] and Young [50].

2 Toeplitz operators with respect to a semigroup

Operator representations of semigroups. Let Σ be an abelian (additive)
semigroup with identity e; we regard Σ as a directed set by saying that r ≤ s
if s = r + q for some q ∈ Σ. A family of contractions (respectively isometries,
co-isometries, unitary operators) {Ts : s ∈ Σ} ⊂ B(H) is said to be a contractive
(respectively isometric, co-isometric, unitary) representation of the semigroup
Σ in the Hilbert space H if Te is the identity operator id(H) on H and Tr+s =
TrTs for all r, s ∈ Σ.

An isometric representation {Us : s ∈ Σ} of Σ in K is said to be an isometric
dilation of a contractive representation {Ts : s ∈ Σ} in H if H is a subspace
of K and Ts = P (H)Us|H for all s ∈ Σ, and is said to be minimal if K is the
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smallest subspace containing H and Us-invariant for all s ∈ Σ or, equivalently,
if K =

∨
s∈Σ UsH.

For instance, given any contraction T ∈ B(H), the family {Tn := Tn : n =
0, 1, 2, . . . } is a contractive representation of the (additive) semigroup Z+ of
non-negative integers in H, and if U ∈ B(K) is the minimal isometric dilation
of T , then {Un := Un : n = 0, 1, 2, . . . } is a minimal isometric dilation of
{Tn : n ∈ Z+}; in this case, all the minimal isometric dilations are the same
up to unitary equivalence. However, it is not always the case that a contractive
representation {Ts : s ∈ Σ} of an arbitrary semigroup Σ has a minimal isometric
dilation, and it may also happen that two minimal isometric dilations of the
same representation are not isomorphic. Although we refer the reader to [45, I.6–
I.9], where this topic is discused in detail, let us mention the following examples
of contractive representations {Ts : s ∈ Σ} of a semigroup Σ that have a minimal

isometric dilation: (a) Σ = Z+, (b) Σ =
(
Z+

)2
, (c) Σ is the additive semigroup

R+ of all non-negative real numbers and {Ts : s ≥ 0} is continuous (that is,
lims→0+ Ts = T0 in the strong operator topology), in this case {Ts : s ≥ 0} is
usually called a continuous one-parameter semigroup of contractions, (d) {Ts :
s ∈ Σ} is a co-isometric representation (in which case the elements of a minimal
isometric dilation {Us} are, in fact, unitary; namely, {U ∗

s } is the minimal unitary
extension of the isometric representation {T ∗

s }), and (e) {Ts : s ∈ Σ} is doubly
commuting (that is, TsT

∗
r = T ∗

r Ts for all r, s ∈ Σ). For more recent advances
on the existence of minimal isometric or unitay dilations of a semigroup and
related problems about lifting operator equalities and inequalities, we refer the
interested reader to [3,4,8,9,17,34,48], and [49].

In what follows, Σ stands for a fixed abelian semigroup with identity e and
{Ts} for a contractive representation of Σ in a Hilbert space H having a minimal
isometric dilation {Us} ⊂ B(K).

1 Lemma. For every s ∈ Σ the following assertions hold true:

(1) P (H)Usk = TsP (H)k for all k ∈ K.

(2) UsH⊥ ⊂ H⊥.

(3) U∗
sH ⊂ H.

(4) U∗
s |H = T ∗

s .

Proof. Since K =
∨
r∈Σ UrH, to prove that (1) holds it will be enough to check

that P (H)UsUrh = TsP (H)Urh for all r ∈ Σ and h ∈ H. But

P (H)UsUrh = P (H)Us+rh = Ts+rh = TsTrh = TsP (H)Urh,



236 S. Bermudo, C. H. Mancera, P. J. Paúl

as desired. Now, a straightforward computation shows that the four assertions
are, indeed, equivalent (part (2) is essentially proved in [43] as a matter of
fact). QED

Toeplitz operators and Toeplitz symbols. A bounded operator X :
H → H is said to be a Toeplitz operator with respect to {Ts} if

X = TsXT
∗
s for all s ∈ Σ.

In this equation one could consider X : H1 → H2, a {T1s} representation of Σ in
H1 on the right, and a {T2s} representation of the same semigroup in H2 on the
left. Muhly [26] showed how to reduce this apparently more general situation
to the case when both representations are the same, namely, X is a solution of

X = T2sXT
∗
1s if, and only if,

[
0 X
0 0

]
is a solution of

[
0 X
0 0

]
=

[
T2s 0
0 T1s

] [
0 X
0 0

] [
T2s 0
0 T1s

]∗
.

However, this way of reducing the equation X = T2sXT
∗
1s to the equation X =

TsXT
∗
s is not suitable to study some properties, like invertibility. For the sake

of avoiding a cumbersome notation, we shall stick to the equations X = TsXT
∗
s

but the reader can check that all of the results contained in this paper are
true, with the obvious changes, for equations X = T2sXT

∗
1s (and we shall make

explicit use of this fact in the proof of assertion (2) of Theorem 3 below).
When T is a contraction and {T n} is the corresponding representation of

Z+, we recover the notion of generalized Toeplitz operator described in the
Introduction.

An operator Y : K → K is said to be a Toeplitz symbol with respect to {Ts}
if Y = UsY U

∗
s for all s ∈ Σ, that is, if Y is a Toeplitz operator with respect to

the minimal isometric dilation {Us} of {Ts}. The key point here is that if Y is
a Toeplitz symbol with respect to {Ts}, then the compression X = P (H)Y |H
is a Toeplitz operator with respect to {Ts} because, by using Lemma 1 twice,
for all s ∈ Σ and h ∈ H we have

TsXT
∗
s h = TsXU

∗
s h = TsP (H)Y U∗

s h = P (H)UsY U
∗
s h = P (H)Y h = Xh.

Our first main result is that there is a one-to-one and isometric relation between
Toeplitz operators and Toeplitz symbols.

2 Theorem. If X ∈ B(H) is a Toeplitz operator with respect to {Ts}, then
there exists a unique Toeplitz symbol Y ∈ B(K) such that X = P (H)Y |H. This
symbol is given by

Y k = lim
s∈Σ

UsXP (H)U∗
s k for all k ∈ K
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and it satisfies that ‖Y ‖ = ‖X‖.

Proof. Since K =
∨
r∈Σ UrH and {UsXP (H)U∗

s : s ∈ Σ} is uniformly bounded,
to prove that {UsXP (H)U∗

s k : s ∈ Σ} is a convergent net for each k ∈ K, it will
be enough to check that {UsXP (H)U∗

s (Urh) : s ∈ Σ} converges for all r ∈ Σ
and h ∈ H. Fix r ∈ Σ and take s ≥ r so that s = q + r for some q ∈ Σ. Now,
define

kq :=UsXP (H)U∗
sUrh = Uq+rXP (H)U∗

q+rUrh

=Uq+rXP (H)U∗
qU

∗
rUrh = Uq+rXP (H)U∗

q h = Uq+rXT
∗
q h.

