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To the memory of our friend Klaus Floret

1 Weighted Fréchet spaces

Let X be a Banach space and B its open unit ball. We consider a countable
family V of bounded and continuous functions v : B −→]0,+∞[. Any such
function is called a weight. Weighted spaces of holomorphic functions defined
by such families were first defined by Bierstedt, Bonet and Galbis in [3] for open
subsets of Cn (see also [4–7,9]). Garćıa, Maestre and Rueda defined and studied
in [12] analogous spaces of functions defined on Banach spaces. We recall now
the basic definitions and results.

The space of all holomorphic functions f : B → C is denoted by H(B). We
consider the space

HV (B) = {f ∈ H(B) : pv(f) = sup
x∈B

v(x)|f(x)| <∞ for all v ∈ V }

iThe authors were supported by the MCYT and FEDER Project BFM2002-01423.
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We endow HV (B) with the Fréchet topology τV generated by the family of
seminorms (pv)v∈V . The family of weights V = (vn)n can always be chosen to
be increasing. When V consists only of one weight v, the corresponding space
is denoted Hv(B) and it is a Banach space whose open unit ball is denoted by
Bv. We refer to [12] or [18] for a study of the properties of these spaces.

A set A ⊂ B is said to be B-bounded if there exists 0 < r < 1 such
that A ⊂ rB. The subspace of H(B) of those functions that are bounded on
the B-bounded sets is denoted by Hb(B). The space of bounded holomorphic
functions is denoted by H∞(B) and, as usual, for h ∈ H∞(B) we write ‖h‖∞ =
supx∈B |h(x)|.

Following [12, Definition 1], we say that a family V of weights defined on B
satisfies Condition I if for each B-bounded set A ⊆ B there exists v ∈ V such
that inf{v(x) : x ∈ A} > 0. If V satisfies Condition I, then HV (B) ⊆ Hb(B)
and τV is stronger than τb, the topology of the uniform convergence over the
B-bounded sets.

A weight is radial if v(λx) = v(x) for every λ ∈ C with |λ| = 1 and every
x ∈ B.

Following the standard notation if X is a Banach space we will denote its
dual by X∗. If E is a Fréchet space, its dual will be denoted by E ′.

In this article we continue our work [13] on compactness of composition
operators between weighted spaces of holomorphic functions on the unit ball of
a Banach space. We refer to the introduction of that paper for information and
motivations. We want to emphasize here that our work is based upon [6,8]. Our
main results on weak compactness of composition operators between Banach
weighted spaces of holomorphic functions are Theorem 5, 6 and Corollary 7.
We apply these results in Section 3 to obtain Theorem 17, a positive result of
weak compactness of composition operators between Fréchet weighted spaces of
holomorphic functions.

Throughout this paper X,Y will denote Banach spaces and BX , BY their
open unit balls. Note that in this setting, a weight v satisfies Condition I if
infx∈rBX

v(x) > 0 for every 0 < r < 1. Given any weight v, following [4], we
consider an associated growth condition u : BX −→]0,+∞[ defined by u(x) =

1
v(x) . From this, ũ : BX −→]0,+∞[ is defined by

ũ(x) = sup
f∈Bv

|f(x)|

which produces an associated weight ṽ = 1/ũ. All these functions were defined
by Bierstedt, Bonet and Taskinen for open subsets of Cn in [4]. In [4, Proposition
1.2], the following relations between weights for open sets on Cn are proved. The
same arguments work for the unit ball of a Banach space.
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1 Proposition. Let X be a Banach space and v a weight defined on BX .
The following hold,

(i) 0 < v ≤ ṽ and ṽ is bounded and continuous; i.e. ṽ is a weight.

(ii) ũ (resp. ṽ) is radial and decreasing or increasing with respect to the
norm whenever u (resp. v) is so.

(iii) pv(f) ≤ 1⇔ pṽ(f) ≤ 1.

(iv) For each x ∈ BX there exists fx ∈ Bv such that ũ(x) = |fx(x)|.
A linear mapping between Banach spaces, T : X → Y , is called compact,

weakly compact or Rosenthal if T (BX) is, respectively, relatively compact, rel-
atively weakly compact or conditionally weakly compact. A subset A ⊂ X is
called conditionally weakly compact if every sequence in A admits a weak Cauchy
subsequence.

2 Weak compactness of composition operators on
Banach spaces

Given two Banach spaces X,Y , let φ : BY → BX be a holomorphic mapping.
The composition operator associated to φ is defined as

Cφ : H(BX) −→ H(BY ) , f  Cφ(f) = f ◦ φ.

