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Introduction

The topological spectrum plays an important role for the study of commuta-
tive topological algebras. In the non-commutative case, assuming an extra struc-
ture, that of involution, the role of the continuous characters is played by the
continuous topologically irreducible -representations. It is known (see [24, p.
193]) that practically all the operators that appear in Physics are unbounded op-
erators, like e.g. the position and momentum operators, or the Schrédinger oper-
ator. This naturally leads to the study of the unbounded *-representations, when
non-normed topological *-algebras are involved (cf., for instance, [1,17,27]). Nev-
ertheless, any symmetric operator defined on the entirety of a Hilbert space is
bounded [24, p. 195, Theorem 2.10]; moreover, every closed unbounded topo-
logically irreducible x-representation of a locally C*-algebra is always alge-
braically irreducible [4, Theorem 4.7, (3)]; this finally leads to the boundedness
of the considered *-representation, since every closed algebraically irreducible
x-representation of a symmetric algebra is bounded [2, Theorem 1]. All locally
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C*-algebras are symmetric and of course there are several examples of sym-
metric algebras that are not locally C*-algebras [13, Chapter II, Section 7]. So
the study of bounded *-representations in the frame of non-normed topological
x-algebras is not without interest.

In this paper we are concerned with the structure space (consisting of equiv-
alent classes of continuous topologically irreducible *-representations) of tensor
products of Fréchet x-algebras. In fact, we revisit some previous results of ours
in [11] and we approach them from another point of view motivated, on the one
hand by some new results on tensor product topologies and tensor products of
enveloping locally C*-algebras appeared in [14, Sections 4 and 5], and on the
other hand by the results of [21, p. 165, Subsection 5.(1)]. The present results
improve the corresponding ones in [11, Section 5] and give considerably simpler
and more elegant proofs.

In the context of Banach x-algebras such studies started by M.A. Wulfsohn
[28] in 1963 and continued by H.A. Smith [26] in 1968 and K.B. Laursen [20] in
1969.

We refer to [6,18,21] for topological tensor products and to [21,22], respec-
tively [12—-14], for the general theory of topological algebras, respectively topo-
logical x-algebras.

1 Preliminaries, definitions

All algebras we deal with are complex and the topological spaces are sup-
posed to be Hausdorff.

Let A be a *x-algebra. A seminorm p on A is called m*-seminorm, resp.
C*-seminorm, if

p(zy) < p(x)p(y) and p(z*) = p(z), Yo,y € A, resp. p(x*z) = p(:c)2, Vo € A.

A C*-seminorm p on A is automatically an m*-seminorm [25]. Let now A
be a x-algebra, endowed with a directed family I" = {p} of m*- respectively
C*-seminorms. Let 7 be the locally convex *-topology induced by I' on A.
Then A[rr] is called m*-conver respectively C*-conver algebra. When A has no
involution, A[rp] is simply called m-convex or equivalently locally m-convex
algebra (cf. [21]). A complete C*-convex algebra Alrp]| is called locally C*-
algebra [16] (& pro-C*-algebra [23]). A metrizable complete m*-convex algebra
is called Fréchet x-algebra. Let A[tp] be an m*-convex algebra and p € I'. Put
N, = {z € A : p(z) = 0}; N, is a closed *-ideal of A and A/N, equipped
with the *-norm || - ||, induced by p, is a normed *-algebra. The completion of
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(A/Np,| - |lp) denoted by A, is a Banach *-algebra and [21,22]

Alrr] — lim Ay, resp. Alrp] =limA),, when A[rp]is complete. (1)
pel’ pel’

The embedding in (1) means topological *-monomorphism (i.e. injective bicon-
tinuous *-morphism) and the equality topological x-isomorphism (i.e. surjective
topological *-monomorphism). In the first case the family {Ap},er is called
Arens-Michael Analysis of A[rr] and in the second case Arens-Michael decom-
position of Alrr| [21].

