Note di Matematica 25, n. 1, 2005/2006, 205-220.

Weakly compact composition operators between weighted spaces

Domingo Garcíaⁱ

Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, 46100 Burjasot (Valencia), Spain domingo.garcia@uv.es

Manuel Maestre

Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, 46100 Burjasot (Valencia), Spain manuel.maestre@uv.es

Pablo Sevilla-Peris

Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, 46100 Burjasot (Valencia), Spain pablo.sevilla@uv.es

Abstract. Our aim in this paper is to study weak compactness of composition operators between weighted spaces of holomorphic functions on the unit ball of a Banach space.

Keywords: Composition operators, weighted spaces, holomorphic functions, Banach spaces

MSC 2000 classification: primary 47B33, secondary 46E10

To the memory of our friend Klaus Floret

1 Weighted Fréchet spaces

Let X be a Banach space and B its open unit ball. We consider a countable family V of bounded and continuous functions $v : B \longrightarrow]0, +\infty[$. Any such function is called a weight. Weighted spaces of holomorphic functions defined by such families were first defined by Bierstedt, Bonet and Galbis in [3] for open subsets of \mathbb{C}^n (see also [4–7,9]). García, Maestre and Rueda defined and studied in [12] analogous spaces of functions defined on Banach spaces. We recall now the basic definitions and results.

The space of all holomorphic functions $f: B \to \mathbb{C}$ is denoted by H(B). We consider the space

$$HV(B) = \{ f \in H(B) : p_v(f) = \sup_{x \in B} v(x) | f(x) | < \infty \text{ for all } v \in V \}$$

ⁱThe authors were supported by the MCYT and FEDER Project BFM2002-01423.

We endow HV(B) with the Fréchet topology τ_V generated by the family of seminorms $(p_v)_{v \in V}$. The family of weights $V = (v_n)_n$ can always be chosen to be increasing. When V consists only of one weight v, the corresponding space is denoted $H_v(B)$ and it is a Banach space whose open unit ball is denoted by B_v . We refer to [12] or [18] for a study of the properties of these spaces.

A set $A \subset B$ is said to be *B*-bounded if there exists 0 < r < 1 such that $A \subset rB$. The subspace of H(B) of those functions that are bounded on the *B*-bounded sets is denoted by $H_b(B)$. The space of bounded holomorphic functions is denoted by $H^{\infty}(B)$ and, as usual, for $h \in H^{\infty}(B)$ we write $||h||_{\infty} = \sup_{x \in B} |h(x)|$.

Following [12, Definition 1], we say that a family V of weights defined on B satisfies Condition I if for each B-bounded set $A \subseteq B$ there exists $v \in V$ such that $\inf\{v(x) : x \in A\} > 0$. If V satisfies Condition I, then $HV(B) \subseteq H_b(B)$ and τ_V is stronger than τ_b , the topology of the uniform convergence over the B-bounded sets.

A weight is radial if $v(\lambda x) = v(x)$ for every $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ and every $x \in B$.

Following the standard notation if X is a Banach space we will denote its dual by X^* . If E is a Fréchet space, its dual will be denoted by E'.

In this article we continue our work [13] on compactness of composition operators between weighted spaces of holomorphic functions on the unit ball of a Banach space. We refer to the introduction of that paper for information and motivations. We want to emphasize here that our work is based upon [6,8]. Our main results on weak compactness of composition operators between Banach weighted spaces of holomorphic functions are Theorem 5, 6 and Corollary 7. We apply these results in Section 3 to obtain Theorem 17, a positive result of weak compactness of composition operators between Fréchet weighted spaces of holomorphic functions.

Throughout this paper X, Y will denote Banach spaces and B_X, B_Y their open unit balls. Note that in this setting, a weight v satisfies Condition I if $\inf_{x \in rB_X} v(x) > 0$ for every 0 < r < 1. Given any weight v, following [4], we consider an associated growth condition $u : B_X \longrightarrow]0, +\infty[$ defined by $u(x) = \frac{1}{v(x)}$. From this, $\tilde{u} : B_X \longrightarrow]0, +\infty[$ is defined by

$$\tilde{u}(x) = \sup_{f \in B_v} |f(x)|$$

which produces an associated weight $\tilde{v} = 1/\tilde{u}$. All these functions were defined by Bierstedt, Bonet and Taskinen for open subsets of \mathbb{C}^n in [4]. In [4, Proposition 1.2], the following relations between weights for open sets on \mathbb{C}^n are proved. The same arguments work for the unit ball of a Banach space.

206

1 Proposition. Let X be a Banach space and v a weight defined on B_X . The following hold,

(i) $0 < v \leq \tilde{v}$ and \tilde{v} is bounded and continuous; i.e. \tilde{v} is a weight.

(ii) \tilde{u} (resp. \tilde{v}) is radial and decreasing or increasing with respect to the norm whenever u (resp. v) is so.

(*iii*) $p_v(f) \le 1 \Leftrightarrow p_{\tilde{v}}(f) \le 1$.

(iv) For each $x \in B_X$ there exists $f_x \in B_v$ such that $\tilde{u}(x) = |f_x(x)|$.

A linear mapping between Banach spaces, $T : X \to Y$, is called *compact*, weakly compact or Rosenthal if $T(B_X)$ is, respectively, relatively compact, relatively weakly compact or conditionally weakly compact. A subset $A \subset X$ is called *conditionally weakly compact* if every sequence in A admits a weak Cauchy subsequence.

2 Weak compactness of composition operators on Banach spaces

Given two Banach spaces X, Y, let $\phi : B_Y \to B_X$ be a holomorphic mapping. The *composition operator* associated to ϕ is defined as

$$C_{\phi}: H(B_X) \longrightarrow H(B_Y) \quad , \quad f \rightsquigarrow C_{\phi}(f) = f \circ \phi.$$

This operator is linear and $\tau_0 - \tau_0$ -continuous. Now, given any two weights v, w we consider the operator $C_{\phi} : H_v(B_X) \to H_w(B_Y)$ whenever this is well defined. This happens if and only if the operator is continuous [13, Remark 2.1].

Continuity and compactness of these operators have been studied in [7] when $X = Y = \mathbb{C}$, in [9] for arbitrary open sets in \mathbb{C} and in [13,15] for the infinite dimensional case.

