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Introduction

The topological spectrum plays an important rôle for the study of commuta-
tive topological algebras. In the non-commutative case, assuming an extra struc-
ture, that of involution, the rôle of the continuous characters is played by the
continuous topologically irreducible ∗-representations. It is known (see [24, p.
193]) that practically all the operators that appear in Physics are unbounded op-
erators, like e.g. the position and momentum operators, or the Schrödinger oper-
ator. This naturally leads to the study of the unbounded ∗-representations, when
non-normed topological ∗-algebras are involved (cf., for instance, [1,17,27]). Nev-
ertheless, any symmetric operator defined on the entirety of a Hilbert space is
bounded [24, p. 195, Theorem 2.10]; moreover, every closed unbounded topo-
logically irreducible ∗-representation of a locally C∗-algebra is always alge-
braically irreducible [4, Theorem 4.7, (3)]; this finally leads to the boundedness
of the considered ∗-representation, since every closed algebraically irreducible
∗-representation of a symmetric algebra is bounded [2, Theorem 1]. All locally
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C∗-algebras are symmetric and of course there are several examples of sym-
metric algebras that are not locally C∗-algebras [13, Chapter II, Section 7]. So
the study of bounded ∗-representations in the frame of non-normed topological
∗-algebras is not without interest.

In this paper we are concerned with the structure space (consisting of equiv-
alent classes of continuous topologically irreducible ∗-representations) of tensor
products of Fréchet ∗-algebras. In fact, we revisit some previous results of ours
in [11] and we approach them from another point of view motivated, on the one
hand by some new results on tensor product topologies and tensor products of
enveloping locally C∗-algebras appeared in [14, Sections 4 and 5], and on the
other hand by the results of [21, p. 165, Subsection 5.(1)]. The present results
improve the corresponding ones in [11, Section 5] and give considerably simpler
and more elegant proofs.

In the context of Banach ∗-algebras such studies started by M.A. Wulfsohn
[28] in 1963 and continued by H.A. Smith [26] in 1968 and K.B. Laursen [20] in
1969.

We refer to [6,18,21] for topological tensor products and to [21,22], respec-
tively [12–14], for the general theory of topological algebras, respectively topo-
logical ∗-algebras.

1 Preliminaries, definitions

All algebras we deal with are complex and the topological spaces are sup-
posed to be Hausdorff.

Let A be a ∗-algebra. A seminorm p on A is called m∗-seminorm, resp.
C∗-seminorm, if

p(xy) ≤ p(x)p(y) and p(x∗) = p(x), ∀x, y ∈ A, resp. p(x∗x) = p(x)2, ∀x ∈ A.

A C∗-seminorm p on A is automatically an m∗-seminorm [25]. Let now A
be a ∗-algebra, endowed with a directed family Γ = {p} of m∗- respectively
C∗-seminorms. Let τΓ be the locally convex ∗-topology induced by Γ on A.
Then A[τΓ ] is called m∗-convex respectively C∗-convex algebra. When A has no
involution, A[τΓ ] is simply called m-convex or equivalently locally m-convex
algebra (cf. [21]). A complete C∗-convex algebra A[τΓ ] is called locally C∗-
algebra [16] (⇔ pro-C∗-algebra [23]). A metrizable complete m∗-convex algebra
is called Fréchet ∗-algebra. Let A[τΓ ] be an m∗-convex algebra and p ∈ Γ . Put
Np ≡ {x ∈ A : p(x) = 0}; Np is a closed ∗-ideal of A and A/Np equipped
with the ∗-norm ‖ · ‖p induced by p, is a normed ∗-algebra. The completion of
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(A/Np, ‖ · ‖p) denoted by Ap is a Banach ∗-algebra and [21,22]

A[τΓ ] ↪→ lim←−
p∈Γ

Ap, resp. A[τΓ ] = lim←−
p∈Γ

Ap, when A[τΓ ] is complete. (1)

The embedding in (1) means topological ∗-monomorphism (i.e. injective bicon-
tinuous ∗-morphism) and the equality topological ∗-isomorphism (i.e. surjective
topological ∗-monomorphism). In the first case the family {Ap}p∈Γ is called
Arens-Michael Analysis of A[τΓ ] and in the second case Arens-Michael decom-
position of A[τΓ ] [21].