If H is a Hilbert space, B(H) stands for the C*-algebra of all bounded linear
operators on H. If A is a x algebra, a x-representation of A is a s-morphism
p: A — B(H,); Hyis the Hilbert space on which 1 acts. When A[7r] is an m*-
convex algebra, continuity of u is always considered with respect to the norm-
operator topology of B(H,,). A x-representation u of A[rr] is called irreducible
if the only closed linear subspaces of H,, invariant under the operators p(z),
x € A, are the trivial subspace {0} and H,, itself. In the sequel, we shall use the
following notation:

R(A) = {all continuous *-representations of A},
R'(A) = {p € R(A) : p is irreducible}; in particular,

R(A) = JRy(A), resp. R'(A)=|JR,(A),

with R,(A) := {n € R(A) : [[u(2)| < p(x), Vo € A}, p € I'; R,(A) is similarly
defined. It is clear that each u € Ry,(A) defines well an element 1, € R(A/Np)
such that p,(zp) := p(x), Vo € A, where x, =  + N,,; for the unique extension
of p, on A, we keep the same symbol. Particularly, we have

RP(A) = R(Ap>7 resp. R;(A) = R/(AP)7 p € F:

up to set-theoretical isomorphisms (see [10,11]).

Let now f be a continuous positive linear form of A[rr] and p an element
of I' describing the continuity of f. Then, the relation f,(z,) := f(x), = € A,
defines well a continuous positive linear form on A/N,, extended uniquely on
Ap. We retain the same symbol f, for the extended positive linear form on A,
and we call it associated to f. Let A* denote the topological dual of A[rp]; i.e.
A* consists of all continuous linear forms of A[rp]. AX means A* endowed with
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the weak*-topology. Let

P(A) := {all continuous positive linear forms f of A[rr], with ||f|| <1,
for the corresponding associated positive linear form f, of f } and
B(A) :={f € P(A) with f pure and | f,| =1}

= {non-zero extreme points of P(A)}

(for the last equality, see [12, Proposition 3.4]). Equip P(A), B(A) with the
relative topology from A?. Moreover, for any p € I, consider the closed semiball
Uy(1) = {x € A: p(x) < 1}, and denote by UJ(1) the polar of Uy,(1) in A*. Let

Pp(A) :=P(A)NU)(1) and B,(A) := B(A)NU(1), peI.

Then, Pyp(A) = P(A,) resp. By(A) = B(Ap), p € I', with respect to homeomor-
phisms [10,12]. In particular,

P(A) = JPp(4) and B(A) =|B,(A). (2)

Now, for each p € I', define r)(x) := sup{||u(2)| : p € R,(A)}, z € A. Then 7y,
p € I', is a C*-seminorm on A with r,(z) < p(x), € A. The closed 2-sided *-
ideal N{kerr, : p € I'} of A, clearly coincides with the *-radical R := N{ker y :
p e R(A)} of A. Let I. = {rp,p € I'}. The Hausdorff completion of A[rr.] is
called enveloping locally C*-algebra of A[rr] and is denoted by £(A) [10,14].

Let u, 1/ € R'(A). We say that u, p/ are equivalent and we write p ~ g/, if
there is a surjective isometric isomorphism U : H,, — H,s, such that p/(z)old =
Uop(x), Ve € A; “~7 is an equivalent relation and

ln@)l| = i @), =€ A, Vo1 € R'(A) with i~ .

The quotient
R(A) = R'(A)/ ~

is called structure space of A and its elements are denoted by [u], p € R'(A). If
moreover,

Rp(A) = Ry(A)/ ~, peT,

one has Rp(A) = R(A4,), p € I', up to a well defined surjection [12,14] and

R(4) = JR,(4) = [ JR(4y). (3)
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2 Topologization of the structure space R(A)

Let A[rr] be an m*-convex algebra with a bounded approximate identity
(abbreviated to bai). Using the GNS-construction [12, pp. 14-16], the map

5 B(A) — R(A): f — [y, (4)

with py the GN S-*-representation corresponding to f, is well defined and sur-
jective and it is called GNS-map. We have mentioned that B(A) carries the
relative weak*-topology from A}. Equip R(A) with the final topology 75 induced
on it by 4.

Let now p, ¢ € I" with p < ¢ and let {A,},cr be the Arens-Michael analysis
of A. Denote by 7,4 : Ay — A, : &g — x, , the (continuous) connecting *-
morphism between A, A,. For each [p,] € R(Ap), the composition iy := 1,074
defines an element [14] € R(A4) and the correspondence

Ryp : R(Ap) — R(Ag) : [1p] — [ug]

is a well-defined continuous map, where R(A;) carries the final topology s,
through the respective GN S-map

bi: B(A;) — R(A): fir—[ugl, i=pa

To check the continuity of Ry, consider the diagram

B(Ap) b B(A,)
517 5q p<q
R(Ap) T R(4)

where for f, € B(Ap), Bep(fp) = fy with f; = f, o Tpg. The map (), is a
well-defined continuous injection and the preceding diagram is commutative. So

Rgp 06y = 0q © Bgp,

where §,0 3, is continuous. Hence, R, is continuous according to the definition
of 75,. Moreover, for p < ¢ < r in I', one has R, o Ry, = Ryp. So the family
(R(Ap), Rgp)p<q forms an inductive system of topological spaces, therefore in
view of (3) we get

R(4) = imR(4,), (5)
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set-theoretically. We shall show (see Theorem 4) that in some cases the induc-
tive limit topology Tim on R(A) coincides with the final topology 15 on R(A)
mentioned above.