Weak compactness of composition operators was studied in [6] for the one dimensional case. There the following situation is considered; let G_1 and G_2 be two open connected domains in \mathbb{C} such that $\mathbb{C}^* \setminus G_1$ has no one-point component and let $\phi: G_2 \to G_1$ be a holomorphic mapping. Given v and w weights on G_1 and G_2 respectively, if $C_{\phi}: H_v(G_1) \to H_w(G_2)$ is weakly compact or Rosenthal then C_{ϕ} is compact ([6, Theorem 1]).

Weakly compact composition operators on $H^{\infty}(B_X)$ were studied in [11]. In [11, Proposition 2] it is shown that if $C_{\phi} : H^{\infty}(B_X) \to H^{\infty}(B_Y)$ is Rosenthal or compact, then $\phi(B_Y)$ lies strictly inside B_X . The proof of this result is clearly inspired by the proof of [6, Theorem 1]. Following the same trends of ideas we will give an analogous result for general weights which strictly includes [11, Proposition 2]. The proof of the following lemma is very similar to that of [20, Section 2.4] and [7, Lemma 3.1].

2 Lemma. Let $C_{\phi} : H_v(B_X) \longrightarrow H_w(B_Y)$ continuous. The following are equivalent,

(i) C_{ϕ} is compact.

(ii) Each bounded net $(f_{\alpha})_{\alpha \in A} \subseteq H_v(B_X)$ such that $\{f_{\alpha} : \alpha \in A\}$ is a countable set and $f_{\alpha} \xrightarrow{\tau_0} 0$ satisfies that $p_w(C_{\phi}f_{\alpha}) \longrightarrow 0$.

If, furthermore, X is separable, then (i) and (ii) are equivalent to

(iii) Each bounded sequence $(f_n)_n \subseteq H_v(B_X)$ such that $f_n \xrightarrow{\tau_0} 0$ satisfies that $p_w(C_{\phi}f_n) \longrightarrow 0$.

PROOF. Let us suppose first that C_{ϕ} is compact. Then $C_{\phi}(B_v)$ is relatively compact in $H_w(B_Y)$. Let us take a bounded net $(f_{\alpha})_{\alpha \in A} \subseteq H_v(B_X)$ with $\{f_{\alpha} : \alpha \in A\}$ countable such that $f_{\alpha} \longrightarrow 0$ in τ_0 . Since C_{ϕ} is τ_0 - τ_0 -continuous, $C_{\phi}f_{\alpha} \xrightarrow{\tau_0} 0$. Convergence in p_w implies that of τ_0 , hence each p_w -convergent subnet of $(C_{\phi}f_{\alpha})_{\alpha}$ will converge to 0.

If $(p_w(C_{\phi}f_{\alpha}))_{\alpha}$ does not converge to 0, there exists a subnet $(f_{\beta})_{\beta}$ and c > 0such that $p_w(C_{\phi}f_{\beta}) \ge c$ for all β . But $(f_{\beta})_{\beta}$ is bounded and C_{ϕ} is compact, therefore $(C_{\phi}f_{\beta})_{\beta}$ is relatively compact and has a convergent subnet. This new subnet is also a subnet of $(C_{\phi}f_{\alpha})_{\alpha}$ and it must converge to 0. This gives a contradiction. So, $\lim_{\alpha} p_w(C_{\phi}f_{\alpha}) = 0$.

Assume (ii) holds. Let $(f_n)_n \subseteq B_v$. By [18] B_v is τ_0 -compact, in particular it is τ_0 -bounded. Then, $(f_n)_n$ is τ_0 -bounded and, by Montel's Theorem, there is a subnet $(g_\alpha)_{\alpha \in A}$ converging in τ_0 to some $g \in H(B_X)$. For each $x \in B_X$ and α we have $v(x)|g_\alpha(x)| \leq p_v(g_\alpha) \leq 1$. Hence

$$1 \ge \lim_{\alpha} v(x)|g_{\alpha}(x)| = v(x)\lim_{\alpha} |g_{\alpha}(x)| = v(x)|g(x)|.$$

This implies $\sup_{x \in B_X} v(x)|g(x)| < \infty$ and $g \in H_v(B_X)$.

Let us note that for each α there is n such that $g_{\alpha} = f_n$. This means that $\{g_{\alpha} : \alpha \in A\}$ is countable. Thus $(g_{\alpha} - g)_{\alpha}$ is a bounded net in $H_v(B_X)$ with $\{g_{\alpha} - g : \alpha \in A\}$ countable and $(g_{\alpha} - g) \longrightarrow 0$ in τ_0 . By hypothesis $\lim_{\alpha} p_w(C_{\phi}(g_{\alpha} - g)) = 0$. This implies that $C_{\phi}(B_v)$ is relatively compact and C_{ϕ} is compact.

If X is separable, then Montel Theorem states that every τ_0 -bounded sequence in $H(B_X)$ has a τ_0 -convergent subsequence; this allows to show that in this case (*iii*) implies (*i*).

3 Proposition. Let X, Y be Banach spaces and $\phi : B_Y \to B_X$ a holomorphic mapping such that $\phi(B_Y) \cap rB_X$ is relatively compact for every 0 < r < 1. If the operator $C_{\phi} : H_v(B_X) \to H_w(B_Y)$ is not compact then it is neither weakly compact nor Rosenthal.

