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Abstract. We consider completely continuous and weakly compact multiplication operators
on certain classical function spaces, more precisely on Lebesgue spaces L1, on spaces C(K)
of continuous functions on a compact Hausdorff space K, and on the Hardy space H1. We
will describe such operators in terms of their defining symbols. Our characterizations extend
corresponding results known from the literature. In any case, our results reveal the severe
restrictions on the symbols of multiplication operators necessary to ensure complete continuity
or weak compactness. The apparent simplicity of the obtained descriptions belie the deep and
beautiful functional analytic principles that underlie them.
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Statement of Results

In this note we prove the following three results. In the first one (Ω,Σ, µ) is a
(non-trivial) σ-finite measure space. It is well-known that Ω can be decomposed
Ω = A∪B where A =

⋃
nAn is the countable union of pairwise disjoint µ-atoms

An ∈ Σ and B ∈ Σ contains no µ-atoms. Given C ∈ Σ, we denote by µC the
restriction of µ to C (so that µC(E) = µ(C ∩ E) for all E ∈ Σ). In a natural
fashion, L1(µC) appears as a (complemented) subspace of L1(µ).

1 Theorem. Let MF : L1(µ) → L1(µ) : f 7→ Ff be the multiplication
operator induced by F ∈ L∞(µ). If MF is completely continuous, then MF
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vanishes on L1(µB); if MF is weakly compact then it induces a compact operator
on L1(µA), so that MF : L1(µ)→ L1(µ) is compact.

Recall that a Banach space operator u : X → Y is completely continuous
(or a Dunford-Pettis operator) if it maps weakly null sequences of X into norm
null sequences of Y . To say that X has the Dunford-Pettis property means that
every weakly compact operator with domain X is completely continuous. It
is well-known that spaces C(K) and L1(µ) enjoy the Dunford-Pettis property.
Weakly compact operators with domain a space C(K) even coincide with the
corresponding completely continuous operators. This applies in particular to
spaces L∞(µ). For details see e.g. J. Diestel–J.J. Uhl [2].

We shall provide alternative proofs for the second case. Another one can be
derived by duality from the following result. As usual, C(K) is the Banach space
of continuous functions on a given compact Hausdorff space K.

2 Theorem. Let F ∈ C(K) be such that MF : C(K) → C(K) : f 7→ fF
is weakly compact. Then MF is compact. In fact, A := K \ F−1(0) is discrete
and countable, with all its cluster points in F−1(0). Moreover the closure of
MF (C(K)) is an isomorphic copy of c0(A), and M∗

F takes its values in an iso-
morphic copy of `1(A).

The third result is on Hardy spaces. Let Hp(D), 0 < p <∞, be the classical
Hardy space on D, the open unit disk in C. Let T = ∂D be the unit circle
{ ζ ∈ C | |ζ| = 1 }, and let m be normalized Lebesgue measure on T. By Fatou’s
Theorem, if f is in any Hp(D), then f∗(ζ) = limr→1 f(rζ) exists for m-almost all
ζ ∈ T. Moreover, f 7→ f∗ establishes an isometric embedding Hp(D) ↪→ Lp(T),
so that Hp(D) can be looked at as a subspace, denoted by Hp(T), of Lp(T); see
P.L. Duren [3]. We follow the common habit of identifying Hp(D) and Hp(T)
and using Hp as a common notation. Our third result is then

3 Theorem. Let MF : H1 → L1(T) be the multiplication operator induced
by F ∈ L∞(T). If MF : H1 → L1(T) is completely continuous, or weakly
compact, then F = 0 m-a.e.

Weakly compact operators and completely continuous operators with do-
main H1 do not contain each other. In fact, it is well-known (see [7] and [11])
that `1 as well as `2 are isomorphic to complemented subspaces of H1.

We are indebted to S. Goldstein for several stimulating discussions.

Proofs

We shall freely make use of standard notation and terminology of measure
and integration theory; see e.g. K.Floret’s book [4].

Let (Ω,Σ, µ) be a (non-trivial) σ-finite measure space. We continue to write
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Ω = A ∪ B where A =
⋃
nAn is the (finite or infinite, but countable) union of

pairwise disjoint µ-atoms An ∈ Σ and B ∈ Σ contains no µ-atoms. It is well-
known (W. Rudin [8], Lemma 6.9) that there is a function h ∈ L1(µ) such that
0 < h(ω) < 1 for all ω ∈ Ω. Note that the measure µ and the finite measure
µh := h dµ have the same null sets and the same atoms. For every 0 < p <∞,
f 7→ h1/pf defines an isometric isomorphism of Lp(µh) onto Lp(µ), whereas
L∞(µh) and L∞(µ) coincide as Banach spaces. Every multiplication operator
MF : Lp(µ) → Lq(µ) gives rise to a multiplication operator MG : Lp(µh) →
Lq(µh) where G = h(1/p)−(1/q)F . Clearly, MF is weakly compact (completely
continuous, compact,. . . ) if and only if MG is. But for (essential) boundedness
of F to imply boundedness of G we need p ≤ q.