If H is a Hilbert space, B(H) stands for the C∗-algebra of all bounded linear
operators on H. If A is a ∗ algebra, a ∗-representation of A is a ∗-morphism
µ : A −→ B(Hµ);Hµ is the Hilbert space on which µ acts. When A[τΓ ] is an m∗-
convex algebra, continuity of µ is always considered with respect to the norm-
operator topology of B(Hµ). A ∗-representation µ of A[τΓ ] is called irreducible
if the only closed linear subspaces of Hµ invariant under the operators µ(x),
x ∈ A, are the trivial subspace {0} and Hµ itself. In the sequel, we shall use the
following notation:

R(A) ≡ {all continuous ∗-representations of A},
R′(A) ≡ {µ ∈ R(A) : µ is irreducible}; in particular,

R(A) =
⋃

p

Rp(A), resp. R′(A) =
⋃

p

R′
p(A),

with Rp(A) := {µ ∈ R(A) : ‖µ(x)‖ ≤ p(x), ∀x ∈ A}, p ∈ Γ ; R′
p(A) is similarly

defined. It is clear that each µ ∈ Rp(A) defines well an element µp ∈ R(A/Np)
such that µp(xp) := µ(x), ∀x ∈ A, where xp ≡ x+Np; for the unique extension
of µp on Ap we keep the same symbol. Particularly, we have

Rp(A) = R(Ap), resp. R′
p(A) = R′(Ap), p ∈ Γ,

up to set-theoretical isomorphisms (see [10,11]).

Let now f be a continuous positive linear form of A[τΓ ] and p an element
of Γ describing the continuity of f . Then, the relation fp(xp) := f(x), x ∈ A,
defines well a continuous positive linear form on A/Np, extended uniquely on
Ap. We retain the same symbol fp for the extended positive linear form on Ap
and we call it associated to f . Let A∗ denote the topological dual of A[τΓ ]; i.e.
A∗ consists of all continuous linear forms of A[τΓ ]. A∗

s means A∗ endowed with
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the weak∗-topology. Let

P(A) := {all continuous positive linear forms f of A[τΓ ], with ‖fp‖ ≤ 1 ,

for the corresponding associated positive linear form fp of f } and

B(A) := {f ∈ P(A) with f pure and ‖fp‖ = 1}
= {non-zero extreme points of P(A)}

(for the last equality, see [12, Proposition 3.4]). Equip P(A), B(A) with the
relative topology from A∗

s. Moreover, for any p ∈ Γ , consider the closed semiball
Up(1) ≡ {x ∈ A : p(x) ≤ 1}, and denote by U0

p (1) the polar of Up(1) in A∗. Let

Pp(A) := P(A) ∩ U0
p (1) and Bp(A) := B(A) ∩ U0

p (1), p ∈ Γ.

Then, Pp(A) = P(Ap) resp. Bp(A) = B(Ap), p ∈ Γ , with respect to homeomor-
phisms [10,12]. In particular,

P(A) =
⋃

p

Pp(A) and B(A) =
⋃

p

Bp(A). (2)

Now, for each p ∈ Γ , define rp(x) := sup{‖µ(x)‖ : µ ∈ R′
p(A)}, x ∈ A. Then rp,

p ∈ Γ , is a C∗-seminorm on A with rp(x) ≤ p(x), x ∈ A. The closed 2-sided ∗-
ideal ∩{ker rp : p ∈ Γ} of A, clearly coincides with the ∗-radical R∗

A := ∩{kerµ :
µ ∈ R′(A)} of A. Let Γε ≡ {rp, p ∈ Γ}. The Hausdorff completion of A[τΓε ] is
called enveloping locally C∗-algebra of A[τΓ ] and is denoted by E(A) [10,14].

Let µ, µ′ ∈ R′(A). We say that µ, µ′ are equivalent and we write µ ∼ µ′, if
there is a surjective isometric isomorphism U : Hµ → Hµ′ , such that µ′(x)◦U =
U ◦ µ(x), ∀x ∈ A; “∼” is an equivalent relation and

‖µ(x)‖ = ‖µ′(x)‖, x ∈ A, ∀µ, µ′ ∈ R′(A) with µ ∼ µ′.