208

PROOF. If the composition operator is not compact, by Lemma 2, there is a bounded net $(g_{\alpha})_{\alpha \in A} \subseteq H_v(B_X)$ with $\{g_{\alpha} : \alpha \in A\}$ countable and τ_0 converging to 0 such that $(p_w(C_{\phi}g_{\alpha}))_{\alpha}$ does not converge to 0. We can find a subnet $(g_{\beta})_{\beta}$ and c > 0 so that $p_w(C_{\phi}g_{\beta}) > c$ for all β . Note that $\{g_{\beta}\}$ is countable. Let us write $\{g_{\beta}\} = \{f_n : n \in \mathbb{N}\}$. Then we have $(f_n)_n$, bounded, such that $p_w(C_{\phi}f_n) > c$. For each n we can find $y_n \in B_Y$ such that

$$w(y_n)|f_n(\phi(y_n))| > c > 0.$$
 (1)

Let us see that $\lim_{n} \|\phi(y_n)\| = 1$. If not, there are a subsequence $(y_{n_k})_k$ and 0 < r < 1 such that $\phi(y_{n_k}) \in rB_X$ for all k. But $\phi(B_Y) \cap rB_X$ is relatively compact in B_X ; hence we can extract a subsequence, which we denote in the same way, so that $(\phi(y_{n_k}))_k$ converges to some x_0 . Since $K := \bigcup_k \{\phi(y_{n_k})\} \cup \{x_0\}$ is compact and $(g_\beta)_\beta$ is τ_0 -null, there exists β_0 such that, for $\beta \geq \beta_0$,

$$\sup_{x \in K} |g_{\beta}(x)| < \frac{c}{\|w\|_{\infty}}.$$
(2)

From this, $w(y_{n_k})|g_{\beta}(x)| < c$ for every $x \in K$ and all k. But $g_{\beta} = f_{n_k}$ for some k; then $w(y_{n_k})|f_{n_k}(\phi(y_{n_k}))| < c$. This gives a contradiction. Therefore we have a bounded sequence $(f_n)_n \subseteq H_v(B_X)$ and $(y_n)_n \subseteq B_Y$ satisfying that $|f_n(\phi(y_n))|w(y_n) > c$ and $\lim_n \|\phi(y_n)\| = 1$. Now, by the proof of [1, Theorem 10.5], there is a $g \in H^{\infty}(B_X)$ and a subsequence $(\phi(y_{n_k}))_k$ so that $(g(\phi(y_{n_k})))_k$ is an interpolating sequence for $H^{\infty}(\mathbb{D})$. By [14, p. 294] we can find a sequence $(h_m)_m \subseteq H^{\infty}(\mathbb{D})$ and M > 0 so that, for all $z \in \mathbb{D}$,

$$\sum_{m} |h_m(z)| \le M \quad , \quad h_m(g(\phi(y_{n_k}))) = \delta_{mk},$$

where δ_{mk} stands for the Dirac's delta. Let us define $T: \ell_{\infty} \to H_v(B_X)$ by

$$T((\xi_m)_m)(x) = \sum_{m=1}^{\infty} \xi_m f_{n_m}(x) h_m(g(x))$$

for every $\xi = (\xi_m)_m \in \ell_\infty$ and $x \in B_X$. This is clearly linear and continuous, since

$$p_{v}(T(\xi)) = \sup_{x \in B_{X}} v(x) |T(\xi)(x)| \le \sup_{x \in B_{X}} \sum_{m=1}^{\infty} \|\xi\|_{\infty} p_{v}(f_{n_{m}}) |h_{m}(g(x))|$$

$$\le M \|\xi\|_{\infty} \sup_{m} p_{v}(f_{n_{m}}).$$

Hence $||T|| \leq M \sup_m p_v(f_{n_m}).$

D. García, M. Maestre and P. Sevilla-Peris

We define now $S : H_w(B_Y) \to \ell_\infty$ by $S(h) = \left(\frac{h(y_{n_k})}{f_{n_k}(\phi(y_{n_k}))}\right)_k$. This is also linear and continuous. Indeed, using (1) we have

$$||S(h)|| = \sup_{k} \frac{|h(y_{n_k})|w(y_{n_k})}{|f_{n_k}(\phi(y_{n_k}))|w(y_{n_k})} \le \frac{1}{c} \sup_{k} |h(y_{n_k})|w(y_{n_k}) \le \frac{1}{c} p_w(h)$$

and $||S|| \le 1/c$.

These two mappings satisfy that $S \circ C_{\phi} \circ T = id_{\ell_{\infty}}$. For any $\xi = (\xi_k)_k \in \ell_{\infty}$ we have

$$S \circ C_{\phi} \circ T(\xi) = \left(\frac{C_{\phi} \circ T(\xi)(y_{n_{k}})}{f_{n_{k}}(\phi(y_{n_{k}}))}\right)_{k}$$

= $\left(\frac{T(\xi)(\phi(y_{n_{k}}))}{f_{n_{k}}(\phi(y_{n_{k}}))}\right)_{k}$
= $\left(\frac{\sum_{m=1}^{\infty} \xi_{m} f_{n_{m}}(\phi(y_{n_{k}}))h_{m}(g(\phi(y_{n_{k}})))}{f_{n_{k}}(\phi(y_{n_{k}}))}\right)_{k}$
= $\left(\frac{\xi_{k} f_{n_{k}}(\phi(y_{n_{k}}))}{f_{n_{k}}(\phi(y_{n_{k}}))}\right)_{k} = (\xi_{k})_{k}.$

Since S and T are continuous, they are weakly continuous. If C_{ϕ} were weakly compact, we would have that $S \circ C_{\phi} \circ T(B_{\ell_{\infty}})$ would be weakly compact, but this is not true. Hence C_{ϕ} cannot be weakly compact.

Similarly, C_{ϕ} cannot be Rosenthal since $id_{\ell_{\infty}}$ is not so.

4 Proposition. Let X, Y be Banach spaces and $\phi : B_Y \to B_X$ a holomorphic mapping such that $\phi(rB_Y)$ is relatively compact for every 0 < r < 1. Let v, w be weights defined on X and Y respectively, satisfying $\lim_{\|y\|\to 1^-} w(y) = 0$. If the operator $C_{\phi} : H_v(B_X) \to H_w(B_Y)$ is not compact then it is neither weakly compact nor Rosenthal.

PROOF. If C_{ϕ} is not compact, proceeding as in Proposition 3, we can obtain a bounded, τ_0 -null net $(g_{\beta})_{\beta}$ such that $\{g_{\beta}\}$ is a countable set, which we write $\{f_n : n \in \mathbb{N}\}$ and a sequence $(y_n)_n \subseteq B_Y$ so that

$$w(y_n)|f_n(\phi(y_n))| \ge c > 0.$$

Let us see now that $\lim_n ||y_n|| = 1$. If not, there is a subsequence $(y_{n_k})_k$ such that $(y_{n_k})_k \subseteq rB_Y$ for some 0 < r < 1. Since $\phi(rB_Y)$ is relatively compact, $(\phi(y_{n_k}))_k$ is relatively compact. We consider now $K = \overline{(\phi(y_{n_k}))_k}$, which is compact. Hence there is β_0 such that, for all $\beta \geq \beta_0$,

$$\sup_{x \in K} g_{\beta}(x) < \frac{c}{\|w\|_{\infty}}.$$

210

This is the same inequality as in (2); proceeding in the same way we get a contradiction that shows that $\lim_{n} ||y_n|| = 1$.