Let us see that 〈kp+q, kq〉 = 〈kq, kq〉 for all p ∈ Σ. Indeed,

〈kp+q, kq〉 =
〈
Up+q+rXT

∗
p+qh, Uq+rXT

∗
q h
〉

=
〈
UpXT

∗
p+qh,XT

∗
q h
〉

=
〈
P (H)UpXT

∗
p+qh,XT

∗
q h
〉

=
〈
TpXT

∗
p T

∗
q h,XT

∗
q h
〉

=
〈
XT ∗

q h,XT
∗
q h
〉

=
〈
Uq+rXT

∗
q h, Uq+rXT

∗
q h
〉

= 〈kq, kq〉 .

Now, it follows that ‖kp+q − kq‖2 = ‖kp+q‖2−‖kq‖2 and this shows that {‖kq‖2 :
q ∈ Σ} is an increasing net of real numbers. Since this net is also bounded by
‖h‖2, it is convergent. The equality ‖kp+q − kq‖2 = ‖kp+q‖2−‖kq‖2 tells us now
that {kq : q ∈ Σ} is a Cauchy net in K, hence it converges and this finishes the
proof that

Y k = lim
s∈Σ

UsXP (H)U∗
s k for all k ∈ K

defines a bounded operator in K such that ‖Y ‖ ≤ ‖X‖.
Let us see now that X is the compression of Y to H. Indeed, by Lemma 1,

for all h ∈ H and s ∈ Σ we have

P (H)UsXP (H)U∗
s h = TsXT

∗
s h = Xh,

hence P (H)Y h = lims∈Σ P (H)UsXP (H)U∗
s h = Xh. It also follows ‖X‖ ≤ ‖Y ‖

so that, as a matter of fact, ‖X‖ = ‖Y ‖.
To prove that Y is a Toeplitz symbol, simply note that for each r ∈ Σ and

k ∈ K we have

UrY U
∗
r k = lim

s∈Σ
UrUsXP (H)U∗

sU
∗
r k = lim

s∈Σ
Ur+sXP (H)U∗

r+sk = Y k.

Finally, to prove the uniqueness of the symbol, asume that Z is a Toeplitz
symbol such that X = P (H)Z|H. Then, for all s ∈ Σ and k ∈ K we have

Zk = UsZU
∗
s k = Us

[
P (H) + P (H⊥)

]
ZU∗

s k

= UsP (H)Z
[
P (H) + P (H⊥)

]
U∗
s k + UsP (H⊥)ZU∗

s k

= UsP (H)ZP (H)U∗
s k + UsP (H)ZP (H⊥)U∗

s k + UsP (H⊥)ZU∗
s k

= UsXP (H)U∗
s k + UsP (H)ZP (H⊥)U∗

s k + UsP (H⊥)U∗
sZk.
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If we prove that lims∈Σ P (H⊥)U∗
s = 0 in K, this will imply that the last two

summands of the last line of the chain of equalities displayed above are conver-
gent to zero and, therefore, Z = lims∈Σ UsXP (H)U∗

s = Y . But, by using once
again that K =

∨
r∈Σ UrH, in order to prove that lims∈Σ P (H⊥)U∗

s = 0 in K,
it will be enough to check up on elements of the form Urh with h ∈ H. Indeed,
for s ≥ r, we have P (H⊥)U∗

sUrh = P (H⊥)U∗
s−rh = 0 because, according to

Lemma 1, the space H is U ∗
s -invariant for all s ∈ Σ. QED

As we mentioned above, when we have a contractive representation {T n}
of Σ = Z+, the subspace R, the residual part of the Wold decomposition of
the minimal isometric dilation U of T , plays an essential role because, in that
case, the Toeplitz symbols Y are essentially defined in R in the sense that
Y = P (R)Y = Y P (R). In the general semigroup case, as we are about to see
(Theorem 2 below), we have the same situation: the symbol is essentially defined
in the unitary part R of the Wold decomposition of a semigroup of isometries
introduced by Suciu [44] as follows. Since Us is an isometry, we have that UsU

∗
s

is a projection for each s ∈ Σ. Therefore, {UsU∗
s : s ∈ Σ} is a decreasing net

of commuting projections that converges strongly to the orthogonal projection
P (R) onto the subspace defined by R :=

⋂
s∈Σ UsK. Moreover, R is Us-reducing

and Us|R is unitary for all s ∈ Σ [44, Thm. 1]. (The Wold decomposition of
a semigroup of isometries has three parts called unitary, totally non-unitary or
shift, and strange or evanescent; we refer the interested reader to [44] and [27]).
Let us note at this point that if {Ts} is a co-isometric representation of Σ,
then each Us is unitary, hence R = K. This shows that the importance of the
role played by R is hidden in the classical case because if T is the backward
shift B in H2(T), then R = K = L2(T). In our case, each single Us might not
be the minimal isometric dilation of the corresponding Ts and R might not
be the residual subspace of the Wold decomposition of Us but, nevertheless,
this subspace R has similar properties, so we shall call it the residual subspace
of the minimal isometric dilation {Us} of {Ts}. We record now for later use
some of the properties of the representations {Ts} and {Us} related to R (see,
e.g., [38, Lemmas 2.3 and 2.4] and [45, II.3] for the case of a single contraction).

3 Lemma. Let R :=
⋂
t∈Σ UtK be the residual subspace of the minimal iso-

metric dilation {Us} of {Ts}. Let P be the closure of P (R)H. Then the following
assertions hold:

(1) For each s ∈ Σ, the residual subspace R is a Us-reducing subspace of K
contained in the residual subspace of the Wold decomposition of Us.

(2) Us|R is a unitary operator.

(3) R = P ⊕ (R∩H⊥), where H⊥ is the orthocomplement of H in K.
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(4) P (P)h = P (R)h for every h ∈ H.

(5) P (H)P (P) = P (H)P (R).

(6) For all h ∈ H and s ∈ Σ the following chain of equalities holds

U∗
sP (P)h = P (P)U∗

s h = P (P)T ∗
s h = U∗

sP (R)h = P (R)U∗
s h = P (R)T ∗

s h.

(7) P is U∗
s -invariant and U ∗

s |P is an isometry.

(8) For each s ∈ Σ, define the co-isometry Rs := (U∗
s |P)∗ ∈ B(P). Then

{Rs} is a co-isometric representation of Σ in P and {Us|R} is a minimal
isometric (unitary, in fact) dilation of {Rs}.

Proof. (1) Since R =
⋂
t∈Σ UtK, it is clear that R is Us-invariant. Now, given

an element k = limt UtU
∗
t k ∈ R, we have

U∗
s k = lim

t
U∗
sUtU

∗
t k = lim

r
U∗
sUs+rU

∗
s+rk = lim

r
UrU

∗
rU

∗
s k = P (R)U∗

s k,

and it follows that R is U ∗
s -invariant. Finally, if Rs is the residual subspace of

the isometry Us then, as it is well-known,

Rs =
⋂

n∈N

Uns K =
⋂

n∈N

UnsK ⊃
⋂

t∈Σ

UtK = R.

(2) follows from (1).
(3) For every x ∈ R and h ∈ H we have

〈x, h〉 = 〈P (R)x, h〉 = 〈x, P (R)h〉

so it follows, by using that P (R)H is dense in P, that 〈x,P〉 = 0 if, and only
if, x ∈ H⊥.