This operator is linear and τ0− τ0-continuous. Now, given any two weights v, w
we consider the operator Cφ : Hv(BX)→ Hw(BY ) whenever this is well defined.
This happens if and only if the operator is continuous [13, Remark 2.1].

Continuity and compactness of these operators have been studied in [7] when
X = Y = C, in [9] for arbitrary open sets in C and in [13,15] for the infinite
dimensional case.

Weak compactness of composition operators was studied in [6] for the one
dimensional case. There the following situation is considered; let G1 and G2 be
two open connected domains in C such that C∗\G1 has no one-point component
and let φ : G2 → G1 be a holomorphic mapping. Given v and w weights on G1

and G2 respectively, if Cφ : Hv(G1)→ Hw(G2) is weakly compact or Rosenthal
then Cφ is compact ( [6, Theorem 1]).

Weakly compact composition operators on H∞(BX) were studied in [11].
In [11, Proposition 2] it is shown that if Cφ : H∞(BX)→ H∞(BY ) is Rosenthal
or compact, then φ(BY ) lies strictly inside BX . The proof of this result is clearly
inspired by the proof of [6, Theorem 1]. Following the same trends of ideas we
will give an analogous result for general weights which strictly includes [11,
Proposition 2].
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The proof of the following lemma is very similar to that of [20, Section 2.4]
and [7, Lemma 3.1].

2 Lemma. Let Cφ : Hv(BX) −→ Hw(BY ) continuous. The following are
equivalent,

(i) Cφ is compact.
(ii) Each bounded net (fα)α∈A ⊆ Hv(BX) such that {fα : α ∈ A} is a

countable set and fα
τ0−→ 0 satisfies that pw(Cφfα) −→ 0.

If, furthermore, X is separable, then (i) and (ii) are equivalent to

(iii) Each bounded sequence (fn)n ⊆ Hv(BX) such that fn
τ0−→ 0 satisfies

that pw(Cφfn) −→ 0.

Proof. Let us suppose first that Cφ is compact. Then Cφ(Bv) is rela-
tively compact in Hw(BY ). Let us take a bounded net (fα)α∈A ⊆ Hv(BX) with
{fα : α ∈ A} countable such that fα −→ 0 in τ0. Since Cφ is τ0-τ0-continuous,

Cφfα
τ0−→ 0. Convergence in pw implies that of τ0, hence each pw-convergent

subnet of (Cφfα)α will converge to 0.
If (pw(Cφfα))α does not converge to 0, there exists a subnet (fβ)β and c > 0

such that pw(Cφfβ) ≥ c for all β. But (fβ)β is bounded and Cφ is compact,
therefore (Cφfβ)β is relatively compact and has a convergent subnet. This new
subnet is also a subnet of (Cφfα)α and it must converge to 0. This gives a
contradiction. So, limα pw(Cφfα) = 0.

Assume (ii) holds. Let (fn)n ⊆ Bv. By [18] Bv is τ0-compact, in particular
it is τ0-bounded. Then, (fn)n is τ0-bounded and, by Montel’s Theorem, there is
a subnet (gα)α∈A converging in τ0 to some g ∈ H(BX). For each x ∈ BX and α
we have v(x)|gα(x)| ≤ pv(gα) ≤ 1. Hence

1 ≥ lim
α
v(x)|gα(x)| = v(x) lim

α
|gα(x)| = v(x)|g(x)|.

This implies supx∈BX
v(x)|g(x)| <∞ and g ∈ Hv(BX).

Let us note that for each α there is n such that gα = fn. This means
that {gα : α ∈ A} is countable. Thus (gα − g)α is a bounded net in Hv(BX)
with {gα − g : α ∈ A} countable and (gα − g) −→ 0 in τ0. By hypothesis
limα pw(Cφ(gα − g)) = 0. This implies that Cφ(Bv) is relatively compact and
Cφ is compact.

If X is separable, then Montel Theorem states that every τ0-bounded se-
quence in H(BX) has a τ0-convergent subsequence; this allows to show that in
this case (iii) implies (i). QED

3 Proposition. Let X,Y be Banach spaces and φ : BY → BX a holomor-
phic mapping such that φ(BY )∩ rBX is relatively compact for every 0 < r < 1.
If the operator Cφ : Hv(BX)→ Hw(BY ) is not compact then it is neither weakly
compact nor Rosenthal.
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Proof. If the composition operator is not compact, by Lemma 2, there
is a bounded net (gα)α∈A ⊆ Hv(BX) with {gα : α ∈ A} countable and τ0-
converging to 0 such that (pw(Cφgα))α does not converge to 0. We can find
a subnet (gβ)β and c > 0 so that pw(Cφgβ) > c for all β. Note that {gβ} is
countable. Let us write {gβ} = {fn : n ∈ N}. Then we have (fn)n, bounded,
such that pw(Cφfn) > c. For each n we can find yn ∈ BY such that

w(yn)|fn(φ(yn))| > c > 0. (1)