As for our multiplication operators, it suffices to look at the case F ≥ 0.
In fact, write F = g · |F | where g ∈ L∞(µ) satisfies |g(ω)| = 1 for all ω ∈ Ω.
Since Mg : Lq(µ) → Lq(µ) is an isometric isomorphism, MF : Lp(µ) → Lq(µ)
is weakly compact (completely continuous, compact,. . . ) if and only if M|F | :
Lp(µ)→ Lq(µ) has this property.

We need a simple lemma which we prove for the sake of completeness:

4 Lemma. Let (Ω,Σ, µ) be a finite measure space, A ∈ Σ a µ-atom and
f ∈ L1(µ). Then

f(ω) =
1

µ(A)
·
∫

A
f dµ for µ-almost all ω ∈ A.

Proof. Write af := µ(A)−1 ·
∫
Af dµ. First look at a real-valued f . Since

A is a µ-atom, precisely one of the sets A+ := {ω ∈ A | f(ω) ≥ af } and
A− := {ω ∈ A | f(ω) < af } is a µ-null set. Accordingly,

∫
A|f − af | dµ =(∫

A+−
∫
A−

)
fdµ− af

(
µ(A+)− µ(A−)

)
= 0.

Suppose now that f = g + i h where g, h ∈ L1(µ) are real-valued. Then, by
the first step,

∫
A|f − af | dµ =

∫
A[(g − ag)2 + (h − ah)2]1/2dµ ≤

∫
A(|g − ag| +

|h− ah|) dµ = 0.

In either case, we can conclude that fχA = af µ-a.e. QED

Proof of Theorem 1. We first look at a weakly compact MF : L1(µ)→
L1(µ). By the preceding discussion, we may assume that F ≥ 0 and that µ is a
probability measure. For notational convenience, let us also assume that there
are infinitely many atoms An. By the lemma, fχAn = µ(An)−1

∫
An
fdµ µ-a.e.

for each n. It follows that `1 → L1(µA) : (ξn) 7→ ∑
n ξnµ(An)−1χAn is an onto

isometric isomorphism; the inverse is L1(µA) → `1 : f 7→
( ∫

An
fdµ

)
n∈N

. Now

MF maps L1(µA) into itself in a weakly compact manner. Compactness of MF

on L1(µA) follows from the fact `1 has the Schur property (i.e., the identity is
completely continuous); see e.g. [2].
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Now for the statement on µB when MF : L1(µ)→ L1(µ) is just completely
continuous. It suffices to consider the case µ = µB. Since µ has no atoms, we
can construct a sequence (rn) of “Rademacher functions” as follows:

Write Ω = Ω1,0 ∪ Ω1,1 where Ω1,0 and Ω1,1 are disjoint sets of measure 1/2
and put r1(ω) = 1 for ω ∈ Ω1,0 and r1(ω) := −1 for ω ∈ Ω1,1. Next split
Ω1,0 = Ω2,0 ∪ Ω2,1 and Ω1,1 = Ω2,2 ∪ Ω2,3 into disjoint sets from Σ of measure
1/4, and we define r2 =

∑3
k=0(−1)kχΩ2,k

.

Continue inductively. The result is an orthonormal sequence of unimodular
functions rn ∈ L∞(µ), which certainly converge weakly to zero in L1(µ). By
hypothesis, limn ‖MF rn‖L1(µ) = 0. But ‖MF rn‖L1(µ) =

∫
Ω|Frn| dµ =

∫
ΩFdµ

for each n, which proves what we wanted. QED

It follows from these considerations that if MF : L1(µ) → L1(µ) is com-
pletely continuous then, using the above notation, it can be represented as

MF f =
∑

n

Ff χAn =
∑

n

1

µ(An)

( ∫

An

Ff dµ
)
χAn

(µ–a.e.) for all f ∈ L1(µ); the series being absolutely convergent.

We pass to the announced alternate proof of Theorem 1 in the case of weak
compactness.