Noting that P (R ∩ H⊥)h = 0 for all h ∈ H, we have that (4) follows from
(3).

(5) also follows from (3) because

P (H)P (R) = P (H)
[
P (P) + P (R∩H⊥)

]
= P (H)P (P).

(6) By Lemma 1, U∗
s h = T ∗

s h ∈ H. By using now assertions (1) and (4), we
have

U∗
sP (P)h = U∗

sP (R)h = P (R)U∗
s h = P (P)U∗

s h = P (P)T ∗
s h.

By using (5) we obtain the whole chain of equalities.
(7) follows from (6) and (2).
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(8) Since P is U∗
s -invariant for each s ∈ Σ we have that

Rs+t =
(
U∗
s+t|P

)∗
=
(
U∗
t U

∗
s |P

)∗
=

=
(
(U∗

t |P)(U∗
s |P)

)∗
= (U∗

s |P)∗(U∗
t |P)∗ = RsRt.

Trivially, Re is the identity on P, hence {Rs} is a co-isometric representation
of Σ in P.

Now, to prove that Rs = P (P)Us|P, it will be enough to prove that the
equality holds for elements of the form P (R)h with h ∈ H. But

RsP (R)h = (U∗
s |P)∗P (R)h = P (P)UsP (P)P (R)h = P (P)UsP (R)h.

Finally, since K =
∨
s∈Σ UsH, we have, by using that R is Us-reducing for all

s ∈ Σ, that

R = P (R)K =
∨

s∈Σ

P (R)UsH =
∨

s∈Σ

UsP (R)H =
∨

s∈Σ

UsP.

This finishes the proof that {Us|R} is a minimal isometric dilation of {Rs}.
QED

4 Theorem. (1) If Y is a Toeplitz symbol with respect to {Ts : s ∈ Σ},
then Y is an operator defined essentially in R =

⋂
s∈Σ UsK in the sense that

Y = Y P (R) = P (R)Y and Y commutes with both Us and U∗
s for all s ∈ Σ.

(2) The compression Y ′ = P (P)Y |P is a Toeplitz operator with respect to
the co-isometric representation {Rs} of Σ in P. Conversely, if Y ′ is a Toeplitz
operator with respect to {Rs} and Y ∈ B(R) is its Toeplitz symbol with respect
to {Rs}, then the operator P (R)Y P (R) ∈ B(K) is a Toeplitz symbol with respect
to {Ts}.

Proof. (1) Since every Us is an isometry and we have that Y = UsY U
∗
s , it follows

that Y Us = UsY and that U∗
s Y = Y U∗

s . Therefore,

Y = UsY U
∗
s = Y UsU

∗
s for all s ∈ Σ.

Taking limits as s ∈ Σ, we obtain Y = Y P (R). The equality P (R)Y = Y can
be proved analogously.

(2) Since Y = P (R)Y P (R) and, according to Lemma 2 above, {Us|R} is
a minimal isometric dilation of {Rs} and R is Us-reducing for each s ∈ Σ, the
equality Y = UsY U

∗
s implies that

Y |R = (Us|R)Y (Us|R)∗ = (Us|R)(Y |R)(Us|R)∗,
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hence Y |R = P (R)(Y |R)P (R) is a Toeplitz symbol with respect to {Rs}. It
follows now from Theorem 1 that Y ′ = P (P)Y |P is a Toeplitz operator with
respect to the co-isometric representation {Rs} of Σ in P.

Conversely, if Y ′ is a Toeplitz operator with respect to {Rs} and Y ∈ B(R)
is its Toeplitz symbol with respect to {Rs}, then Y = (Us|R)Y (Us|R)∗. Now,
by using again that R is Us-reducing, we have

P (R)Y P (R) = UsP (R)Y P (R)U∗
s

hence P (R)Y P (R) ∈ B(K) is a Toeplitz symbol with respect to {Ts}. QED

5 Corollary. There is a one-to-one and isometric relation between the set
of all Toeplitz operators with respect to a contractive representation {Ts} and
the set of all Toeplitz operators with respect to the co-isometric representation
{Rs} defined by Rs := (U∗

s |P)∗ for each s ∈ Σ, and related Toeplitz operators
share, essentially, the same symbol.

Analytic Toeplitz operators. Since the set of classical analytic symbols is
H∞(T) and this space can be seen as the set of symbols such that the associated
Toeplitz operator commutes with the forward shift S or, also, as the set of
symbols that leave H2(T) invariant, we may keep the analogy with the classical
and say that a Toeplitz symbol Y is analytic if Y (H) ⊂ H. Thus a Toeplitz
symbol Y is analytic when P (H⊥)Y |H = 0. A Toeplitz operator X is said to be
analytic if its symbol Y is analytic and, in that case, X is simply the restriction
of Y , i.e. X = Y |H. For the case when {Ts} is a co-isometric representation of
Σ, Douglas [15] proved the existence of (what we call here) analytic Toeplitz
symbols and also that a Toeplitz operator X is analytic if, and only if, XT ∗

s =
T ∗
sX for each s ∈ Σ as in the classical case. For the general case, we shall need

the following

6 Lemma. Let X : H → H be a bounded operator. Then X is an analytic
Toeplitz operator with respect to {Ts} if, and only if, XT ∗

s = T ∗
sX for all s ∈ Σ

and ran(X) ⊂ H ∩R.

Proof. Assume that X is an analytic Toeplitz operator with respect to {Ts} and
let Y be the symbol of X. Since, by Theorem 2, Y = Y P (R) = P (R)Y , if Y
is analytic, then X = Y |H ⊂ R, hence X(H) ⊂ H ∩ R. Moreover, by using
Lemma 1 and Theorem 2, for all h ∈ H and s ∈ Σ we have

XT ∗
s h = Y U∗

s h = U∗
s Y h = U∗

sXh = T ∗
sXh.

Conversely, assume that XT ∗
s = T ∗

sX for all s ∈ Σ and that ran(X) ⊂ H∩R.
Let us check first that X is a Toeplitz operator with respect to {Ts}. By using
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Lemma 1 (4), we have that

TsXT
∗
s = TsT

∗
sX = TsU

∗
sX.

Now, by using that ran(X) ⊂ H ∩R ⊂ P ⊂ R and Lemma 2 (6), the chain of
equalities continues

TsXT
∗
s = TsU

∗
sX = TsU

∗
sP (P)X = TsP (R)T ∗

sX = P (H)UsP (R)U∗
sX.

Finally, by using that R is reducing for Us, that Us is unitary on R and, again,
that ran(X) ⊂ H ∩R, we conclude

TsXT
∗
s = P (H)UsP (R)U∗

sX = P (H)P (R)UsU
∗
sX = P (H)P (R)X = X.

This shows that X is a Toeplitz operator such that XT ∗
s = T ∗

sX for all s ∈ Σ.
To prove that X is analytic proceed as follows. For each h ∈ H we have, by
using Lemma 1 and Theorem 1, that

Y h = lim
s∈Σ

UsXP (H)U∗
s h = lim

s∈Σ
UsXT

∗
s h = lim

s∈Σ
UsT

∗
sXh.