From this we can show that $\lim_{n} \|\phi(y_n)\| = 1$. If this is not true, we can find a subsequence $(y_{n_k})_k$ such that $\|\phi(y_{n_k})\| \leq \lambda < 1$. Now, on the one hand, $(f_n)_n$ is bounded in $H_v(B_X)$; so let us write $\sup_n \|f_n\|_v = M$. On the other hand, vsatisfies Condition I; from this, $\inf_{x \in \lambda B_X} v(x) = K > 0$. Hence

$$c \le w(y_n)|f_n(\phi(y_n))| = \frac{w(y_n)}{v(\phi(y_n))}v(\phi(y_n))|f_n(\phi(y_n))| \le \frac{M}{K}w(y_n).$$

Since $\lim_n \|y_n\| = 1$, we have $\lim_n w(y_n) = 0$. This gives a contradiction that shows that $\lim_n \|\phi(y_n)\| = 1$. From this point, following the same steps as in Proposition 3 we get that C_{ϕ} is neither weakly compact nor Rosenthal.

With these results we can prove the following ones.

5 Theorem. Let v, w be weights satisfying Condition I such that w(y) converges to 0 as $||y|| \to 1^-$ and $\phi: B_Y \to B_X$ be a holomorphic mapping. The following are equivalent,

- (i) C_{ϕ} is compact.
- (ii) C_{ϕ} is weakly compact and $\phi(rB_Y)$ is relatively compact for all 0 < r < 1.
- (iii) $\lim_{\|y\|\to 1^-} \frac{w(y)}{\tilde{v}(\phi(y))} = 0$ and $\phi(rB_Y)$ is relatively compact for all 0 < r < 1.

PROOF. The equivalence between (i) and (ii) is a straightforward consequence of Proposition 4 and [13, Proposition 3.2]. The fact that (i) and (iii) are equivalent is [13, Proposition 3.2]. But in the proof of that result it is actually used Lemma 2 (iii). Hence that proof is formally true only if X is separable. Nevertheless, an easy adaption to nets and Lemma 2 give that the result remains true for any Banach space X. For the sake of completeness we show here the adapted proof.

The proof given in [13, Proposition 3.2] that (i) implies (iii) does not use the characterization of Lemma 2 and it is valid for any Banach space.

Now, let us assume that (iii) holds. Following the same steps as in [13, Proposition 3.2] we get that C_{ϕ} is continuous. Let us suppose that C_{ϕ} is not compact; then by Lemma 2 there is a net $(f_{\alpha})_{\alpha} \subseteq B_v$ that τ_0 -converges to 0 such that $(C_{\phi}(f_{\alpha}))_{\alpha}$ does not p_w -converge to 0. Taking a subnet if necessary we can assume that there is $\lambda > 0$ with $p_w(C_{\phi}(f_{\alpha})) > \lambda > 0$ for all α . For each α , let $y_{\alpha} \in B_Y$ be such that $w(y_{\alpha})|f_{\alpha}(\phi(y_{\alpha}))| \geq \lambda$. If $1 \in \overline{\{\|y_{\alpha}\|\}_{\alpha}}$ then there is a sequence of points in $\{\|y_{\alpha}\|\}_{\alpha}$ converging to 1. Let us denote this sequence by $\{\|y_n\|\}_n$. Given any $\varepsilon > 0$ there is n_0 so that, for any $n \geq n_0$,

$$w(y_n) \leq \varepsilon \tilde{v}(\phi(y_n)).$$

D. García, M. Maestre and P. Sevilla-Peris

Thus we have

$$\lambda \le w(y_n) |f_n(\phi(y_n))| \le \varepsilon \tilde{v}(\phi(y_n)) |f_n(\phi(y_n))| \le \varepsilon.$$

This gives a contradiction and shows that there is 0 < r < 1 such that $||y_{\alpha}|| < r$ for all α . Now, $\phi(rB_Y)$ is relatively compact and $(\phi(y_{\alpha})) \subseteq \phi(rB_Y)$; this implies that given any $\varepsilon > 0$ there exists α_0 with

$$\sup_{x \in \phi(rB_Y)} |f_{\alpha}(x)| < \frac{\varepsilon}{\sup_{y \in B_Y} w(y)}$$

for every $\alpha \geq \alpha_0$. From this, $|f_{\alpha}(\phi(y_{\alpha}))| < \varepsilon / \sup_{y \in B_Y} w(y)$ for every $\alpha \geq \alpha_0$ and $\lambda \leq w(y_{\alpha})|f_{\alpha}(\phi(y_{\alpha}))| < \varepsilon$. This is again a contradiction that finally shows that C_{ϕ} is compact.

6 Theorem. Let v, w be weights satisfying Condition I and $\phi : B_Y \to B_X$ be a holomorphic mapping such that $\phi(B_Y) \cap rB_X$ is relatively compact for all 0 < r < 1. The following are equivalent,

- (i) C_{ϕ} is compact.
- (ii) C_{ϕ} is weakly compact.
- (iii) C_{ϕ} is Rosenthal.
- $(iv) \lim_{r \to 1^-} \sup_{\|\phi(y)\| > r} \frac{w(y)}{\tilde{v}(\phi(y))} = 0.$
- (If $\|\phi\|_{\infty} < 1$, the above limit is taken as zero by definition).

PROOF. The equivalence between (i), (ii) and (iii) follows from Proposition 3. Statements (i) and (iv) are equivalent by [13, Theorem 3.3]. In this case, as in Theorem 5, it is also necessary to make a slight change in the original proof for the case of a non separable Banach space X.