Let us see that limn ‖φ(yn)‖ = 1. If not, there are a subsequence (ynk
)k and

0 < r < 1 such that φ(ynk
) ∈ rBX for all k. But φ(BY ) ∩ rBX is relatively

compact in BX ; hence we can extract a subsequence, which we denote in the
same way, so that (φ(ynk

))k converges to some x0. Since K :=
⋃
k{φ(ynk

)}∪{x0}
is compact and (gβ)β is τ0-null, there exists β0 such that, for β ≥ β0,

sup
x∈K
|gβ(x)| < c

‖w‖∞
. (2)

From this, w(ynk
)|gβ(x)| < c for every x ∈ K and all k. But gβ = fnk

for
some k; then w(ynk

)|fnk
(φ(ynk

))| < c. This gives a contradiction. Therefore we
have a bounded sequence (fn)n ⊆ Hv(BX) and (yn)n ⊆ BY satisfying that
|fn(φ(yn))|w(yn) > c and limn ‖φ(yn)‖ = 1. Now, by the proof of [1, Theorem
10.5], there is a g ∈ H∞(BX) and a subsequence (φ(ynk

))k so that (g(φ(ynk
)))k

is an interpolating sequence for H∞(D). By [14, p. 294] we can find a sequence
(hm)m ⊆ H∞(D) and M > 0 so that, for all z ∈ D,

∑

m

|hm(z)| ≤M , hm(g(φ(ynk
))) = δmk,

where δmk stands for the Dirac’s delta. Let us define T : `∞ → Hv(BX) by

T ((ξm)m)(x) =
∞∑

m=1

ξmfnm(x)hm(g(x))

for every ξ = (ξm)m ∈ `∞ and x ∈ BX . This is clearly linear and continuous,
since

pv(T (ξ)) = sup
x∈BX

v(x)|T (ξ)(x)| ≤ sup
x∈BX

∞∑

m=1

‖ξ‖∞pv(fnm)|hm(g(x))|

≤ M‖ξ‖∞ sup
m
pv(fnm).

Hence ‖T‖ ≤M supm pv(fnm).
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We define now S : Hw(BY ) → `∞ by S(h) =
(

h(ynk
)

fnk
(φ(ynk

))

)
k
. This is also

linear and continuous. Indeed, using (1) we have

‖S(h)‖ = sup
k

|h(ynk
)|w(ynk

)

|fnk
(φ(ynk

))|w(ynk
)
≤ 1

c
sup
k
|h(ynk

)|w(ynk
) ≤ 1

c
pw(h)

and ‖S‖ ≤ 1/c.

These two mappings satisfy that S ◦Cφ ◦ T = id`∞ . For any ξ = (ξk)k ∈ `∞
we have

S ◦ Cφ ◦ T (ξ) =

(
Cφ ◦ T (ξ)(ynk

)

fnk
(φ(ynk

))

)

k

=

(
T (ξ)(φ(ynk

))

fnk
(φ(ynk

))

)

k

=

(∑∞
m=1 ξmfnm(φ(ynk

))hm(g(φ(ynk
)))

fnk
(φ(ynk

))

)

k

=

(
ξkfnk

(φ(ynk
))

fnk
(φ(ynk

))

)

k

= (ξk)k.

Since S and T are continuous, they are weakly continuous. If Cφ were weakly
compact, we would have that S ◦ Cφ ◦ T (B`∞) would be weakly compact, but
this is not true. Hence Cφ cannot be weakly compact.

Similarly, Cφ cannot be Rosenthal since id`∞ is not so. QED

4 Proposition. Let X,Y be Banach spaces and φ : BY → BX a holomor-
phic mapping such that φ(rBY ) is relatively compact for every 0 < r < 1. Let v,
w be weights defined on X and Y respectively, satisfying lim‖y‖→1− w(y) = 0. If
the operator Cφ : Hv(BX) → Hw(BY ) is not compact then it is neither weakly
compact nor Rosenthal.

Proof. If Cφ is not compact, proceeding as in Proposition 3, we can obtain
a bounded, τ0-null net (gβ)β such that {gβ} is a countable set, which we write
{fn : n ∈ N} and a sequence (yn)n ⊆ BY so that

w(yn)|fn(φ(yn))| ≥ c > 0.