Since ran(X) ⊂ H∩R, we have XT ∗
s h = T ∗

sXh = U∗
sXh ∈ R and, by using that

U |R is unitary in the Us-reducing subspace R, the computation above yields

Y h = lim
s∈Σ

UsU
∗
sXh = Xh ∈ H.

Therefore, YH ⊂ H and this proves that Y is analytic. QED

Note that if every Ts is a co-isometry, then the equality XT ∗
s = T ∗

sX implies
immediately that X = TsXT

∗
s , hence any operator commuting with each T ∗

s

is a Toeplitz operator. Since, in this case we also have that R = K so that
R ∩ H = H, Lemma 3 tells us, in particular, that if every Ts is a co-isometry,
then X is an analytic Toeplitz operator if, and only if, XT ∗

s = T ∗
sX, so we

recover Douglas’s result [15, Thm. 2] quoted above.

3 Comparison to Muhly’s approach

Description of Muhly’s approach. As we mentioned above, Muhly [26]
extended to the semigroup case the lifting of a Toeplitz type equation proposed
by Douglas [14]. We start by describing this approach, and the first thing we
must mention is that Muhly studies the equation T ∗

sXTs = X rather than
X = TsXT

∗
s , so our description of his results from that paper will be adapted

to the convention we are using here.
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The (DM) lifting is a two-step procedure. First step [26, Thm. I]: LetA be the
positive square root of the strong limit of the net {TsT ∗

s : s ∈ Σ} and denote by
M the closure of the range of A, then there is an isometric representation {Vs}
of Σ in M such that VsA = AT ∗

s for each s ∈ Σ. This isometric representation
has the following property: an operator X ∈ B(H) is a Toeplitz operator with
respect to {Ts} if, and only if, there is an operator X ′ ∈ B(M) such that (i)
‖X ′‖ = ‖X‖, (ii) X ′ is a Toeplitz operator with respect to {V ∗

s }, and (iii)
X = AX ′A. Although this is not explicitely mentioned in [26], it is easy to
check that the relationship between X and X ′ is one-to-one. Simply note that
since A is an operator from H intoM, the equality X = AX ′A must be read as
X = (A|M)X ′A, so that if X = 0 then (A|M)X ′(AH) = 0 hence (A|M)X ′ = 0
and, taking adjoints, 0 = (X ′)∗P (M)A|H, so that X ′ = 0.

Second step [26, Thm. II]: Let {Ws} ⊂ B(N ) be the minimal unitary dilation
of the co-isometric representation {V ∗

s } (in other words, {W ∗
s } is the minimal

unitary extension of the isometric representation {Vs}). Then an operator X ′ ∈
B(M) is a Toeplitz operator with respect to {V ∗

s } if, and only if, there is a
unique operator Z ∈ B(N ) such that (i) ‖Z‖ = ‖X ′‖, (ii) Z is a Toeplitz
operator with respect to {Ws}, and (iii) X ′ is the compression of Z to M, i.e.,
X ′ = P (M)Z|M. Plainly, this second step can be seen as our Theorem 1 above
applied to the particular case when every Ts is a co-isometry.

Equivalence of both approaches. These two steps yield a representation
of a Toeplitz operator X as X = AP (M)ZA, where Z is a Toeplitz operator
with respect to a unitary representation of Σ such that ‖Z‖ = ‖X‖. Our The-
orem 1 provides a representation of a Toeplitz operator X as X = P (H)Y |H,
where Y is a Toeplitz operator with respect to the minimal isometric dilation
of {Ts} such that ‖Y ‖ = ‖X‖. The relationship between Y and Z is linear,
one-to-one and isometric, so both approaches are formally equivalent under the
hypothesis, common to Lemma 4 and Theorem 3, of the existence of an isomet-
ric dilation for {Ts}. In Theorem 3 below we go further by showing an explicit
unitary link between the Toeplitz operator Y ′ ∈ B(P) defined in Theorem 2 and
X ′ = P (M)Z|M.

Which approach should one use? Of course, unitary operators are simpler
than isometries and (DM) approach works even if {Ts} has no minimal isometric
dilation. However, on the other hand, the relationship between X and Y is
simpler than the relationship between X and Z and, as we shall see in Section 4,
it enables us to obtain a number of results about the linking between properties
of X and those of Y .

7 Lemma. Let {Ts} be a contractive representation of a semigroup Σ in a
Hilbert space H having a minimal isometric dilation {Us} ⊂ B(K), with residual
subspace R, and let P be the closure of P (R)H. Then the following hold:
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(1) A2 = P (H)P (R)|H.

(2) There exists a unitary operator E :M→ P such that EAh = P (R)h for
all h ∈ H.

(3) The unitary operator E intertwines the isometries Vs and U∗
s |P = R∗

s for
all s ∈ Σ.

Proof. To prove assertion (1), simply compute. For every h ∈ H we have, by
using Lemma 1, that

A2h = lim
s
TsT

∗
s h = lim

s
P (H)UsU

∗
s h = P (H) lim

s
UsU

∗
s h = P (H)P (R)h.

(2) Given an arbitrary element h ∈ H, take x = Ah ∈ A(H) and y =
P (R)h ∈ P (R)H, and define E : A(H) → P (R)H by Ex := y or, in other
terms, define E by the relation EA = P (R)|H. First of all, let us note that E
is well-defined because if Ah1 = Ah2 then A2(h1−h2) = 0 so that, by assertion
(1), P (H)P (R)(h1−h2) = 0. This proves that P (R)(h1−h2) ∈ H⊥ ∩R, where
H⊥ is the orthocomplement of H in K. But, as we have seen in Lemma 2 above,
R∩H⊥ is the orthocomplement of P in R, hence P (R)(h1 − h2) ∈ R	P. On
the other hand, P (R)(h1 − h2) ∈ P by definition, thus P (R)h1 = P (R)h2 and
this shows that E is a well-defined linear operator from A(H) into P (R)H. Let
us see now that E is an isometry. By using assertion (1) again, we have

‖x‖2 = ‖Ah‖2 =
〈
A2h, h

〉
= 〈P (H)P (R)h, h〉

= 〈P (R)h, h〉 =
〈
P (R)2h, h

〉
= ‖P (R)h‖2 = ‖y‖2 .

Therefore, E can be extended to a unitary operator E : M → P such that
EAh = P (R)h for all h ∈ H.

(3) We have to prove that EVs = (U∗
s |P)E for all s ∈ Σ. By density, it

will be enough to check that EVsAh = (U∗
s |P)EAh for all h ∈ H. Since, as we

mentioned above, U∗
sP (R)h = P (R)T ∗

s h, we have

EVsAh = EAT ∗
s h = P (R)T ∗

s h = U∗
sP (R)h = (U∗

s |P)EAh.