It is easily seen that (B(Ay), Bgp)p<q is also an inductive system of topological
spaces, so that because of (2) we get set-theoretically the equalities

B(A) =limB(4,); and similarly P(A) = imP(A4,). (6)
P p

Denote by 73 the relative topology on B(A) from A% and by Tllfm the inductive
—
limit topology on B(A) according to (6).
We shall show that under certain conditions 73 = Tl?m; for this reason we
need the following. -

1 Lemma. Let A be a unital Banach x-algebra with identity e. Then, the
continuous (natural) injection B(A) — P(A): f — f, is closed.

PRrOOF. Let V' C B(A) be closed. We show that V' is also closed in P(A).
Let {f,} be a net in V, such that f, — h, with h € P(A). We prove that
h € V. Since, f, € B(A), we get

h(e) =lim f,(e) = lim || f,|| = 1, whence it follows that |h|=1.  (7)

Let now g € P(A) with g < h. Then, for each z € A, we have g(z*z) < h(z*z) =
lim, f,(2*z). Hence, there is an index vy, such that

9(z"2) < f,(2"2"), Vz€ A and v > .
Since each f, is pure, there are numbers
ay, € 10,1] with g = a, o, Y > 1.

Applying in the previous equality a similar argument to that of (7), we get that
lim, a,, = g(e). Thus, g = g(e)h, which together with (7) implies that h is pure,
therefore h € V. QED

An m-convex algebra A[rr] is called barrelled [15], if the underlying locally
convex space of A[rp| is barrelled, in the sense that every barrel (i.e. a closed
absolutely convex and absorbing subset) V' of A[rr] is a 0-neighborhood. Every
Fréchet algebra is barrelled. Given a topological space X, a family {S,}oecr of
compact subspaces of X, is called a k-covering family for X, if for each compact
subset K of X there is an index « € I such that K C S, [21, p. 165, Definition
5.1].

2 Lemma. Let A[rr] be a unital barrelled m*-convex algebra. Then, the
family {B(Ap)}per is a k-covering for B(A).
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PrOOF. From (2) B(A) = | By(A), where By,(A) is homeomorphic to
pel’
B(A,) (see Section 2). From Lemma 1, B(A,) is weakly*-closed in P(A,) and
since P(A,) is weakly*-compact [8, p. 44], B(A,) is also weakly*-compact.
Let now K be an arbitrary weakly*-compact subset of B(A). Then, K is an
equicontinuous subset of A% [15, p. 212, Corollary], consequently there is a 0-
neighborhood U, (¢) = {x € A: p(z) <e}, 0 <e <1, in A[7], such that

K CUe) =Uy (1),

with U = U, (e) and py the gauge function of U. But p(x) = epy(z), Vo € A, so
that N, = N, and A, = Ap,,. Thus, there is p € I', such that

K C B(A) Ny, (1) = By, (4) = B(A,)

(for the equalities, see Section 2). This completes the proof. QED

3 Theorem. Let A[rr] be a barrelled m*-conver algebra with a bai. Let
B(A) be locally equicontinuous in A%. Then, 75 = 1 on B(A), that is B(A) =
—

h_r)nB(Ap), up to a homeomorphism.

PROOF. Suppose that A[rp] is unital. Then, from Lemma 2, {B(A,)}pcr is
a k-covering family for B(A). Showing that (B(A), 1) is a k-space [19, p. 230],

we conclude from [21, pp. 166, 167, Lemma 5.2 and Corollary 5.1] that 7p = Tlligm.

—

It is sufficient to show that (B(A),75) is a locally compact space. Indeed, let
f € B(A). Since B(A) is locally equicontinuous, there is an equicontinuous
neighborhood V' of f. By Alaoglou-Bourbaki theorem, V is relatively weakly*-
compact in A¥. Arguing now in a similar way as in the proof of [21, p. 143,
Theorem 1.1] we obtain a compact neighborhood of f in B(A).