(•1) Suppose that MF : L1(µ)→ L1(µ), F ∈ L∞(µ), is weakly compact. Again
we can assume that (Ω,Σ, µ) is finite and that F ≥ 0. It suffices to show
that if µ has no atoms then MF = 0.

Suppose that MF doesn’t vanish. Then there exists a λ > 0 such that
E0 = {ω ∈ B | F (ω) ≥ λ } has positive measure. Since µ has no atoms,
we can find En ∈ Σ of positive measure satisfying En+1 ⊆ En ⊆ E0 for
all n and limn µ(En) = 0; so E =

⋂
k Ek is a µ-null set. The functions

fn := χEn/µ(En) constitute norm one vectors in L1(µB) ⊆ L1(µ), with
limn fn(ω) = 0 for all ω ∈ Ω\E. It follows that limn Ffn = 0 pointwise µ-
a.e. By weak compactness of MF , (Ffn) is uniformly integrable in L1(µ).
In particular, there is a δ > 0 such that supn

∫
C Ffn dµ ≤ λ/2 for all

C ∈ Σ with µ(C) < δ. But
∫
EN
FfNdµ < λ/2 for some large N ∈ N since

limn µ(En) = 0, and we reach a contradiction:

λ ≤ 1

µ(EN )

∫

EN

F dµ = ‖MF fN‖L1(µ) =

∫

EN

FfN dµ < λ . QED

(•2) Still another proof exploits the fact that L1(µ) has the Dunford-Pettis
property:
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Let MF : L1(µ) → L1(µ) be weakly compact, where 0 ≤ F ∈ L∞(µ).
Look at the bounded functions ϕ :=

√
F and ϕε = F/

√
F + ε (ε > 0).

Note that limε→0 ‖Mϕ −Mϕε‖ = 0 because of

‖ϕ− ϕε‖ = ‖
√
F −

√
F + ε+ ε/

√
F + ε‖

≤ ‖
√
F −

√
F + ε‖+ ‖ε/

√
F + ε‖ ≤ 2

√
ε .

Together with MF , the multiplication operators Mϕε = MF ◦M1/
√
F+ε are

weakly compact, so that the limit Mϕ is weakly compact as well. By the
Dunford-Pettis property of L1(µ), Mϕ is completely continuous, so that
MF = Mϕ ◦Mϕ is compact. QED

– Notice that this argument applies equally well for C(K) spaces, K any
compact Hausdorff space, and so in particular for L∞(µ) spaces. Of course
a more measure theoretic description of the state of affairs as regards
L∞(µ) may be obtained by duality from Theorem 1.

Let further K be any compact Hausdorff space, let B(K) be K’s Borel
algebra and let X be a Banach space. Given any operator T : C(K) → X,
we can define the weak∗ countably additive (vector) measure G : B(K) →
X∗∗ : E 7→ T ∗∗(χE). It is well-known that T is weakly compact iff the G(E)’s
even belong to X, for all E ∈ B(K). In such a case, G is (norm) countably
additive, and there is a measure λ in C(K)∗ which ‘controls’ T ∗ in the sense
that T ∗x∗ � λ for all x∗ ∈ X∗, equivalently, which satisfies G� λ (Theorem of
Bartle-Dunford-Schwartz). We may even take λ = |〈x∗0, G(·)〉| for some x∗0 ∈ X∗

(Rybakov’s Theorem). We refer to [2] (p.267 ff) for details.

Proof of Theorem 2. Weakly compact operators on C(K) are completely
continuous, and conversely. Therefore MF : C(K) → C(K) is weakly compact
iff M|F | : C(K)→ C(K) has this property.

By weak compactness, M ∗∗
F maps C(K)∗∗ into C(K) so that each M ∗∗

F (χE) =
F ·χE (E ∈ B(K)) belongs to C(K). In particular, F ·χ{x} ∈ C(K) for all x ∈ K,
which can only happen if A is discrete. But then χ{x} ∈ C(K) for all x ∈ A so
that the singleton {x} is a clopen subset of K. Therefore no element of A can
be a cluster point of A.