7 Corollary. Let v, w be weights satisfying Condition I such that w(y) does not converges to 0 as $||y|| \to 1^-$ and $\phi : B_Y \to B_X$ be a holomorphic mapping. The following are equivalent,

- (i) C_{ϕ} is compact.
- (ii) $\phi(B_Y)$ is relatively compact and $\|\phi\|_{\infty} < 1$.
- (iii) C_{ϕ} is weakly compact and $\phi(B_Y)$ is relatively compact.

PROOF. The fact that (i) and (ii) are equivalent is proved in [13, Corollary 3.5 (b)]. Trivially (i) implies (iii). Theorem 6 gives that (iii) implies (i).

A particular case of this is when v(x) = w(x) = 1; this gives H^{∞} . Compact composition operators between $H^{\infty}(B_Y)$ and $H^{\infty}(B_X)$ have been studied in [2,11]. The following result is proved there (see also [11, Preliminaries]).

8 Proposition. [2, Proposition 2.2] Consider the composition operator C_{ϕ} : $H^{\infty}(B_X) \to H^{\infty}(B_Y)$. The following statements are equivalent,

- (i) C_{ϕ} is compact.
- (ii) C_{ϕ} is weakly compact and $\phi(B_Y)$ is relatively compact in X.
- (iii) $\phi(B_Y)$ lies strictly inside B_X and $\phi(B_Y)$ is relatively compact in X.

This was first proved by Maestre [16] for the space $A_u(B_X)$, the algebra of the holomorphic functions on the open unit ball of X which are uniformly continuous on the closed unit ball of X. That proof for $A_u(B_X)$ can be easily adapted to obtain the result for $H^{\infty}(B_X)$. The difficult part in the characterization of compactness of C_{ϕ} is to prove necessity. The proof of $\phi(B_Y) \subseteq sB_X$ for some 0 < s < 1 in [2] goes through weak compactness of C_{ϕ} . We present in the following remark a very easy proof based on [16].

9 Remark. Let us assume that $C_{\phi} : H^{\infty}(B_X) \to H^{\infty}(B_Y)$ is compact and let us show that $\phi(B_Y) \subseteq sB_X$ for some 0 < s < 1. Suppose that this is not true. Then there would exist a sequence $(y_n)_n \subseteq B_Y$ such that $\lim_n \|\phi(y_n)\| = 1$. Without loss of generality we can assume that

$$\|\phi(y_n)\| > \sqrt[n]{1-\frac{1}{n}}.$$

For each $n \in \mathbb{N}$ we choose $x_n^* \in X^*$ such that $||x_n^*|| = 1$ and $x_n^*(\phi(y_n)) > \sqrt[n]{1-1/n}$. We consider the family

$$\mathcal{F} = \{ (x_n^*)^n : n = 1, 2, \dots \}.$$

We have

$$1 \ge \|(x_n^* \circ \phi)^n\|_{\infty} > 1 - \frac{1}{n}$$
(3)

for all $n \in \mathbb{N}$. As \mathcal{F} is a bounded set, $C_{\phi}(\mathcal{F})$ is relatively compact, i.e. there exists a subsequence $((x_{n_k}^* \circ \phi)^{n_k})_k$ that $\|\cdot\|_{\infty}$ -converges to some $f \in H^{\infty}(B_Y)$. By (3) $\|f\|_{\infty} = 1$. But for $y \in B_Y$ we have $|x_{n_k}^* \circ \phi(y)|^{n_k} \leq \|\phi(y)\|^{n_k}$ for all $k \in \mathbb{N}$ and $\|\phi(y)\|^{n_k}$ goes to 0 as k tends to infinity. Hence f(y) = 0 for all $y \in B_Y$. This gives a contradiction and completes the proof.

3 Composition Operators on Fréchet spaces

Given two countable families of weights V, W we consider now the composition operator $C_{\phi} : HV(B_X) \to HW(B_Y)$. In [8] these operators are defined and studied when $B_X = B_Y = \mathbb{D}$. Bonet and Friz prove a general result [8, Proposition 4.2] which allows them to give conditions on the continuity and compactness of the composition operator [8, Proposition 4.1]. We use a slight modification of their general result to find conditions characterizing continuity and compactness of the operator in our case. Let us state now this general result. Let (H, τ) , (G, τ') be Hausdorff locally convex spaces. For each n, let E_n and F_n be Banach spaces with closed unit balls B_n and C_n and norms $\|\cdot\|_n$ and $|\cdot|_n$. Suppose that $E_{n+1} \subseteq E_n \subseteq E_1 \subseteq H$, $B_{n+1} \subseteq B_n$ and $F_{n+1} \subseteq F_n \subseteq F_1 \subseteq G$, $C_{n+1} \subseteq C_n$ for every n. Suppose that for each n, both B_n and C_n are compact in (H, τ) and (G, τ') respectively.

Let E be the projective limit of $(E_n)_n$ and F the projective limit of $(F_n)_n$. Let us assume that for every $n \in \mathbb{N}$ and all $x \in E_n$ there exists a sequence $(y_k)_k \subseteq E$ converging to x in (H, τ) such that $||y_k||_n \leq ||x||_n$ for all k. In [8] the case $(H, \tau) = (G, \tau')$ is considered; the same proof of [8, Proposition 4.2] gives the following proposition. Let us recall that a linear mapping $T : E \longrightarrow F$ between two locally convex spaces is said to be *compact* (resp. *weakly compact* or *bounded*) if there exists a 0-neighborhood in E such that its image by T is relatively compact (resp. relatively weakly compact or bounded) in F.

10 Proposition. Let $T : (H, \tau) \longrightarrow (G, \tau')$ be a continuous, linear operator. (a) The following are equivalent,

(i) $TE \subseteq F$.

(*ii*) $T \in \mathcal{L}(E; F)$.

(iii) For each m, there is n such that $TE_n \subseteq F_m$.

(iv) For each m, there is n such that $T: E_n \longrightarrow F_m$ is well defined and continuous.

(b) The following are equivalent,

(i) $T: E \longrightarrow F$ is bounded.

(ii) There exists n such that for all $m, TE_n \subseteq F_m$.

(iii) There exists n such that for all $m, T : E_n \longrightarrow F_m$ is well defined and continuous.

(c) The following are equivalent,

(i) $T: E \longrightarrow F$ is compact (resp. weakly compact).