Let us now come to the given, non-unital case. Passing to the unitization
Ai[m] of A[rr], with 71 = 71, I1 = {p1}, where p1(z, \) := p(z) + |A|, for any
(x,\) € Ay = A® C and p € I', we have that A;[r] is a barrelled m*-convex
algebra (see [15, p. 215, Corollary, (b)]). Involution on A; is defined by (x, A\)* :=
(x*,X), for every (x,\) € A;. Moreover, defining the function fo(z,\) := \ for
every (z,\) € Ay, we conclude that fy € B(A;1) and B(A) = B(A1) \ {fo}, up
to a homeomorphism sending an element f € B(A) to an element f; € B(A4;)
such that for any (z,\) € A1, fi(z,\) := f(x) + A. It is easily seen that B(A;)
is locally equicontinuous, since B(A) has this property. So as we proved above,
B(A1) = lim B((Ap)1), up to a homeomorphism, where (4;); is the unitization
of the Banach algebra A, that coincides (topologically) with the Banach algebra
(A1)p, . Applying now the same arguments as in the proof of [21, p. 169, (6.6)],
we are led to the claim of the theorem.
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4 Theorem. Let A[rr] be a barrelled m*-convex algebra with a bai, such
that B(A) is locally equicontinuous in A%. Then, the natural topology 75 on R(A)
coincides with the inductive limit topology Tlim 07 R(A) induced by lim R(Ay)
according to (5).

PROOF. The commutativity of the diagram before (5), yields the existence
of the unique continuous map

limy 3, < liny B(A,) — limR(4y)

such that the diagram

B(A,) % R(Ap)

Bp ip

(B(A)lelg )T’ (R(A)’Th_)m)

|2

is commutative, where iy, 3, are the continuous natural embeddings of R(A))
into (R(A),T]i_n;) and B(A,) into (B(A)7THB_I>H) respectively. We show that i, is
also continuous when R(A) carries the topology 7s5. Note that from Theorem 3,
Tfm = 7. On the other hand, if in the preceding diagram we replace Ty
— —
with 75 and limd, with § (see (4)), the diagram remains commutative. Thus
ip : R(Ap) — (R(A),7s5) is continuous if and only if i, o §, is continuous,
which is true since i, 0 6, = 0 o 8, and both of d, 3, are continuous. Hence,
from the definition of m;, we conclude that 75 < mjm. We show the inverse
— —

inequality. Let G C (R(A), Tiim) be open, i.e. iy '(G) is open in R(A,), Vp € I';
—
then 6,1 (i, '(G)) is open in B(Ap), Vp € I'. But, 6, (i, 1(G)) = 6,1 (67 1(G)),
Vp € I'. Hence §=1(G) N B(A,) is open in B(A,), Vp € I', which means that
671(@G) is open in (B(A), 75 = 75). Thus G is 75-open, therefore T = 75- It
-

follows that

75 = Tlim and 5:li_n>15p,

since lim dp is the unique continuous map making the last diagram commutative.
QED
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3 Structure space of topological tensor-product x-
algebras

Let A[rr], Blrr/] be m*-convex algebras and 7 an admissible topology on
A® B (cf. [14, Definition 3.1]). Suppose that {tp}pqerxr is a family of m*-
seminorms defining the topology 7. Then 7 is called pg-admissible [14, pp. 29,
30] on A® B, if for any (p,q) € I' x I'" an admissible norm || - || 4 (in the sense
of the first of the above citations) is defined on A, ® By, such that

n n
Z Tip @ Yiqg| =tpg (Z T @ Z/z‘) )
i=1 i=1

rq

n
for any > x; ® y; € A® B, where z;p, = x; + N, € A/N, and y; g = yi + Ny €
i=1
B/Ng,i=1,...,n.
The pg-admissible tensorial topologies have the nice property to preserve
inverse limits; indeed, from (1)

Alrr] = limA, and Blrp] — lim By,
pel’ qel”’

up to topological *-monomorphisms; if 7 is a pg-admissible topology on A ® B,

denoting by A®B the completion of (A ® B, 7) and by Ap®B, the completion
T

of (Ap ® By, || - |lpg), we have (see [14, 4.7 Theorem]) that

A@B = lim 4,&B,, (8)

with respect to a topological *-isomorphism. Such topologies have been also
studied in [7]. Because of (8), in the sequel we shall use the term inverse-limit
preserving tensorial topology for 7, instead of pg-admissible topology. Examples
and properties of inverse-limit preserving tensorial topologies are given in [14].
Clearly (8) leads to a corresponding to (5) set-theoretical identification; i.e.