Let us see now that limn ‖yn‖ = 1. If not, there is a subsequence (ynk
)k such that

(ynk
)k ⊆ rBY for some 0 < r < 1. Since φ(rBY ) is relatively compact, (φ(ynk

))k
is relatively compact. We consider now K = (φ(ynk

))k, which is compact. Hence
there is β0 such that, for all β ≥ β0,

sup
x∈K

gβ(x) <
c

‖w‖∞
.
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This is the same inequality as in (2); proceeding in the same way we get a
contradiction that shows that limn ‖yn‖ = 1.

From this we can show that limn ‖φ(yn)‖ = 1. If this is not true, we can find
a subsequence (ynk

)k such that ‖φ(ynk
)‖ ≤ λ < 1. Now, on the one hand, (fn)n

is bounded in Hv(BX); so let us write supn ‖fn‖v = M . On the other hand, v
satisfies Condition I; from this, infx∈λBX

v(x) = K > 0. Hence

c ≤ w(yn)|fn(φ(yn))| = w(yn)

v(φ(yn))
v(φ(yn))|fn(φ(yn))| ≤ M

K
w(yn).

Since limn ‖yn‖ = 1, we have limnw(yn) = 0. This gives a contradiction that
shows that limn ‖φ(yn)‖ = 1. From this point, following the same steps as in
Proposition 3 we get that Cφ is neither weakly compact nor Rosenthal. QED

With these results we can prove the following ones.

5 Theorem. Let v, w be weights satisfying Condition I such that w(y)
converges to 0 as ‖y‖ → 1− and φ : BY → BX be a holomorphic mapping. The
following are equivalent,

(i) Cφ is compact.

(ii) Cφ is weakly compact and φ(rBY ) is relatively compact for all 0 < r < 1.

(iii) lim
‖y‖→1−

w(y)

ṽ(φ(y))
= 0 and φ(rBY ) is relatively compact for all 0 < r < 1.

Proof. The equivalence between (i) and (ii) is a straightforward conse-
quence of Proposition 4 and [13, Proposition 3.2]. The fact that (i) and (iii) are
equivalent is [13, Proposition 3.2]. But in the proof of that result it is actually
used Lemma 2 (iii). Hence that proof is formally true only if X is separable.
Nevertheless, an easy adaption to nets and Lemma 2 give that the result re-
mains true for any Banach space X. For the sake of completeness we show here
the adapted proof.

The proof given in [13, Proposition 3.2] that (i) implies (iii) does not use
the characterization of Lemma 2 and it is valid for any Banach space.

Now, let us assume that (iii) holds. Following the same steps as in [13,
Proposition 3.2] we get that Cφ is continuous. Let us suppose that Cφ is not
compact; then by Lemma 2 there is a net (fα)α ⊆ Bv that τ0-converges to 0
such that (Cφ(fα))α does not pw-converge to 0. Taking a subnet if necessary we
can assume that there is λ > 0 with pw(Cφ(fα)) > λ > 0 for all α. For each α,

let yα ∈ BY be such that w(yα)|fα(φ(yα))| ≥ λ. If 1 ∈ {‖yα‖}α then there is a
sequence of points in {‖yα‖}α converging to 1. Let us denote this sequence by
{‖yn‖}n. Given any ε > 0 there is n0 so that, for any n ≥ n0,

w(yn) ≤ εṽ(φ(yn)).
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Thus we have

λ ≤ w(yn)|fn(φ(yn))| ≤ εṽ(φ(yn))|fn(φ(yn))| ≤ ε.

This gives a contradiction and shows that there is 0 < r < 1 such that ‖yα‖ < r
for all α. Now, φ(rBY ) is relatively compact and (φ(yα)) ⊆ φ(rBY ); this implies
that given any ε > 0 there exists α0 with

sup
x∈φ(rBY )

|fα(x)| < ε

sup
y∈BY

w(y)

for every α ≥ α0. From this, |fα(φ(yα))| < ε/ supy∈BY
w(y) for every α ≥ α0

and λ ≤ w(yα)|fα(φ(yα))| < ε. This is again a contradiction that finally shows
that Cφ is compact. QED

6 Theorem. Let v, w be weights satisfying Condition I and φ : BY → BX
be a holomorphic mapping such that φ(BY ) ∩ rBX is relatively compact for all
0 < r < 1. The following are equivalent,

(i) Cφ is compact.

(ii) Cφ is weakly compact.

(iii) Cφ is Rosenthal.

(iv) lim
r→1−

sup
‖φ(y)‖>r

w(y)

ṽ(φ(y))
= 0.