(ii) There exists n such that for all $m, T : E_n \longrightarrow F_m$ is compact (resp. weakly compact).

As an application of this result we characterize continuity and compactness composition operators. Let (H, τ) be $(H(B_X), \tau_0)$ and (G, τ') be $(H(B_Y), \tau_0)$. The operator $C_{\phi} : (H(B_X), \tau_0) \to (H(B_Y), \tau_0)$ is linear and continuous. Let $V = (v_n)_{n=1}^{\infty}$ and $W = (w_n)_{n=1}^{\infty}$ be two increasing families of weights satisfying Condition I defined on B_X and B_Y respectively. We put $E_n = H_{v_n}(B_X)$ and $F_n = H_{w_n}(B_Y)$. Each one of these is a Banach space. They satisfy $H_{v_{n+1}}(B_X) \subseteq$ $H_{v_n}(B_X) \subseteq H_{v_1}(B_X) \subseteq H(B_X)$, the closed unit ball \overline{B}_{v_n} is τ_0 -compact ([7], [18, page 349]) and $\overline{B}_{v_{n+1}} \subseteq \overline{B}_{v_n}$ for all n (the same happens for $H_{w_n}(B_Y)$). Let us take $E = HV(B_X)$ and $F = HW(B_Y)$.

Let $f \in H(B_X)$ and consider its Taylor series expansion at $0, f = \sum_{m=0}^{\infty} P_m f$. For each $k \in \mathbb{N}$, the k-th Cesàro mean is defined by (see [3, Section 1] or [12, Proposition 4])

$$C_k f(x) = \frac{1}{k+1} \sum_{l=0}^k \left(\sum_{m=0}^l P_m f(x) \right) = \sum_{m=0}^k \left(1 - \frac{m}{k+1} \right) P_m f(x).$$

Since every weight is bounded on B_X , every polynomial belongs to $HV(B_X)$. In particular, for every $f \in H(B_X)$, the sequence $(C_k f)_k$ is in $HV(B_X)$. Also, $C_k f \longrightarrow f$ in τ_0 (see [3], also [12]). If v is a radial weight then for all $f \in H_v(B_X)$,

$$\sup_{x \in B_X} v(x)|C_k f(x)| \le \sup_{x \in B_X} v(x)|f(x)|$$

(see [3, Proposition 1.2(b)], also [12]). Hence, if every $v \in V$ is radial, then the spaces and the composition operator satisfy all the above conditions to apply Proposition 10 in a very similar way to that used by Bonet and Friz to obtain the following generalizations of [8, Proposition 4.1].

11 Proposition. Let $\phi : B_Y \longrightarrow B_X$ be holomorphic and $V = (v_n)_n$ and $W = (w_n)_n$ increasing countable families of weights satisfying Condition I defined on B_X and B_Y respectively such that every v_n is radial. The following statements are equivalent,

(i) $C_{\phi}: HV(B_X) \longrightarrow HW(B_Y)$ is continuous.

(ii) For each $w \in W$ there exists $v \in V$ such that $C_{\phi} : H_v(B_X) \longrightarrow H_w(B_Y)$ is continuous.

12 Proposition. Let $\phi : B_Y \longrightarrow B_X$ be holomorphic and $V = (v_n)_n$ and $W = (w_n)_n$ increasing countable families of weights such that every v_n is radial. The following statements are equivalent,

(i) $C_{\phi}: HV(B_X) \longrightarrow HW(B_Y)$ is (weakly) compact.

(ii) There exists $v \in V$ such that $C_{\phi} : H_v(B_X) \longrightarrow H_w(B_Y)$ is (weakly) compact for every $w \in W$.

We draw now our attention to vector valued holomorphic functions. Following [8], given any countable family of weights V and a Banach space Z, we consider the space

$$HV(B_X, Z) = \{ f : B_X \to Z \text{ holomorphic } : \sup_{x \in B_X} v(x) \| f(x) \| < \infty, \ v \in V \}$$

We are interested in composition operators $C_{\phi} : HV(B_X, Z) \to HW(B_Y, Z)$, where V and W are countable families of weights satisfying Condition I defined on B_X and B_Y , respectively. In particular we are interested in when such an operator is weakly compact. We study this case using wedge operators. If E and F are locally convex spaces, $L_b(E, F)$ denotes the space of continuous linear mappings from E into F endowed with the topology of uniform convergence on bounded subsets of E. Now, given E_1, E_2, E_3, E_4 , complete locally convex spaces, and $L: E_3 \to E_4, R: E_1 \to E_2$ continuous linear mappings, the wedge operator

$$R \wedge L : L_b(E_2, E_3) \rightarrow L_b(E_1, E_4)$$

is defined by $(R \wedge L)(T) = LTR$ for $T \in L(E_2, E_3)$. We refer to [8,17,19] for a study of wedge operators. In [8, Section 2], several results are proved regarding weak compactness of wedge operators.

It is known that given any Banach space and any countable family of weights $V = (v_n)_n$ with Condition I,

$$GV(B_X) = \{ \psi \in HV(B_X)' : \psi|_{D_\alpha} \text{ is } \tau_0 \text{-continuous for all } \alpha = (\alpha_n)_n, \alpha_n > 0 \}$$

where

$$D_{\alpha} = \{ f \in HV(B_X) : p_{v_n}(f) \le \alpha_n \text{ for all } n \in \mathbb{N} \}$$

is a complete, barrelled (DF)-space such that its strong dual is topologically isomorphic to $(HV(B_X), \tau_V)$ (see [12, Section 3] for details). By using this predual we obtain a linearization result for $HV(B_X, Z)$, compare with [8, Theorem 3.3].

Since any weakly holomorphic mapping on an open set of a Banach space is holomorphic [10, Example 3.8 (g)] the following Lemma holds.

13 Lemma. The mapping $\Delta : B_X \to GV(B_X)$ given by $x \mapsto \delta_x$ is holomorphic and the set $\{\delta_x : x \in B_X\}$ is total in $GV(B_X)$.

14 Theorem. Let X and Z be Banach spaces and V a countable family of weights defined on B_X satisfying Condition I. Then

$$HV(B_X, Z) = L_b(GV(B_X), Z)$$

holds algebraically and topologically.