R(A@)B) = hLQR(Ap(éBq), 9)

where the index set I' x I'" gets a preorder by (p,q) < (p/,¢') if both p < p’ and
q < q.SoI'x I is a directed set and (R(Ap) x R(By))p,qerxr (as well as
((R(ApéBq))(p’q)GFX[‘/) is an inductive system of topological spaces, together
with the continuous maps (see discussion before (5))

Ryp X Ryq: R(Ap) X R(By) — R(Ay) x R(By),
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with (p,q) < (p/,¢") in I' x I'" (cf. [9, p. 425, 1.9]).

Suppose now that either of the algebras A[rp|, B[rr] is of type I [14, p.
25] and both of them have a bai. Let A[rr] be of type I. Then, each Banach
«-algebra A, is of type I (ibid., p. 43, Lemma 5.11). If 7 is an inverse-limit
preserving tensorial topology on A ® B, K.B. Laursen proved in [20] that

R(Apé’Bq) = R(A4p) x R(By),

under a homeomorphism, which we denote by Gp,. Note that ([u], (1)) €
R(Ap) x R(By) goes through G, to [u, ® yig] (Where j1, @ puq also denotes the
unique extension of y, ® 1, to A,®@B, [20]). Now, from [9, p. 422, 1.5 Theorem],
the map

G = lim Gy s i R(A,EB,) — lm(R(4,) x R(B,),  (10)
is a homeomorphism and since the map
lim(R(Ap) X R(Bg)) — LmR(Ap) x lim R(B,),
is a continuous bijection [9, p. 425, 1.9, (3)], combined with (10) gives that
G : limR(4,8B,) — limR(Ap) x lim R(B,), (11)

is a continuous bijection too.

5 Theorem. Let A[rr]|, B[rrs] be Fréchet x-algebras, such that each one of
them has a bai and one of them is of type I. Let T be an inverse-limit preserving
tensorial topology on A ® B, such that B(E(A®B)) is locally equicontinuous.

Then, up to a homeomorphism, we have that:

R(A®B) = R(A) x R(B).

PrOOF. The local equicontinuity of B(§(A®B)) implies that of B(A®B) as
well as of B(E(A)RE(B)), where « is the injective tensorial locally C*-topology
«

on £(A) ® E(B) (cf. [14, p. 27 and p. 44, Corollary 5.12]). In their turn the
preceding locally equicontinuous sets imply local equicontinuity for the sets
B(A), B(B) and B(E(A)), B(E(B)) respectively [11, Theorem 5.2]. Thus, from
Theorems 3 and 4, we conclude that the natural topologies of B(A), B(B),
B(A®B), R(A), R(B), R(A®B) coincide with their corresponding inductive

limit topologies. Therefore, looking at (5), (9) and (11) we get that

G : R(A®B) — R(A) x R(B)
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is a continuous bijection. It remains to prove that G~! is continuous. For this
purpose, consider the following commutative diagram

B(A) x B(B) a B(A®B)
SAxdp 5
R(A) x R(B) —= R(A®B)

where d4, 6B, dg are the corresponding to (4) GNS-maps. H and G~! are
defined as follows: H(f,g) := f ® g (cf. [11, Theorem 5.2]) and G~1([u], [1/]) =
v ® p'] (ibid., p. 23). For simplicity we retain the symbols f ® g, u ® u’ for
the unique extensions of f ® g, p ® ' on A®B. Commutativity of the above
T

diagram gives G™1 o (54 x dg) = dg o H, where §;, i = A, B, ® are continuous
by the definition of the topologies 7s,, and H from [11, Theorem 5.2]. Thus,
G 1o (64 x0p) is continuous with d4 x dp continuous and open; for the openness
of 64, dp see [12, Theorem 6.4]); the local equicontinuity of the sets B(E(A)) and
B(E(B)) (mentioned above) is essential for the result of the last citation. The
continuity of G=1 follows now from [19, p. 95, Theorems 8, 9. QED

There is a plethora of non-normed m*-convex algebras, that attain a (normed)
C*-enveloping algebra (cf. [3]). In this respect, we have the following

6 Corollary. Let A[rp|, Blrr/] be Fréchet x-algebras such that both of them
have a bai and a C*-enveloping algebra and one of them is of type 1. Then, for
every inverse-limit preserving tensorial topology T on A ® B, the next equality
holds up to a homeomorphism.:

R(A®B) = R(A) x R(B).