(If ‖φ‖∞ < 1, the above limit is taken as zero by definition).

Proof. The equivalence between (i), (ii) and (iii) follows from Proposi-
tion 3. Statements (i) and (iv) are equivalent by [13, Theorem 3.3]. In this case,
as in Theorem 5, it is also necessary to make a slight change in the original
proof for the case of a non separable Banach space X. QED

7 Corollary. Let v, w be weights satisfying Condition I such that w(y) does
not converges to 0 as ‖y‖ → 1− and φ : BY → BX be a holomorphic mapping.
The following are equivalent,

(i) Cφ is compact.

(ii) φ(BY ) is relatively compact and ‖φ‖∞ < 1.

(iii) Cφ is weakly compact and φ(BY ) is relatively compact.

Proof. The fact that (i) and (ii) are equivalent is proved in [13, Corollary
3.5 (b)]. Trivially (i) implies (iii). Theorem 6 gives that (iii) implies (i). QED

A particular case of this is when v(x) = w(x) = 1; this gives H∞. Compact
composition operators between H∞(BY ) and H∞(BX) have been studied in
[2,11]. The following result is proved there (see also [11, Preliminaries]).
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8 Proposition. [2, Proposition 2.2] Consider the composition operator Cφ :
H∞(BX)→ H∞(BY ). The following statements are equivalent,

(i) Cφ is compact.
(ii) Cφ is weakly compact and φ(BY ) is relatively compact in X.
(iii) φ(BY ) lies strictly inside BX and φ(BY ) is relatively compact in X.

This was first proved by Maestre [16] for the space Au(BX), the algebra of the
holomorphic functions on the open unit ball ofX which are uniformly continuous
on the closed unit ball of X. That proof for Au(BX) can be easily adapted to
obtain the result for H∞(BX). The difficult part in the characterization of
compactness of Cφ is to prove necessity. The proof of φ(BY ) ⊆ sBX for some
0 < s < 1 in [2] goes through weak compactness of Cφ. We present in the
following remark a very easy proof based on [16].

9 Remark. Let us assume that Cφ : H∞(BX)→ H∞(BY ) is compact and
let us show that φ(BY ) ⊆ sBX for some 0 < s < 1. Suppose that this is not
true. Then there would exist a sequence (yn)n ⊆ BY such that limn ‖φ(yn)‖ = 1.
Without loss of generality we can assume that

‖φ(yn)‖ > n

√
1− 1

n
.

For each n ∈ N we choose x∗n ∈ X∗ such that ‖x∗n‖ = 1 and x∗n(φ(yn)) >
n
√

1− 1/n. We consider the family

F = {(x∗n)n : n = 1, 2, . . . }.

We have

1 ≥ ‖(x∗n ◦ φ)n‖∞ > 1− 1

n
(3)

for all n ∈ N. As F is a bounded set, Cφ(F) is relatively compact, i.e. there
exists a subsequence (

(
x∗nk
◦ φ
)nk)k that ‖ ·‖∞-converges to some f ∈ H∞(BY ).

By (3) ‖f‖∞ = 1. But for y ∈ BY we have |x∗nk
◦ φ(y)|nk ≤ ‖φ(y)‖nk for all

k ∈ N and ‖φ(y)‖nk goes to 0 as k tends to infinity. Hence f(y) = 0 for all
y ∈ BY . This gives a contradiction and completes the proof.

3 Composition Operators on Fréchet spaces

Given two countable families of weights V,W we consider now the composi-
tion operator Cφ : HV (BX)→ HW (BY ). In [8] these operators are defined and
studied when BX = BY = D. Bonet and Friz prove a general result [8, Proposi-
tion 4.2] which allows them to give conditions on the continuity and compactness
of the composition operator [8, Proposition 4.1]. We use a slight modification



214 D. Garćıa, M. Maestre and P. Sevilla-Peris

of their general result to find conditions characterizing continuity and compact-
ness of the operator in our case. Let us state now this general result. Let (H, τ),
(G, τ ′) be Hausdorff locally convex spaces. For each n, let En and Fn be Banach
spaces with closed unit balls Bn and Cn and norms ‖ ·‖n and | · |n. Suppose that
En+1 ⊆ En ⊆ E1 ⊆ H, Bn+1 ⊆ Bn and Fn+1 ⊆ Fn ⊆ F1 ⊆ G, Cn+1 ⊆ Cn for
every n. Suppose that for each n, both Bn and Cn are compact in (H, τ) and
(G, τ ′) respectively.