The above vector measure G is now E 7→ F · χE . The operator M ∗
F assigns

to each µ ∈ C(K)∗ the measure µF : B(K) → C : E 7→
∫
E Fdµ. By Rybakov’s

Theorem, there is a measure 0 ≤ λ ∈ C(K)∗ such that λF controls M∗
F . So if

E ∈ B(K) and λF (E) = 0 then µF (E) = 0 for all µ ∈ C(K)∗. In particular,
(δx)F � λF for all x ∈ K. So if E ∈ B(K) is a null set for λF then E ⊆ F−1(0).
The converse is also true: if E ⊆ F−1(0) = |F |−1(0), then λ|F |(E) = 0 and so
λF (E) = 0 since |λF | ≤ λ|F |.
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Again let K = B∪⋃n∈J An be a decomposition of K into pairwise disjoint
λ-atoms An and a Borel setB without λ-atoms (J ⊆ N). On L1(λ),M∗

F coincides
with MF , and this operator multiplies L1(λA), resp. L1(λB), into itself in a
weakly compact manner. By the argument used in the proof of Theorem 1, MF

vanishes on L1(λB) so that B ⊆ F−1(0) up to a λ-null set. Put A := K \F−1(0).
If x ∈ A, then {x} is an atom for λF and also for λ so that A must be countable.
As before, L1(λA) and `1(A) are isomorphic. Since M ∗

F maps C(K)∗ into L1(λA),
weak compactness and the Schur property of `1(A) implies compactness.

It remains to show that the range of MF is dense in a copy of c0(A). To
this end assume that A is infinite and let (xn)n∈N be any enumeration of A.
By compactness and what we showed earlier, each subsequence of (xn) has a
subsequence which converges to a point in F−1(0). In terms of F this means
that each subsequence of (F (xn)) has a subsequence which converges to zero, or
equivalently that (F (xn)) ∈ c0. It is now an exercise to show that the represen-
tation MF f =

∑
n Ff δxn ensures that Ff 7→ (F (xn)f(xn))n is an isometric

embedding of MF (C(K) into c0(A). Finally, given any finite scalar sequence
ζ = (ζ1, . . . , ζN , 0, . . . ), the function fζ defined on K by fζ(x) = ζn/F (xn) if
x = xn (1 ≤ n ≤ N) and fζ(x) = 0 otherwise, clearly belongs to C(K). Since
now ζ corresponds to the element Ffζ of MF (C(K)), it follows that MF (C(K))
is isometrically isomorphic to a dense subspace of c0(A). QED

In particular, the measure λ associated with our weakly compact operator
MF : C(K)→ C(K) is purely atomic iff F 6= 0 λ-a.e.

5 Remark. It is clear that, in the situation of Theorem 2, the compact
operator M∗

F : C(K)∗ → C(K)∗ satisfies M∗
Fµ =

∑
x∈A F (x)µ({x})δx for each

µ ∈ C(K)∗, the series being absolutely convergent. If we identify M ∗
F with

the operator C(K)∗ → `1(A) : µ 7→ (F (x)µ({x}))x∈A, then its compactness
is reflected by the statement (F (x))x∈A ∈ c0(A). This leads to a reduction
to compact operators among sequence spaces. In a similar spirit, properties
stronger than compactness (e.g. nuclearity) can be characterized. We do not
enter such topics.

Proof of Theorem 3. As for complete continuity, we can use the fol-
lowing very simple observation. Let µ be a σ-finite, non-atomic measure, and
let X be a subspace of L1(µ) which contains a weak null sequence (ψn) con-
sisting of unimodular functions. Then a multiplication operator MF : X →
L1(µ), F ∈ L∞(µ), can only be completely continuous if F = 0 µ-a.e. In fact,
limn→∞ ‖MFψn‖ = 0, and for each n, ‖MFψn‖ = ‖F‖.

The monomials ψn(ζ) = ζn (n ≥ 0) form a weak null sequence inH1 ⊂ L1(T)
consisting of unimodular functions.

The case of weak compactness can be settled by modifying the argument
used for (•1). Again there is no loss in assuming F ≥ 0. We argue contraposi-
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tively and suppose that F 6= 0. Then there is a λ > 0 such that E0 = {F ≥ λ}
satisfiesm(E0) > 0. As before there are Borel sets En ⊆ E0 such that En+1 ⊆ En
and m(En) > 0 for each n and limnm(En) = 0, i.e., E =

⋂
nEn is an m-null

set.

Let (εn) be a decreasing sequence of positive numbers such that limn εn = 0.
The functions fn := (χEn/µ(En))+εn form a bounded sequence in L1(T) which
converges to zero pointwise on T \ E. It follows that Ffn → 0 m-a.e.

Each function log fn is integrable, so that |ϕ∗
n| = fn m-a.e for some ϕn ∈

H1(D) (P.L. Duren [3], p.24). Since MF is weakly compact, (Fϕ∗
n)n is uniformly

integrable in L1(T). In particular, there is a δ > 0 such that
∫
B|Fϕ∗

n| dm =∫
BFfn dm ≤ λ/2 for every Borel set B ⊆ T with m(B) < δ. As before this

leads to a contradiction. QED

We refer to [1] for further results related to the weak compactness part of
Theorem 3.