The quotient

R(A) := R′(A)/ ∼

is called structure space of A and its elements are denoted by [µ], µ ∈ R′(A). If
moreover,

Rp(A) := R′
p(A)/ ∼, p ∈ Γ,

one has Rp(A) = R(Ap), p ∈ Γ , up to a well defined surjection [12,14] and

R(A) =
⋃

p

Rp(A) =
⋃

p

R(Ap). (3)
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2 Topologization of the structure space R(A)

Let A[τΓ ] be an m∗-convex algebra with a bounded approximate identity
(abbreviated to bai). Using the GNS-construction [12, pp. 14–16], the map

δ : B(A) −→ R(A) : f 7−→ [µf ], (4)

with µf the GNS-∗-representation corresponding to f , is well defined and sur-
jective and it is called GNS-map. We have mentioned that B(A) carries the
relative weak∗-topology from A∗

s. Equip R(A) with the final topology τδ induced
on it by δ.

Let now p, q ∈ Γ with p ≤ q and let {Ap}p∈Γ be the Arens-Michael analysis
of A. Denote by τpq : Aq −→ Ap : xq 7−→ xp , the (continuous) connecting ∗-
morphism between Aq, Ap. For each [µp] ∈ R(Ap), the composition µq := µp◦τpq
defines an element [µq] ∈ R(Aq) and the correspondence

Rqp : R(Ap) −→ R(Aq) : [µp] 7−→ [µq]

is a well-defined continuous map, where R(Ai) carries the final topology τδi
through the respective GNS-map

δi : B(Ai) −→ R(Ai) : fi 7−→ [µfi
], i = p, q.

To check the continuity of Rqp consider the diagram

R(Ap) -

Rqp
R(Aq)

?

δp

?

δq p≤q

B(Ap) -
βqp B(Aq)

where for fp ∈ B(Ap), βqp(fp) := fq with fq = fp ◦ τpq. The map βqp is a
well-defined continuous injection and the preceding diagram is commutative. So

Rqp ◦ δp = δq ◦ βqp,

where δq ◦βqp is continuous. Hence, Rqp is continuous according to the definition
of τδp . Moreover, for p ≤ q ≤ r in Γ , one has Rrq ◦ Rqp = Rrp. So the family
(R(Ap), Rqp)p≤q forms an inductive system of topological spaces, therefore in
view of (3) we get

R(A) = lim−→
p

R(Ap), (5)



196 M. Fragoulopoulou

set-theoretically. We shall show (see Theorem 4) that in some cases the induc-
tive limit topology τlim−→ on R(A) coincides with the final topology τδ on R(A)

mentioned above.
It is easily seen that (B(Ap), βqp)p≤q is also an inductive system of topological

spaces, so that because of (2) we get set-theoretically the equalities

B(A) = lim−→
p

B(Ap); and similarly P(A) = lim−→
p

P(Ap). (6)

Denote by τB the relative topology on B(A) from A∗
s and by τBlim−→

the inductive

limit topology on B(A) according to (6).
We shall show that under certain conditions τB = τBlim−→

; for this reason we

need the following.

1 Lemma. Let A be a unital Banach ∗-algebra with identity e. Then, the
continuous (natural) injection B(A) −→ P(A) : f 7−→ f , is closed.

Proof. Let V ⊆ B(A) be closed. We show that V is also closed in P(A).
Let {fν} be a net in V , such that fν −→ h, with h ∈ P(A). We prove that
h ∈ V . Since, fν ∈ B(A), we get

h(e) = lim
ν
fν(e) = lim

ν
‖fν‖ = 1, whence it follows that ‖h‖ = 1. (7)

Let now g ∈ P(A) with g ≤ h. Then, for each z ∈ A, we have g(z∗z) ≤ h(z∗z) =
limν fν(z∗z). Hence, there is an index ν0, such that

g(z∗z) ≤ fν(z∗z∗), ∀z ∈ A and ν ≥ ν0.