This finishes the proof. QED

8 Theorem. Let {Ts} be a contractive representation of a semigroup Σ in
a Hilbert space H having a minimal isometric dilation {Us} ⊂ B(K). Then (1)
The unitary operator E :M→ P defined above provides a unitary relationship
between the Toeplitz operators with respect to the co-isometric representation
{V ∗

s } of Σ in M and the Toeplitz operators with respect to the co-isometric
representation {Rs} of Σ in P. Namely, an operator X ′ ∈ B(M) satisfies X ′ =
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V ∗
s X

′Vs for all s ∈ Σ if, and only if, the operator Y ′ = EX ′E∗ ∈ B(P) satisfies
Y ′ = RsY

′R∗
s for all s ∈ Σ.

(2) The unitary operator E can be extended to a unitary operator J : N → R
that intertwines the symbol Y , considered as an operator in R, and the operator
Z ∈ B(N ) constructed in Muhly’s second step described above.

Proof. (1) By Lemma 4, we have that EV ∗
s = (U∗

s |P)∗E. Hence if X ′ = V ∗
s X

′Vs,
then

EX ′E∗ = EV ∗
s X

′VsE
∗ = (U∗

s |P)∗EX ′E∗(U∗
s |P) = RsEX

′E∗R∗
s .

The converse is analogous.
(2) By Lemma 4, EVs = (U∗

s |P)E = R∗
sE for each s ∈ Σ. As in the descrip-

tion of Muhly’s lifting second step, let {Ws} ⊂ B(N ) be the minimal isometric
dilation of {V ∗

s }. First, we shall extend the unitary operator E : M→ P to a
unitary operator J : N → R such that JW ∗

s = U∗
s J for each s ∈ Σ. Since {V ∗

s }
and {Rs} are co-isometric, the equality EVs = R∗

sE tells us (Lemma 3 above
or [15]) that the E :M→ P is an analytic Toeplitz operator with respect to the
semigroup representations {V ∗

s } and {Rs}, hence (Theorem 1 and Lemma 3)
E :M→ P can be extended to an analytic Toeplitz symbol J : N → R, that
is, E = J |M and JW ∗

s = U∗
s J for each s ∈ Σ. Obviously, J is defined on finite

sums of the form
∑
Wsms by J(

∑
Wsms) :=

∑
UsEms and extends to all of

N by density. We claim that J is also unitary, and we shall prove this fact in the
Corollary to Theorem 4 below. Let us then, continue, and prove that Y J = JZ.

As we mentioned in the description of Muhly’s lifting second step, Z is
obtained from X ′ as described in Theorem 1 (this can also be directly checked
in the proof of [26, Thm. II]), namely

Zx = lim
s
WsX

′P (M)W ∗
s x for all x ∈ N .

We have proved above that Y ′ = EX ′E∗ is a Toeplitz operator with respect to
{Rs} that, by the one-to-one relation between X, X ′ and Y ′ and Theorem 2,
has the same Toeplitz symbol as X, that is

Y P (R)k = lim
s
UsY

′P (P)U∗
sP (R)k for all k ∈ K.

Hence, by using that JWs = UsJ for all s ∈ Σ and that J∗P (P)J = P (M)
because J : N → R is unitary and extends E :M→ P , it follows that for all
x ∈ N we have

Y Jx = lim
s
UsY

′P (P)U∗
s Jx = lim

s
UsY

′P (P)JW ∗
s x

= lim
s
UsJX

′J∗P (P)JW ∗
s x = lim

s
JWsX

′P (M)W ∗
s x = JZx.

This finishes the proof. QED
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9 Corollary. For the case of a single contraction, the approaches (DM) and
(PV) described above are unitarily equivalent.

4 Properties of Toeplitz operators

Within the framework of Toeplitz operators with respect to a single contrac-
tion, we gave in [24] and [25] appropriate extensions, as well as clarifying exam-
ples, of a number of results about classical Toeplitz operators; namely, Wintner’s
theorem of invertibility of analytic Toeplitz operators, Widom and Devinatz’s
invertibility criteria for Toeplitz operators with unitary symbols, Hartman and
Wintner’s theorem about Toeplitz operators having Fredholm symbols, Hart-
man and Wintner’s estimate of the norm of a compactly perturbed Toeplitz op-
erator, the non-existence of compact classical Toeplitz operators due to Brown
and Halmos, and some spectral properties that complemented the work done
by Sz.-Nagy and Foiaş.

The tools that we used in [24] and [25] (the existence and uniqueness of
symbols, the residual subspace, the associated Toeplitz operator Y ′, etc.) work
similarly in the semigroup case, so the proofs of our results there can be carried
out almost word by word to the present situation. To prevent from making this
paper unnecessarily long, we shall only state and prove, under the assumption
that {Ts} is a co-isometric representation of Σ, the extensions of Wintner’s
theorem of invertibility of analytic Toeplitz operator, the spectral inclusions
between the left and right spectra of a Toeplitz symbol and the corresponding
spectra of its associated Toeplitz operator, and Hartman and Wintner’s theorem
about Toeplitz operators having Fredholm symbols.

The hypothesis that {Ts} is a co-isometric representation of Σ in H, implies
that every Us = Ws is a unitary operator on K = R = N , that H = M = P,
that X = X ′ = Y ′, that Z = Y , and that X is an analytic Toeplitz operator
if, and only if, XT ∗

s = T ∗
sX. These consequences help us to avoid technicalities

—otherwise necessary in the most general case as the examples in [24] and [25]
show— in the arguments. Nevertheless, the results that we offer give a flavor
of the situation and can be still applied to some examples, as we shall see in
Section 5. Let us remark at this point that these results will sound undoubtly
familiar to the reader of the papers we quote here; please bear in mind that our
main purpose here is to show that they fit into a common framework.

10 Theorem. Let X be an analytic Toeplitz operator with respect to the co-
isometric representation {Ts}. Then X is invertible if, and only if, its symbol
Y is invertible and Y −1 is also an analytic Toeplitz symbol, in which case the
Toeplitz operator associated to Y −1 is X−1.
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Proof. Assume that X is invertible. Since X is analytic, it commutes with each
T ∗
s . According to Douglas’s characterization [15, Thm. 2] quoted after Lemma 3

above to prove that X−1 is also an analytic Toeplitz operator it will be enough
to prove that X−1 commutes with each T ∗

s . Indeed,

T ∗
sX

−1 = X−1XT ∗
sX

−1 = X−1T ∗
sXX

−1 = X−1T ∗
s .

Let Y0 be the analytic symbol of X−1. We have to prove now that Y Y0 = Y0Y =
id(K). Since K =

∨
s∈Σ UsH, we only need to check up elements of the form Urh

with r ∈ Σ and h ∈ H. But, by using Theorem 1, we have

Y Y0Urh = lim
s∈Σ

Y UsX
−1P (H)U∗

sUrh

= lim
s>r

Y UsX
−1P (H)U∗

sUrh = lim
s>r

Y UsX
−1P (H)U∗

s−rh.

Now, by using that Y commutes with each Us (by Theorem 2), that H is U ∗
s−r-

invariant (by Lemma 1) and that X = Y |H due to the analyticity, we have

Y Y0Urh = lim
s>r

Y UsX
−1P (H)U∗

s−rh = lim
s>r

UsY X
−1U∗

s−rh

= lim
s>r

UsXX
−1U∗

s−rh = lim
s>r

UsU
∗
s−rh = Urh.