PROOF. Let us consider the mapping $\chi : L_b(GV(B_X), Z) \to HV(B_X, Z)$, defined by $\chi(T) = T \circ \Delta$. By Lemma 13 $\chi(T) \in H(B_X, Z)$. Let us take any $v \in V$ and consider

$$A_v = \{v(x)\delta_x : x \in B_X\}.$$
(4)

This is a bounded set in $GV(B_X)$. Since $T \in L(GV(B_X), Z)$, the set

$$T(A_v) = \{v(x)T(\delta_x) : x \in B_X\}$$

is bounded in Z and

$$\sup_{x \in B_X} \|v(x)T(\delta_x)\| = \sup_{x \in B_X} v(x)\|\chi(T)(x)\| < \infty.$$

Hence $\chi(T) \in HV(B_X, Z)$. So we have that χ is well defined. It is clearly linear and the continuity follows in a natural way.

Now, for each $f \in HV(B_X, Z)$ we define $\psi(f) : GV(B_X) \to Z^{**}$ by the equality $(\psi(f)(u))(z^*) = u(z^* \circ f)$ for all $z^* \in Z^*$. Since $z^* \circ f \in HV(B_X)$ for each $z^* \in Z^*$, the mapping $\psi(f)(u) : Z^* \to \mathbb{C}$ is well defined and is linear for each $u \in GV(B_X) \subset HV(B_X)'$. It is not difficult to see that $\psi(f)(u) \in Z^{**}$ for every $u \in GV(B_X)$. By the definition of $\psi(f)$ it is linear. Let us see now that $\psi(f)$ is also continuous. Since $f \in HV(B_X, Z)$, the set $\{v(x)f(x) : x \in B_X\}$ is bounded in Z for all $v \in V$ and

$$\sup_{x \in B_X} v(x) \|f(x)\| = \sup_{x \in B_X} \sup_{z^* \in B_{Z^*}} v(x) |z^*(f(x))|.$$

Hence $D = \{z^* \circ f : z^* \in B_{Z^*}\}$ is bounded in $HV(B_X)$. Let us consider a neighbourhood of zero given by $U = \overset{\circ}{D} \cap GV(B_X)$, where $\overset{\circ}{D}$ is the polar of D in $HV(B_X)'$. Now, by definition of ψ , $\|\psi(f)(u)\| \leq 1$ for all $u \in U$.

On the other hand $(\psi(f)(\delta_x))(z^*) = \delta_x(z^* \circ f) = z^*(f(x))$ for every $x \in B_X$ and $z^* \in Z^*$. Since $\{\delta_x : x \in B_X\}$ is total in $GV(B_X)$ we conclude that $\psi(f) \in L(GV(B_X), Z)$. The mapping $\psi : HV(B_X, Z) \to L_b(GV(B_X), Z)$ is clearly linear and by the Closed Graph Theorem it is also continuous.

An easy computation shows that $\psi \circ \chi$ is the identity on $L_b(GV(B_X), Z)$ and $\chi \circ \psi$ is the identity on $HV(B_X, Z)$. This completes the proof.

15 Proposition. If $C_{\phi} : HV(B_X) \to HW(B_Y)$ is continuous, then

(1) For any Banach space Z, the vector-valued composition operator

$$C_{\phi}: HV(B_X, Z) \to HW(B_Y, Z)$$

is also continuous.

(2) The transpose C_{ϕ}^t of C_{ϕ} satisfies $C_{\phi}^t(GW(B_Y)) \subset GV(B_X)$. In particular the restriction of C_{ϕ}^t to $GW(B_Y)$, which we denote by C_{ϕ}' , satisfies

$$C'_{\phi} \in L(GW(B_Y), GV(B_X))$$

and $(C'_{\phi})^t = C_{\phi}$.

PROOF. Clearly we only need to prove (2). If $g \in HV(B_X)$, then

$$(C_{\phi}^t)(\delta_y)(g) = \delta_y(C_{\phi}(g)) = \delta_y(g \circ \phi) = g(\phi(y)) = \delta_{\phi(y)}(g).$$

Hence $(C_{\phi}^{t})(\delta_{y}) = \delta_{\phi(y)}$ for all $y \in B_{Y}$. Since $C_{\phi}^{t} : HW(B_{Y})_{b}^{\prime} \to HV(B_{X})_{b}^{\prime}$ is continuous, the set $\{\delta_{y} : y \in B_{Y}\}$ is total in $GW(B_{Y})$ and $GV(B_{X})$ is complete, we have $C_{\phi}^{t}(GW(B_{Y})) \subset GV(B_{X})$. Now, $C_{\phi}^{\prime} : GW(B_{Y}) \to GV(B_{X})$ is clearly continuous since both preduals are endowed with the restriction of the corresponding strong topologies.

By using that $HV(B_X)$ (respectively $HW(B_Y)$) is the strong dual of $GV(B_X)$ (respectively $GW(B_Y)$), we get $(C'_{\phi})^t = C_{\phi}$.

With all the mappings we have considered so far we have the following diagram

$$\begin{array}{cccc} HV(B_X, Z) & \xrightarrow{C_{\phi}} & HW(B_Y, Z) \\ & \chi_V \uparrow & & \downarrow \psi_W \\ L_b(GV(B_X), Z) & \xrightarrow{C'_{\downarrow} \wedge id_Z} & L_b(GW(B_Y), Z) \end{array}$$
(5)

16 Proposition. The diagram (5) is commutative; that is $C'_{\phi} \wedge id_Z = \psi_W \circ C_{\phi} \circ \chi_V$.

PROOF. Let $S \in L(GV(B_X), Z)$, we first have $(C'_{\phi} \wedge id_Z)(S) = S \circ C'_{\phi}$. Let us see that this coincides with $(\psi_W \circ C_{\phi} \circ \chi_V)(S)$. By Lemma 13 it is enough to see that they coincide on $\{\delta_y : y \in B_Y\}$. For each $y \in B_Y$ we have

$$(S \circ C'_{\phi})(\delta_y) = S(C'_{\phi}(\delta_y)) = S(\delta_{\phi(y)})$$

and

$$(\psi_W \circ C_\phi \circ \chi_V)(S)(\delta_y) = ((C_\phi \circ \chi_V)(S))(y) = \chi_V(S)(\phi(y)) = S(\delta_{\phi(y)}).$$

QED

Note that as an immediate consequence of this result we have that the vector-valued composition operator C_{ϕ} is reflexive or weakly compact if and only if the wedge operator $C'_{\phi} \wedge id_Z$ is of the same type. We use the results on wedge operators given in [8] to obtain the following.