Let E be the projective limit of (En)n and F the projective limit of (Fn)n.
Let us assume that for every n ∈ N and all x ∈ En there exists a sequence
(yk)k ⊆ E converging to x in (H, τ) such that ‖yk‖n ≤ ‖x‖n for all k. In [8]
the case (H, τ) = (G, τ ′) is considered; the same proof of [8, Proposition 4.2]
gives the following proposition. Let us recall that a linear mapping T : E −→ F
between two locally convex spaces is said to be compact (resp. weakly compact
or bounded) if there exists a 0-neighborhood in E such that its image by T is
relatively compact (resp. relatively weakly compact or bounded) in F .

10 Proposition. Let T : (H, τ) −→ (G, τ ′) be a continuous, linear operator.

(a) The following are equivalent,

(i) TE ⊆ F .

(ii) T ∈ L(E;F ).

(iii) For each m, there is n such that TEn ⊆ Fm.

(iv) For each m, there is n such that T : En −→ Fm is well defined and

continuous.

(b) The following are equivalent,

(i) T : E −→ F is bounded.

(ii) There exists n such that for all m, TEn ⊆ Fm.

(iii) There exists n such that for all m, T : En −→ Fm is well defined

and continuous.

(c) The following are equivalent,

(i) T : E −→ F is compact (resp. weakly compact).

(ii) There exists n such that for all m, T : En −→ Fm is compact (resp.
weakly compact).

As an application of this result we characterize continuity and compactness
composition operators. Let (H, τ) be (H(BX), τ0) and (G, τ ′) be (H(BY ), τ0).
The operator Cφ : (H(BX), τ0) → (H(BY ), τ0) is linear and continuous. Let
V = (vn)∞n=1 and W = (wn)∞n=1 be two increasing families of weights satisfying
Condition I defined on BX and BY respectively. We put En = Hvn(BX) and
Fn = Hwn(BY ). Each one of these is a Banach space. They satisfy Hvn+1(BX) ⊆
Hvn(BX) ⊆ Hv1(BX) ⊆ H(BX), the closed unit ball Bvn is τ0-compact ( [7], [18,
page 349]) and Bvn+1 ⊆ Bvn for all n (the same happens for Hwn(BY )). Let us
take E = HV (BX) and F = HW (BY ).
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Let f ∈ H(BX) and consider its Taylor series expansion at 0, f =
∑∞

m=0 Pmf .
For each k ∈ N, the k-th Cesàro mean is defined by (see [3, Section 1] or [12,
Proposition 4])

Ckf(x) =
1

k + 1

k∑

l=0

(
l∑

m=0

Pmf(x)

)
=

k∑

m=0

(
1− m

k + 1

)
Pmf(x).

Since every weight is bounded on BX , every polynomial belongs to HV (BX).
In particular, for every f ∈ H(BX), the sequence (Ckf)k is in HV (BX). Also,
Ckf −→ f in τ0 (see [3], also [12]). If v is a radial weight then for all f ∈ Hv(BX),

sup
x∈BX

v(x)|Ckf(x)| ≤ sup
x∈BX

v(x)|f(x)|

(see [3, Proposition 1.2(b)], also [12]). Hence, if every v ∈ V is radial, then the
spaces and the composition operator satisfy all the above conditions to apply
Proposition 10 in a very similar way to that used by Bonet and Friz to obtain
the following generalizations of [8, Proposition 4.1].

11 Proposition. Let φ : BY −→ BX be holomorphic and V = (vn)n and
W = (wn)n increasing countable families of weights satisfying Condition I de-
fined on BX and BY respectively such that every vn is radial. The following
statements are equivalent,

(i) Cφ : HV (BX) −→ HW (BY ) is continuous.
(ii) For each w ∈W there exists v ∈ V such that Cφ : Hv(BX) −→ Hw(BY )

is continuous.

12 Proposition. Let φ : BY −→ BX be holomorphic and V = (vn)n and
W = (wn)n increasing countable families of weights such that every vn is radial.
The following statements are equivalent,

(i) Cφ : HV (BX) −→ HW (BY ) is (weakly) compact.
(ii) There exists v ∈ V such that Cφ : Hv(BX) −→ Hw(BY ) is (weakly)

compact for every w ∈W .