The equality Y0Y Urh = Urh follows analogously.
Conversely, if Y is invertible and Y −1 is also an analytic symbol with Toeplitz

operator X0, then H is Y -invariant and Y −1-invariant so that

XX0 = Y |HY −1|H = Y Y −1|H = id(H).

Analogously, one can prove that X0X = id(H). Therefore X is invertible.
QED

11 Corollary. Let {Ts} be a co-isometric representation of a semigroup Σ
and let {Us} be its minimal unitary dilation. Let X be a unitary operator that
commutes with every Ts. Then X is an analytic Toeplitz operator with respect to
{Ts} that can be uniquely extended to a unitary operator Y ∈ B(K), its analytic
symbol, that commutes with every Us.

Proof. By taking adjoints in the equality TsX = XTs and using that X is
unitary, it follows that X∗T ∗

s = T ∗
sX

∗ and that XT ∗
s = T ∗

sX for every s ∈
Σ. Therefore, X and X∗ are both analytic Toeplitz operators with respect to
{Ts}. Since X is invertible and its inverse is X∗, it follows from Theorem 4
that its symbol Y is invertible and that its inverse is the symbol Y ∗ of X∗.
Hence Y is unitary, extends X because it is analytic, and Y Us = UsY by
Theorem 2. QED
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When every Ts is a co-isometry, it is clear that λ id(H) is an analytic Toeplitz
operator with respect to {Ts} for each complex number λ and it follows from the
theorem that for analytic Toeplitz operators we have σ(Y ) ⊂ σ(X). This is true
for arbitrary Toeplitz operators with respect to a co-isometric representation,
as was proved by Muhly [26, Thm. III]. We can go a bit further.

12 Theorem. Let X be a Toeplitz operator with respect to a co-isometric
representation {Ts} and let Y be the symbol of X. Then

σl(Y ) ⊂ σl(X) and σr(Y ) ⊂ σr(X).

Moreover, if X is analytic then σl(Y ) = σl(X).

Proof. Since X−λ id(H) is a Toeplitz operator with symbol Y −λ id(K), to prove
that σl(Y ) ⊂ σl(X) it will be enough to prove that if X is left-invertible then
so is Y . If X is left-invertible, then there exists ε > 0 such that ‖Xh‖ ≥ ε ‖h‖
for each h ∈ H. Now, for each r ∈ Σ and h ∈ H we have

‖Y Urh‖ = ‖UrY h‖ = ‖Y h‖ ≥ ‖P (H)Y h‖ = ‖Xh‖ ≥ ε ‖h‖ = ε ‖Urh‖ .

Now take a finite linear combination k =
∑

s∈Φ Ushs and consider r =
∑

s∈Φ s.
Using again that H is U ∗

s -invariant for all s ∈ Σ, we have that h =
∑

s∈Φ U
∗
r−shs

is in H. Hence, by the inequality we have just established, it follows that

‖Y k‖ =

∥∥∥∥∥Y (
∑

s∈Φ

Ushs)

∥∥∥∥∥ =

∥∥∥∥∥Y Ur(
∑

s∈Φ

U∗
r−shs)

∥∥∥∥∥ = ‖Y Urh‖ ≥ ε ‖Urh‖ = ε ‖k‖ .

Since K =
∨
s∈Σ UsH, we have ‖Y k‖ ≥ ε ‖k‖ for all k ∈ K so that Y is left-

invertible.

To prove that σr(Y ) ⊂ σr(X), simply note that X∗ is a Toeplitz operator
with Toeplitz symbol Y ∗ and take complex conjugates in the inclusion σl(Y

∗) ⊂
σl(X

∗).
Now assume that X is analytic and that X is not left-invertible. Then there

exists a sequence of unit vectors (hn) ⊂ H such that limn ‖Xhn‖ = 0. This
implies, by using that X = Y |H, that limn ‖Y hn‖ = 0, so that Y is not left-
invertible. This shows that if X is analytic then the inclusion σl(X) ⊂ σl(Y )
also holds. QED

It is well-known that for φ ∈ L∞ the spectrum of Mφ is the essential range
of φ. On the other hand, Wintner’s Theorem (see, e.g., [16, 7.21], [21, Prob. 247]
or [35, p. 320]) says that the spectrum of a classical analytic Toeplitz operator

Tφ equals φ̃(D) where φ̃ is the analytic extension of φ to the open unit disc D.
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So even under the most favourable (but non-trivial) conditions there is no hope
of obtaining that σ(Y ) = σ(X) or, for that matter, σr(Y ) = σr(X).

Now, denote by F(H) the set of all Fredholm operators. Atkinson’s theorem
[16, 5.17] tells us that F(H) can be written as F(H) = F+(H) ∩ F−(H) where

F+(H) = {A ∈ B(H) : AH is closed and kerA is finite-dimensional}
F−(H) = {A ∈ B(H) : AH is closed and kerA∗ is finite-dimensional}.

13 Theorem. Let X be a Toeplitz operator with respect to a co-isometric
representation {Ts} and let Y be the symbol of X. Then the following hold:

(1) If X ∈ F+(H) then Y ∈ F+(K).

(2) If X ∈ F−(H) then Y ∈ F−(K).

(3) If X ∈ F(H) then Y ∈ F(K).

Proof. Since an operator is in F+ if, and only if, its adjoint is in F−, we only need
to prove (1). Now, if K is finite-dimensional then it is obvious that Y ∈ F+(K)
and there is nothing to prove. So we may, and do, assume that K is infinite-
dimensional. We shall use the following general characterization for operators
in F+(H) [7, 1.11(g)]:

Let H be a Hilbert space and take A ∈ B(H). If A ∈ F+(H) and P0 is the
orthogonal projection from H onto ker(A) then there exists δ > 0 such that
‖Ax‖ + ‖P0x‖ ≥ δ ‖x‖ for all x ∈ H. Conversely, if there is a finite number
of compact operators K1,K2, . . . ,Kn ∈ B(H) and δ > 0 such that ‖Ax‖ +∑n

j=1 ‖Kjx‖ ≥ δ ‖x‖ for all x ∈ H, then A ∈ F+(H).

So assume X ∈ F+(H) and let P0 be the orthogonal projection from H onto
ker(X). Then, according to the characterization written above, there exists δ > 0
such that ‖Xh‖+ ‖P0h‖ ≥ δ ‖h‖ for all h ∈ H. Therefore,

‖P (H)Y P (H)k‖+ ‖P0P (H)k‖ ≥ δ ‖P (H)k‖ for all k ∈ K.

Add δ
∥∥P (H⊥)k

∥∥ to both sides of this inequality to obtain

‖P (H)Y P (H)k‖+ δ
∥∥∥P (H⊥)k

∥∥∥+ ‖P0P (H)k‖ ≥ δ ‖k‖ for all k ∈ K.