Some Consequences

We may, for example, reprove a result from H. Takagi–K. Yokouchi [9]
(p.326).

6 Corollary. Let µ be a non-atomic σ-finite measure and 0 < p < q < ∞.
If F ∈ L∞(µ) is such that MF (Lp(µ)) ⊆ Lq(µ) then F = 0 µ-a.e.

Proof. We may assume that µ is a probability measure and that F ≥ 0.
MF maps Lp(µ) into Lq(µ) if and only if MF p maps L1(µ) into Lq/p(µ). The
space Lq/p(µ) is reflexive so that MF p , as an operator L1(µ)→ L1(µ), is weakly
compact. Now apply Theorem 1. QED

We have already alluded to the fact that duality leads immediately to the
following

7 Corollary. Suppose that µ is non-atomic and σ-finite. If the multiplica-
tion operator MF : L∞(µ) → L∞(µ) given by F ∈ L∞(µ) is weakly compact
then F = 0 µ-a.e.

There is another proof which is based on the following result of J.J. Uhl [10]:

(�1) Let X be a Banach space and ν a finite measure. Let jp : Lp(ν) ↪→ L1(ν) be
the formal identity, 1 < p ≤ ∞. An operator u : L1(ν)→ X is completely
continuous iff u◦jp : Lp(ν)→ X is compact, for some (and then every) 1 <
p ≤ ∞.

Hence, in the situation of Corollary 2, if MF : L∞(µ) → L∞(µ) is weakly
compact, then j∞ ◦MF is compact (since j∞ is completely continuous), so that
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(�1) yields complete continuity of MF : L1(µ)→ L1(µ). The result then follows
from Theorem 1.

We have already noted that weak compactness and complete continuity for
operators with domain L∞(µ) are the same.

As mentioned before, the reduction from σ-finite measures to finite ones may
present problems for multiplication operators MF : Lp(µ) → Lq(µ) if p > q.
Therefore we now restrict to probability measures.

8 Corollary. Let µ be a non-atomic probability measure and F ∈ L∞(µ).
If MF : Lp(µ)→ Lq(µ) exists as a compact operator for some p > 1 and q ≥ 1,
then F = 0 µ-a.e.

Proof. Let jp : Lp(µ) ↪→ L1(µ) and jq : Lq(µ) ↪→ L1(µ) be the formal iden-
tities. Note that L1(µ) → L1(µ) : f 7→ Ff exists. To distinguish this operator

from MF : Lp(µ)→ Lq(µ), we will denote it by M̃F . Then jqM̃F = MF jp. The

latter is compact so that M̃F : L1(µ)→ L1(µ) is completely continuous by (�1).
Now apply Theorem 1. QED

There is a perfect analogue of Uhl’s result for Hardy spaces:

(�2) Let X be a Banach space and ip : Hp ↪→ H1 the formal identity, 1 <
p ≤ ∞. An operator u : H1 → X is completely continuous if and only if
u ◦ ip : Hp → X is compact, for some (and then every) 1 < p ≤ ∞.

See [6, Theorem 3] (the proof there suffers from a ‘self-correcting error’).

9 Corollary. Let p > 1, q ≥ 1 and F ∈ L∞(T). If MF : Hp → Lq(T) is
compact then F = 0 m-a.e.

To see this, repeat the proof of Corollary 3, replacing (�1) by (�2) and
appealing to Theorem 2 instead of Theorem 1.

A generalization of this to a non-commutative setting is intended to appear
in [5].

References

[1] O. Blasco, H. Jarchow: A note on Carleson measures for Hardy spaces, Acta Sci.
Math. (Szeged) 71 (2005), 371–389.

[2] J. Diestel, J.J. Uhl: Vector Measures, Amer. Math. Soc. 1977.

[3] P.L. Duren: Hp Spaces, Academic Press 1969.

[4] K. Floret: Maß- und Integrationstheorie, B.G. Teubner 1981.

[5] S. Goldstein, H. Jarchow, L.E. Labuschagne: Compactness properties for multipli-
cation operators on von Neumann algebras and their preduals, Banach Center Publications
(to appear).



Multipliers on L1 229

[6] H. Jarchow: Compactness properties of composition operators, Rend. Circ. Mat.
Palermo, Serie II, Suppl., 56 (1998), 91–97.
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