We draw now our attention to vector valued holomorphic functions. Fol-
lowing [8], given any countable family of weights V and a Banach space Z, we
consider the space

HV (BX , Z) = {f : BX → Z holomorphic : sup
x∈BX

v(x)‖f(x)‖ <∞, v ∈ V }

We are interested in composition operators Cφ : HV (BX , Z) → HW (BY , Z),
where V and W are countable families of weights satisfying Condition I defined
on BX and BY , respectively. In particular we are interested in when such an
operator is weakly compact. We study this case using wedge operators.
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If E and F are locally convex spaces, Lb(E,F ) denotes the space of con-
tinuous linear mappings from E into F endowed with the topology of uniform
convergence on bounded subsets of E. Now, given E1, E2, E3, E4, complete lo-
cally convex spaces, and L : E3 → E4, R : E1 → E2 continuous linear mappings,
the wedge operator

R ∧ L : Lb(E2, E3)→ Lb(E1, E4)

is defined by (R ∧ L)(T ) = LTR for T ∈ L(E2, E3). We refer to [8,17,19] for a
study of wedge operators. In [8, Section 2], several results are proved regarding
weak compactness of wedge operators.

It is known that given any Banach space and any countable family of weights
V = (vn)n with Condition I,

GV (BX) = {ψ ∈ HV (BX)
′

: ψ|Dα is τ0-continuous for all α = (αn)n, αn > 0}

where

Dα = {f ∈ HV (BX) : pvn(f) ≤ αn for all n ∈ N}

is a complete, barrelled (DF)-space such that its strong dual is topologically iso-
morphic to (HV (BX), τV ) (see [12, Section 3] for details). By using this predual
we obtain a linearization result for HV (BX , Z), compare with [8, Theorem 3.3].

Since any weakly holomorphic mapping on an open set of a Banach space is
holomorphic [10, Example 3.8 (g)] the following Lemma holds.

13 Lemma. The mapping ∆ : BX → GV (BX) given by x 7→ δx is holo-
morphic and the set {δx : x ∈ BX} is total in GV (BX).

14 Theorem. Let X and Z be Banach spaces and V a countable family of
weights defined on BX satisfying Condition I. Then

HV (BX , Z) = Lb(GV (BX), Z)

holds algebraically and topologically.

Proof. Let us consider the mapping χ : Lb(GV (BX), Z) → HV (BX , Z),
defined by χ(T ) = T ◦ ∆. By Lemma 13 χ(T ) ∈ H(BX , Z). Let us take any
v ∈ V and consider

Av = {v(x)δx : x ∈ BX}. (4)

This is a bounded set in GV (BX). Since T ∈ L(GV (BX), Z), the set

T (Av) = {v(x)T (δx) : x ∈ BX}
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is bounded in Z and

sup
x∈BX

‖v(x)T (δx)‖ = sup
x∈BX

v(x)‖χ(T )(x)‖ <∞.

Hence χ(T ) ∈ HV (BX , Z). So we have that χ is well defined. It is clearly linear
and the continuity follows in a natural way.

Now, for each f ∈ HV (BX , Z) we define ψ(f) : GV (BX) → Z∗∗ by the
equality (ψ(f)(u))(z∗) = u(z∗ ◦ f) for all z∗ ∈ Z∗. Since z∗ ◦ f ∈ HV (BX) for
each z∗ ∈ Z∗, the mapping ψ(f)(u) : Z∗ → C is well defined and is linear for
each u ∈ GV (BX) ⊂ HV (BX)′. It is not difficult to see that ψ(f)(u) ∈ Z∗∗ for
every u ∈ GV (BX). By the definition of ψ(f) it is linear. Let us see now that
ψ(f) is also continuous. Since f ∈ HV (BX , Z), the set {v(x)f(x) : x ∈ BX}
is bounded in Z for all v ∈ V and

sup
x∈BX

v(x)‖f(x)‖ = sup
x∈BX

sup
z∗∈BZ∗

v(x)|z∗(f(x))|.

Hence D = {z∗ ◦ f : z∗ ∈ BZ∗} is bounded in HV (BX). Let us consider a

neighbourhood of zero given by U =
◦
D ∩ GV (BX), where

◦
D is the polar of D

in HV (BX)′. Now, by definition of ψ, ‖ψ(f)(u)‖ ≤ 1 for all u ∈ U .
On the other hand (ψ(f)(δx))(z∗) = δx(z∗ ◦ f) = z∗(f(x)) for every x ∈ BX

and z∗ ∈ Z∗. Since {δx : x ∈ BX} is total in GV (BX) we conclude that
ψ(f) ∈ L(GV (BX), Z). The mapping ψ : HV (BX , Z) → Lb(GV (BX), Z) is
clearly linear and by the Closed Graph Theorem it is also continuous.