17 Theorem. Let X, Y, Z be Banach spaces and $\phi : B_Y \to B_X$ be a holomorphic mapping. Let V, W be countable families of weights defined on B_X and B_Y respectively such that each weight satisfies Condition I. If any of the two following conditions hold

(a) $\phi(B_Y) \cap rB_X$ is relatively compact for every 0 < r < 1,

(b) $\lim_{\|y\|\to 1^-} w(y) = 0$ for every $w \in W$ and $\phi(rB_Y)$ is relatively compact for every 0 < r < 1, then the operator

$$C_{\phi}: HV(B_X, Z) \to HW(B_Y, Z)$$

is weakly compact if and only if Z is reflexive and $C_{\phi} : HV(B_X) \to HW(B_Y)$ is weakly compact.

PROOF. If $C_{\phi} : HV(B_X, Z) \to HW(B_Y, Z)$ is weakly compact then, by [8, Proposition 2.1], $(C'_{\phi})^t$ is weakly compact. But by Proposition 15 $(C'_{\phi})^t = C_{\phi}$; hence $C_{\phi} : HV(B_X) \to HW(B_Y)$ is weakly compact. On the other hand [8, Proposition 2.1] implies that $id_Z : Z \to Z$ is also weakly compact; hence Z is reflexive.

Let us assume now that Z is reflexive and $C_{\phi} : HV(B_X) \to HW(B_Y)$ is weakly compact. By Proposition 15 $(C'_{\phi})^t = C_{\phi}$; hence $(C'_{\phi})^t : HV(B_X) \to HW(B_Y)$ is weakly compact. By Proposition 12 there exists $v \in V$ such that for every $w \in W$ the composition operator $C_{\phi} : H_v(B_X) \to H_w(B_Y)$ is weakly compact. If (a)(resp. (b)) holds, using Theorem 6 (resp. Theorem 5) we have that $C_{\phi} : H_v(B_X) \to H_w(B_Y)$ is compact. Applying again Proposition 12 $(C'_{\phi})^t :$ $HV(B_X) \to HW(B_Y)$ is compact. Moreover $id_Z : Z \to Z$ is weakly compact since Z is reflexive. By [8, Theorem 2.15] $C'_{\phi} \wedge id_Z$ is weakly compact. QED

Acknowledgements. The authors wish to thank Richard Aron, José Bonet and Seán Dineen for all fruitful conversations and helpful comments.

References

- R. M. ARON, B. COLE, T. W. GAMELIN: Spectra of algebras of analytic functions on a Banach space, J. reine angew Math., 415, (1991), 267–275.
- [2] R. M. ARON, P. GALINDO, M. LINDSTRÖM: Compact homomorphisms between algebras of analytic functions, Studia Math., 123, n. 3, (1997), 235–247.
- [3] K. D. BIERSTEDT, J. BONET, A. GALBIS: Weighted spaces of holomorphic functions on balanced domains, Michigan Math., 40, (1993), 271–297.
- [4] K. D. BIERSTEDT, J. BONET, J. TASKINEN: Associated weights and spaces of holomorphic functions, Studia Math., 127, n. 2, (1998), 137–168.
- [5] J. BONET: Weighted spaces of holomorphic functions and operators between them, Seminar of Mathematical Analysis, Proceedings, Univ. Málaga and Seville, Eds: D. Girela, G. López, R. Villa, Sevilla, (2003), 117–138.
- [6] J. BONET, P. DOMAŃSKI, M. LINDSTRÖM: Essential norm and weak compactness of composition operators on weighted spaces of analytic functions, Canad. Math. Bull., 42, n. 2, (1999), 139–148.
- [7] J. BONET, P. DOMAŃSKI, M. LINDSTRÖM, J. TASKINEN: Composition operators between wighted Banach spaces of analytic functions, J. Austral. Math. Soc. (Series A), 64, (1998), 101–118.
- [8] J. BONET, M. FRIZ: Weakly compact composition operators on locally convex spaces, Math. Nachr., 245, (2002), 26–44.

- [9] J. BONET, M. FRIZ, E. JORDÁ: Composition operators between weighted inductive limits of spaces of holomorphic functions, Publ. Math. Debrecen, 67 3-4 (2005), 333–348.
- [10] S. DINEEN: Complex analysis on infinite dimensional spaces, Springer Verlag, London 1999.
- [11] P. GALINDO, M. LINDSTRÖM, R. RYAN: Weakly compact composition operators between algebras of bounded analytic functions, Proc. Amer. Math. Soc., 128, n. 1, (1999), 149– 155.
- [12] D. GARCÍA, M. MAESTRE, P. RUEDA: Weighted spaces of holomorphic functions on Banach spaces, Studia Math., 138, n. 1, (2000), 1–24.
- [13] D. GARCÍA, M. MAESTRE, P. SEVILLA-PERIS: Composition operators between weighted spaces of holomorphic functions on Banach spaces, Ann. Acad. Sci. Fenn. Math., 29, (2004), 81–98.
- [14] J. B. GARNETT: Bounded analytic functions, Academic Press, London 1981.
- [15] M. MACKEY, P. SEVILLA-PERIS, J.A. VALLEJO: Composition operators on weighted spaces of holomorphic functions on JB* triples, to appear in Letters of Mathematical Physics.
- [16] M. MAESTRE: Unpublished manuscript.
- [17] G. RACHER: On the tensor product of weakly compact operators, Math. Ann., 294, (1990), 267–275.
- [18] P. RUEDA: On the Banach-Dieudonné theorem for spaces of holomorphic functions, Quaestiones Math., 19, (1996), 341–352.
- [19] E. SAKSMAN, H.-O. TYLLI: Weak essential spectra of multiplication operators on spaces of bounded linear operators, Math. Ann., 299, (1994), 299–309.
- [20] J. H. SHAPIRO: Composition operators and classical function theory, Springer Verlag, Berlin 1993.