PROOF. Since £(A), £(B) are C*-algebras, the same is true for £(ARB)
T
(see [14, Corollary 5.12]). Thus B(E(A®B)) is equicontinuous, hence locally
T

equicontinuous. The assertion now follows from Theorem 5.

4 Applications

In this Section we apply the results of Section 4 to some concrete m*-convex
algebras.
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7 Proposition. Let G be a (non-abelian) locally compact group, C*°(X)
the Fréchet x-algebra of all smooth functions on a 2nd countable compact finite-
dimensional smooth manifold X and L}JOO(X)(G) the generalized group algebra
of G. Then, up to a homeomorphism, one has that

R(Lw () (@) = R(CH(G)) x X, (12)

where C*(QG) is the group C*-algebra of G.
PROOF. Note that Llcoo(X) (G) = L' (G)®C>=(X), up to a topological *-iso-

morphism, with 7 the projective tensorial topology [21, p. 406]. The topology
7 is an inverse-limit preserving tensorial topology (see [14, (4.15)]) and both
of LY(G), C°°(X) have a C*-enveloping algebra (for the second one, cf. [21, p.
498, (6.4)]). In particular, £(C*>°(X)) = C(X); hence £(C*(X)) as a commu-
tative C*-algebra is of type I [8, 4.2.2, 4.3.1, 5.5.2], therefore by [14, Lemma
5.11] C*°(X) is of type I too. Furthermore, since C*°(X) is commutative, its
structure space R(C*°(X)) coincides with its topological spectrum (Gel’fand
space), which is homeomorphic to X [21, p. 227]. The conclusion now follows
from Corollary 6, provided that R(L'(G)) = R(C*(G)) up to a homeomor-
phism [20, Proposition 2.10]. QED

A unital locally convex algebra A[rr] is called Q-algebra, if the group of its
invertible elements is open (C*°(X), X as in Proposition 7, is such an algebra).
Every m*-convex @-algebra with a bai, has a C*-enveloping algebra (cf. [3]).
Thus, in Proposition 7, C°°(X) can be replaced, for instance, by any unital
Fréchet @Q-x-algebra Alrp], so that the place of X in (12) will be taken by
R(A).

8 Proposition. Let X be as in Proposition 7 and A a (non-commutative)
Banach *-algebra with a bai. Let C*°(X,A) be the Fréchet x-algebra of all A-
valued smooth functions on X. Then, up to a homeomorphism, one has that:

R(C¥(X, A)) = X x R(A).

PROOF. From [21, p. 394, (2.8)] one has C®°(X, A) = C®(X) & A (topolog-
™=

ically #-isomorphically), where ¢ is the injective tensorial topology. According to
the proof of Proposition 7, we have that C*°(X) is of type I, has a C*-enveloping
algebra, R(C>°(X)) is homeomorphic to X and = is an inverse-limit preserving
tensorial topology. So the result is again taken by Corollary 6.

A x-algebra A is called symmetric if every element of the form z*x, x € A,
has its spectrum in R.
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9 Proposition. Let X be a compact space and A[tr] a unital symmetric
Fréchet x-algebra, the spectral radius of which is finite on the self-adjoint ele-
ments. Let C(X, A) be the unital Fréchet x-algebra of all A-valued continuous
functions on X. Then, the following equality holds up to a homeomorphism:

R(C(X,A)) = X x R(A).

Proor. If I' = {p,}, n € N, the topology of C(X, A) is defined by the
family g, (f) := sup{pn(f(z)) : x € X}, ne N, f € C(X,A) of m*-seminorms.
From [21, p. 391, Theorem 1.1] we have that C(X,A) = C(X)®A, up to a

&

topological *-isomorphism, with “c” the injective tensorial topology. C(X) is of
type I as a commutative C*-algebra. A is a (Q-algebra according to [5, Corollary
4.11], therefore it has a C*-enveloping algebra (cf. comments after Proposition
7). Clearly, R(C(X)) coincides with the Gel’fand space of C(X), which is home-
omorphic to X. Finally, € is an inverse-limit preserving tensorial topology on
C(X)® A (cf. [14, Corollary 4.8]), so that the claimed result follows from Corol-
lary 6.
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