Since each fν is pure, there are numbers

αν ∈ [0, 1] with g = ανfν , ∀ν ≥ ν0.

Applying in the previous equality a similar argument to that of (7), we get that
limν αν = g(e). Thus, g = g(e)h, which together with (7) implies that h is pure,
therefore h ∈ V . QED

An m-convex algebra A[τΓ ] is called barrelled [15], if the underlying locally
convex space of A[τΓ ] is barrelled, in the sense that every barrel (i.e. a closed
absolutely convex and absorbing subset) V of A[τΓ ] is a 0-neighborhood. Every
Fréchet algebra is barrelled. Given a topological space X, a family {Sα}α∈I of
compact subspaces of X, is called a k-covering family for X, if for each compact
subset K of X there is an index α ∈ I such that K ⊆ Sα [21, p. 165, Definition
5.1].

2 Lemma. Let A[τΓ ] be a unital barrelled m∗-convex algebra. Then, the
family {B(Ap)}p∈Γ is a k-covering for B(A).
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Proof. From (2) B(A) =
⋃
p∈Γ
Bp(A), where Bp(A) is homeomorphic to

B(Ap) (see Section 2). From Lemma 1, B(Ap) is weakly∗-closed in P(Ap) and
since P(Ap) is weakly∗-compact [8, p. 44], B(Ap) is also weakly∗-compact.
Let now K be an arbitrary weakly∗-compact subset of B(A). Then, K is an
equicontinuous subset of A∗

s [15, p. 212, Corollary], consequently there is a 0-
neighborhood Up(ε) ≡ {x ∈ A : p(x) ≤ ε}, 0 < ε ≤ 1, in A[τ ], such that

K ⊆ U0
p (ε) = U0

pU
(1),

with U ≡ Up(ε) and pU the gauge function of U . But p(x) = εpU (x), ∀x ∈ A, so
that Np = NpU and Ap = ApU . Thus, there is p ∈ Γ , such that

K ⊆ B(A) ∩ U0
pU

(1) = BpU (A) = B(Ap)

(for the equalities, see Section 2). This completes the proof. QED

3 Theorem. Let A[τΓ ] be a barrelled m∗-convex algebra with a bai. Let
B(A) be locally equicontinuous in A∗

s. Then, τB = τBlim−→
on B(A), that is B(A) =

lim−→B(Ap), up to a homeomorphism.

Proof. Suppose that A[τΓ ] is unital. Then, from Lemma 2, {B(Ap)}p∈Γ is
a k-covering family for B(A). Showing that (B(A), τB) is a k-space [19, p. 230],
we conclude from [21, pp. 166, 167, Lemma 5.2 and Corollary 5.1] that τB = τBlim−→

.

It is sufficient to show that (B(A), τB) is a locally compact space. Indeed, let
f ∈ B(A). Since B(A) is locally equicontinuous, there is an equicontinuous
neighborhood V of f . By Alaoglou-Bourbaki theorem, V is relatively weakly∗-
compact in A∗

s. Arguing now in a similar way as in the proof of [21, p. 143,
Theorem 1.1] we obtain a compact neighborhood of f in B(A).

Let us now come to the given, non-unital case. Passing to the unitization
A1[τ1] of A[τΓ ], with τ1 = τΓ1 , Γ1 = {p1}, where p1(x, λ) := p(x) + |λ|, for any
(x, λ) ∈ A1 ≡ A ⊕ C and p ∈ Γ , we have that A1[τ1] is a barrelled m∗-convex
algebra (see [15, p. 215, Corollary, (b)]). Involution on A1 is defined by (x, λ)∗ :=
(x∗, λ), for every (x, λ) ∈ A1. Moreover, defining the function f0(x, λ) := λ for
every (x, λ) ∈ A1, we conclude that f0 ∈ B(A1) and B(A) = B(A1) \ {f0}, up
to a homeomorphism sending an element f ∈ B(A) to an element f1 ∈ B(A1)
such that for any (x, λ) ∈ A1, f1(x, λ) := f(x) + λ. It is easily seen that B(A1)
is locally equicontinuous, since B(A) has this property. So as we proved above,
B(A1) = lim−→B((Ap)1), up to a homeomorphism, where (Ap)1 is the unitization
of the Banach algebra Ap, that coincides (topologically) with the Banach algebra
(A1)p1 . Applying now the same arguments as in the proof of [21, p. 169, (6.6)],
we are led to the claim of the theorem. QED
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4 Theorem. Let A[τΓ ] be a barrelled m∗-convex algebra with a bai, such
that B(A) is locally equicontinuous in A∗