In particular, fix k ∈ K such that k 6= 0, since U ∗
s is unitary for all s ∈ Σ, we

have

‖P (H)Y P (H)U ∗
s k‖+ δ

∥∥∥P (H⊥)U∗
s k
∥∥∥+ ‖P0P (H)U∗

s k‖ ≥ δ ‖U∗
s k‖ = δ ‖k‖ .
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Now use that each Us is an isometry to write

‖UsP (H)Y P (H)U∗
s k‖+ δ

∥∥∥P (H⊥)U∗
s k
∥∥∥+ ‖P0P (H)U∗

s k‖ ≥ δ ‖k‖ . (i)

We shall analyze the behaviour of each one of the three summands in the left
hand side of (i). For the first one we know, by Theorem 1 and the equal-
ity XP (H) = P (H)Y P (H), that lims∈Σ UsP (H)Y P (H)U∗

s k = Y k. Therefore,
there exists s0 ∈ Σ, depending on k, such that if s ≥ s0 then

‖UsP (H)Y P (H)U∗
s k‖ − ‖Y k‖ ≤ ‖UsP (H)Y P (H)U∗

s k − Y k‖ <
δ

4
‖k‖ . (ii)

Concerning the second summand, use thatK =
∨
s∈Σ UsH to find h1, h2, . . . , hn ∈

H and r1, r2, . . . , rn ∈ Σ such that ‖k −∑n
i=1 Urihi‖ ≤ 1/4 ‖k‖. Then, by using

that H is U∗
s -invariant, for all s ≥ s1 := r1 + r2 + · · ·+ rn, we have

∥∥∥P (H⊥)U∗
s k
∥∥∥ ≤

∥∥∥∥∥P (H⊥)U∗
s

(
k −

n∑

i=1

Urihi
)
∥∥∥∥∥+

∥∥∥∥∥P (H⊥)U∗
s

n∑

i=1

Urihi

∥∥∥∥∥

≤ 1/4 ‖k‖+

∥∥∥∥∥P (H⊥)

n∑

i=1

U∗
s−rihi

∥∥∥∥∥ = 1/4 ‖k‖ .
(iii)

Now, for the third summand note that given x ∈ K all the terms of the net

C(x) := {P0P (H)U∗
s : s ∈ Σ}

belong to the finite-dimensional subspace ker(X). Since it is clear that C(x)
is bounded, it follows that C(x) is relatively compact and Tikhonov’s theorem
ensures that the product set

∏
x∈K C(x) is relatively compact for the product

topology. Therefore, the net

{(P0P (H)U∗
s x)x∈K : s ∈ Σ}

has an adherent point (Cx)x∈K in the product space
∏
x∈K C(x). This gives us

a function C : K → ker(X) and a standard proof shows that C is a bounded
linear mapping with finite rank, hence C is a compact operator. Note that C
does not depend on our previously fixed k ∈ K. Going back to this k ∈ K, there
exists an cofinal set Σk ⊂ Σ such that for all s ∈ Σk the following holds

‖P0P (H)U∗
s k‖ − ‖Ck‖ <

δ

4
‖k‖ . (iv)

Now, since Σk is cofinal, we may take s ∈ Σk such that s ≥ s0 and s ≥ s1. With
this s plug (ii), (iii) and (iv) in (i) to obtain

‖Y k‖+ ‖Ck‖ > ‖UsP (H)Y P (H)U∗
s k‖+ δ

∥∥∥P (H⊥)U∗
s k
∥∥∥

+ ‖P0P (H)U∗
s k‖ −

3δ

4
‖k‖ ≥ δ

4
‖k‖ .

(v)
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Since k was arbitrary in K, the characterization quoted at the beginning of the
proof tells us that Y ∈ F+(K). QED

5 Examples

The purpose of this final section is to show that a number of widely studied
classes of operators can be defined as the families of all Toeplitz operators with
respect to suitable semigroups.

Toeplitz operators in the sense of Murphy. In the series of papers
[29–32] and [33], Murphy has extended the notion, and many of the properties,
of classical Toeplitz operator to Hardy spaces generated by function algebras (a
similar extension was introduced by Cowen and Douglas [11]); we shall describe
his framework as explained in [32]. Let Ω be a function algebra on a compact
Hausdorff space G having a unique representing measure µ for a character of Ω.
Then a great deal of the theory of Hardy spaces on T extends to this setting.
Let H2(µ) be the closure of Ω in L2(µ). The functions in H2(µ) are called
analytic; in particular, the analytic and unimodular functions are called µ-inner,
as in the classical case. Every function φ ∈ L∞(µ) defines a Toeplitz operator
Tφ : H2(µ) → H2(µ) by Tφf := P (φ · f) where P is the orthogonal projection
from L2(µ) onto H2(µ). Let Σ be the semigroup of all µ-inner functions, then
Murphy proved [32, Thm. 2.1] that X : H2(µ) → H2(µ) is a Toeplitz operator
if, and only if, X = T ∗

φXTφ for every µ-inner φ. Whence, in our language,

X : H2(µ)→ H2(µ) is a Toeplitz operator in the sense of Murphy if, and only
if, X is a Toeplitz operator with respect to the semigroup {T ∗

φ : φ ∈ Σ}. Our
results in Section 4 yield some of the results obtained by Murphy for individual
Toeplitz operators. He also produced a number of interesting contributions to
the study of the Toeplitz algebra generated by Toeplitz operators; we refer the
interested reader to his papers.

Toeplitz operators on H2(Td). Let L2(Td) and H2(Td) be the correspond-
ing Lebesgue and Hardy spaces of functions of d variables f : Td → C. As in the
one dimensional case, every function φ ∈ L∞(Td) defines a Toeplitz operator on
H2(Td) by Tφf := P (φ · f), where P is the orthoprojection from L2(Td) onto
H2(Td). The operator Tφ is said to be analytic if the symbol φ ∈ H∞(Td). This
class of operators has been studied by many authors; we refer the reader to the
book by Böttcher and Silbermann [7, Ch. 8] and references therein (see also [1]).

Given ~n = (n1, n2, . . . , nd) ∈ Zd+ consider the shift S~n defined on H2(Td) by

(S~nf)(ζ1, ζ2, . . . , ζd) := ζn1
1 ζn2

2 · · · ζnd

d f(ζ1, ζ2, . . . , ζd).

If we now define T~n := S∗
~n, then it is clear that {T~n : ~n ∈ Zd+} is a co-isometric

representation of Zd+ in H2(Td) that has a minimal isometric dilation {U~n : ~n ∈
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Zd+} defined on L2(Td) by

(U~nf)(ζ1, ζ2, . . . , ζd) := ζ−n1
1 ζ−n2

2 · · · ζ−nd

d f(ζ1, ζ2, . . . , ζd).

(Recall that an arbitrary contractive representation of Zd+ does not necessarily
have a minimal isometric dilation if d > 2 [45, I.6.3].)