An easy computation shows that ψ ◦ χ is the identity on Lb(GV (BX), Z)
and χ ◦ ψ is the identity on HV (BX , Z). This completes the proof. QED

15 Proposition. If Cφ : HV (BX)→ HW (BY ) is continuous, then
(1) For any Banach space Z, the vector-valued composition operator

Cφ : HV (BX , Z)→ HW (BY , Z)

is also continuous.
(2) The transpose Ctφ of Cφ satisfies Ctφ(GW (BY )) ⊂ GV (BX). In particular

the restriction of Ctφ to GW (BY ), which we denote by C ′
φ, satisfies

C ′
φ ∈ L(GW (BY ), GV (BX))

and (C ′
φ)t = Cφ.

Proof. Clearly we only need to prove (2). If g ∈ HV (BX), then

(Ctφ)(δy)(g) = δy(Cφ(g)) = δy(g ◦ φ) = g(φ(y)) = δφ(y)(g).
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Hence (Ctφ)(δy) = δφ(y) for all y ∈ BY . Since Ctφ : HW (BY )′b → HV (BX)′b
is continuous, the set {δy : y ∈ BY } is total in GW (BY ) and GV (BX) is
complete, we have Ctφ(GW (BY )) ⊂ GV (BX). Now, C ′

φ : GW (BY )→ GV (BX)
is clearly continuous since both preduals are endowed with the restriction of the
corresponding strong topologies.

By using thatHV (BX) (respectivelyHW (BY )) is the strong dual ofGV (BX)
(respectively GW (BY )), we get (C ′

φ)t = Cφ. QED

With all the mappings we have considered so far we have the following
diagram

HV (BX , Z)
Cφ−−−−→ HW (BY , Z)

χV

x
yψW

Lb(GV (BX), Z) −−−−−→
C′

φ
∧idZ

Lb(GW (BY ), Z)

(5)

16 Proposition. The diagram (5) is commutative; that is C ′
φ∧ idZ = ψW ◦

Cφ ◦ χV .

Proof. Let S ∈ L(GV (BX), Z), we first have (C ′
φ ∧ idZ)(S) = S ◦ C ′

φ. Let
us see that this coincides with (ψW ◦ Cφ ◦ χV )(S). By Lemma 13 it is enough
to see that they coincide on {δy : y ∈ BY }. For each y ∈ BY we have

(S ◦ C ′
φ)(δy) = S(C ′

φ(δy)) = S(δφ(y))

and

(ψW ◦ Cφ ◦ χV )(S)(δy) = ((Cφ ◦ χV )(S)) (y) = χV (S)(φ(y)) = S(δφ(y)).

QED

Note that as an immediate consequence of this result we have that the
vector-valued composition operator Cφ is reflexive or weakly compact if and
only if the wedge operator C ′

φ ∧ idZ is of the same type. We use the results on
wedge operators given in [8] to obtain the following.

17 Theorem. Let X,Y, Z be Banach spaces and φ : BY → BX be a holo-
morphic mapping. Let V,W be countable families of weights defined on BX and
BY respectively such that each weight satisfies Condition I. If any of the two
following conditions hold

(a) φ(BY ) ∩ rBX is relatively compact for every 0 < r < 1,
(b) lim‖y‖→1− w(y) = 0 for every w ∈ W and φ(rBY ) is relatively compact

for every 0 < r < 1, then the operator

Cφ : HV (BX , Z)→ HW (BY , Z)
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is weakly compact if and only if Z is reflexive and Cφ : HV (BX) → HW (BY )
is weakly compact.

Proof. If Cφ : HV (BX , Z)→ HW (BY , Z) is weakly compact then, by [8,
Proposition 2.1], (C ′

φ)t is weakly compact. But by Proposition 15 (C ′
φ)t = Cφ;

hence Cφ : HV (BX) → HW (BY ) is weakly compact. On the other hand [8,
Proposition 2.1] implies that idZ : Z → Z is also weakly compact; hence Z is
reflexive.

Let us assume now that Z is reflexive and Cφ : HV (BX) → HW (BY ) is
weakly compact. By Proposition 15 (C ′

φ)t = Cφ; hence (C ′
φ)t : HV (BX) →

HW (BY ) is weakly compact. By Proposition 12 there exists v ∈ V such that
for every w ∈ W the composition operator Cφ : Hv(BX) → Hw(BY ) is weakly
compact. If (a)(resp. (b)) holds, using Theorem 6 (resp. Theorem 5) we have
that Cφ : Hv(BX)→ Hw(BY ) is compact. Applying again Proposition 12 (C ′

φ)t :
HV (BX) → HW (BY ) is compact. Moreover idZ : Z → Z is weakly compact
since Z is reflexive. By [8, Theorem 2.15] C ′

φ ∧ idZ is weakly compact. QED
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