Following the lines of the proof given by Brown and Halmos for the one
dimensional case, it is easy to see, and surely well-known, that X ∈ B(H2(Td))
is a Toeplitz operator if, and only if, it is a Toeplitz operator with respect to {T~n :
~n ∈ Zd+} and that analytic Toeplitz operators Tφ with φ ∈ H∞(Td) correspond
to analytic Toeplitz operators with respect to {T~n : ~n ∈ Zd+}. Theorems 4
and 6 above do not provide new information, only alternative proofs, about
analytic Toeplitz operators in H2(Td). Nevertheless, one of the consequences
of Theorem 5, the fact that if φ ∈ H∞(Td), then σl(φ) = σl(Tφ), is probably
well-known at least, as we mentioned above, for Toeplitz operators in the sense
of Murphy [31, 5.6] so, in particular, for the one dimensional case; however, we
have been unable to locate a reference for the d-dimensional case. Recall that if
φ ∈ H∞(Td) then σ(φ) = σl(φ) hence, in fact, the part covered by the spectrum
of φ within the spectrum of its Toeplitz operator Tφ (which is greater in general)
is exactly the left spectrum of Tφ.

Toeplitz operators with respect to a continuous semigroup. Let
{Ts : s ≥ 0} be a continuous one-parameter semigroup of contractions and let

A := lim
s→0+

Ts − id(H)

s
and T :=

(
A+ id(H)

)(
A− id(H)

)−1

be, respectively, the generator and the co-generator of the semigroup. As it is
well-known, A is a closed linear mapping densely defined in H but generally
unbounded, and T is a contraction in H that determines {Ts : s ≥ 0} uniquely
(see [45, III. 8] for details). As a matter of fact, the following hold

T = lim
s→0+

φs(Ts) where φs(ζ) =
ζ − 1 + s

ζ − 1− s for ζ ∈ D, and

Ts = es(T ) where es(ζ) = exp
(
s(ζ + 1)/(ζ − 1)

)
for ζ ∈ D.

It is well-known that {Ts : s ≥ 0} is, respectively, isometric, co-isometric or
unitary if, and only if, so is the co-generator T . On the other hand, we also
know that if U is the minimal isometric dilation of T , then U is the co-generator
of a continuous semigroup {Us : s ≥ 0} which is the minimal isometric dilation
of {Ts : s ≥ 0}; moreover, in this case, the reducing subspace of {Us : s ≥ 0}
equals the reducing susbpace of U . By using these properties and the fact that
the symbols commute with the dilations on the residual subspace, it is easy to
prove the following result.
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14 Theorem. An operator X ∈ B(H) is a Toeplitz operator with respect to
a continuous one-parameter semigroup of contractions {Ts : s ≥ 0} if, and only
if, it is a generalized Toeplitz operator with respect to the co-generator T of the
semigroup.

Wiener-Hopf operators. Wiener-Hopf operators fall within the class of
Toeplitz operators with respect to a continuous semigroup described above. To
see this, let us consider the translation co-isometries Ts defined on L2(R+) for
each s ≥ 0 by

(Tsf)(x) = χR+(x)f(x+ s) for f ∈ L2(R+).

Then {Ts : s ≥ 0} is a continuous co-isometric semigroup and its minimal
isometric, in fact unitary, dilation is the semigroup {Us : s ≥ 0} consisting of
the translation operators Us defined on L2(R) by (Usf)(x) = f(x+ s). It is also
known [45, III. 9] that the co-generator of {Ts : s ≥ 0} is the co-isometry T
defined on L2(R+) by

(Tf)(x) = f(x)− 2ex
∫ ∞

x
f(ξ)e−ξ dξ for f ∈ L2(R+).

According to our Theorem 2, the Toeplitz symbols with respect to {Ts : s ≥ 0}
are the operators Y ∈ B(L2(R)) that commute with the translations Us for
all s ∈ R and, as it is well-known [7, 9.2], these are precisely the operators
of the form Y = F−1MφF where F is the Fourier transform on L2(R) and
Mφ is the operator of multiplication by a function φ ∈ L∞(R). Consequently,
X ∈ B(L2(R+)) is a Toeplitz operator with respect to {Ts : s ≥ 0} if, and
only if, it is of the form X = χR+F

−1MφF |L2(R+). The operators of this form
are called Wiener-Hopf integral operators and have been widely studied in the
literature (we refer the reader to [7, Ch. 9], see also [11] and [28] for the study
of algebras generated by Wiener-Hopf operators). It was proved by Rosenblum
and Devinatz that Wiener-Hopf operators are unitarily equivalent to classical
Toeplitz operators on H2(T) (see [18] for a different approach), and we now see
that both classes are particular cases of a more abstract situation. By using
Theorem 7 above we obtain that X ∈ B(L2(R+)) is a Wiener-Hopf operator if,
and only if, X = S∗XS where S is the adjoint of the co-generator T or, in other
words, S the isometry defined by

(Sf)(x) = f(x)− 2e−x
∫ x

0
f(ξ)eξ dξ for f ∈ L2(R+).

(This isometry S is a disguised form of the Laguerre shift R defined on L2(R+)
by (Rf)(x) = f(x) − 2e−x/2

∫ x
0 f(ξ)eξ/2 dξ which can also be used to define

Wiener-Hopf operator as the solutions of X = R∗XR; see [42, Ch. 3]).
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When the function φ in the symbol Y = F−1MφF is in H∞(R) the Wiener-
Hopf operator X = χR+Y |L2(R+) is said to be analytic; this corresponds to the
analyticity of the classical Toeplitz operator which is unitarily equivalent to X.
Let us see that this is also consistent with our definition of analytic Toeplitz
operator with respect to {Ts : s ≥ 0}. Indeed, since the semigroup {Ts : s ≥ 0}
is co-isometric, a symbol Y = F−1MφF is analytic (in the sense introduced in
Section 2 above) if Y L2(R+) ⊂ L2(R+) or, equivalently,

F−1MφFL
2(R+) ⊂ L2(R+).

But, since by the Paley-Wiener representation theorem F maps L2(R+) unitarily
onto H2(R), this is the same as saying that Mφ maps H2(R) into itself and this
happens if, and only if, φ ∈ H∞(R) as desired.

Bearing in mind that the multiplication operator Mφ by a function φ ∈
L∞(R) is Fredholm if, and only if, it is invertible, our results in Section 4 yield
the well-known characterizations of invertible analytic Wiener-Hopf operators
and Fredholm Wiener-Hopf operators [7, Ch. 9].

Again, one of the consequences of Theorem 5 is the fact that if φ ∈ H∞(R),
then the left spectrum of the analytic Wiener-Hopf operator defined by φ coin-
cides with the spectrum of corresponding symbol that, as in the classical case,
is the essential range of φ.

Let us finally mention that, along a series of papers, Devinatz, Pellegrini
(also for unbounded operators), Reeder and Shinbrot considered invertibility
properties of so-called generalized Wiener-Hopf operators, defined as the class
of operators X ∈ B(H) which are compressions X = P (H)Y |H of operators Y
defined on a superspace K of H (see, e.g., [12], [36], [37] [40], and references
therein). The class of generalized Wiener-Hopf operators is obviously larger
than the class of Toeplitz operators with respect to semigroups considered in
this paper and share some of the properties in a weaker sense (no Toeplitz type
equations or commutativity involved).

Acknowledgements. This research has been partially supported by la
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Birkhäuser-Verlag, Basel, Berlin and Boston, 1983, 81–107.

[11] L. A. Coburn, R. G. Douglas: C∗-algebras of operators on a half-space. I, Inst. Hautes
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