s. Then, the natural topology τδ on R(A)
coincides with the inductive limit topology τlim−→ on R(A) induced by lim−→R(Ap)

according to (5).

Proof. The commutativity of the diagram before (5), yields the existence
of the unique continuous map

lim−→ δp : lim−→B(Ap) −→ lim−→R(Ap),

such that the diagram

(B(A), τB
lim−→

) -

lim−→ δp
(R(A), τ

lim−→
)

?

βp

?

ip

B(Ap) -
δp R(Ap)

is commutative, where ip, βp are the continuous natural embeddings of R(Ap)
into (R(A), τlim−→) and B(Ap) into (B(A), τBlim−→

) respectively. We show that ip is

also continuous when R(A) carries the topology τδ. Note that from Theorem 3,
τBlim−→

= τB. On the other hand, if in the preceding diagram we replace τlim−→
with τδ and lim−→ δp with δ (see (4)), the diagram remains commutative. Thus
ip : R(Ap) → (R(A), τδ) is continuous if and only if ip ◦ δp is continuous,
which is true since ip ◦ δp = δ ◦ βp and both of δ, βp are continuous. Hence,
from the definition of τlim−→ we conclude that τδ � τlim−→. We show the inverse

inequality. Let G ⊆ (R(A), τlim−→) be open, i.e. i−1
p (G) is open in R(Ap), ∀p ∈ Γ ;

then δ−1
p (i−1

p (G)) is open in B(Ap), ∀p ∈ Γ . But, δ−1
p (i−1

p (G)) = β−1
p (δ−1(G)),

∀p ∈ Γ . Hence δ−1(G) ∩ B(Ap) is open in B(Ap), ∀p ∈ Γ , which means that
δ−1(G) is open in (B(A), τBlim−→

= τB). Thus G is τδ-open, therefore τlim−→ � τδ. It

follows that

τδ = τlim−→ and δ = lim−→ δp,

since lim−→ δp is the unique continuous map making the last diagram commutative.
QED
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3 Structure space of topological tensor-product ∗-
algebras

Let A[τΓ ], B[τΓ ′ ] be m∗-convex algebras and τ an admissible topology on
A⊗B (cf. [14, Definition 3.1]). Suppose that {tpq}(p,q)∈Γ×Γ ′ is a family of m∗-
seminorms defining the topology τ . Then τ is called pq-admissible [14, pp. 29,
30] on A⊗B, if for any (p, q) ∈ Γ × Γ ′ an admissible norm ‖ · ‖pq (in the sense
of the first of the above citations) is defined on Ap ⊗Bq, such that

∥∥∥∥∥
n∑

i=1

xi,p ⊗ yi,q
∥∥∥∥∥
pq

= tp,q

(
n∑

i=1

xi ⊗ yi
)
,

for any
n∑
i=1

xi ⊗ yi ∈ A⊗B, where xi,p ≡ xi +Np ∈ A/Np and yi,q ≡ yi +Nq ∈
B/Nq, i = 1, . . . , n.

The pq-admissible tensorial topologies have the nice property to preserve
inverse limits; indeed, from (1)

A[τΓ ] ↪→ lim←−
p∈Γ

Ap and B[τΓ ′ ] ↪→ lim←−
q∈Γ ′

Bq,

up to topological ∗-monomorphisms; if τ is a pq-admissible topology on A⊗B,
denoting by A⊗̂

τ
B the completion of (A⊗ B, τ) and by Ap⊗̃Bq the completion

of (AP ⊗Bq, ‖ · ‖pq), we have (see [14, 4.7 Theorem]) that

A⊗̂
τ
B = lim←−Ap⊗̃Bq, (8)

with respect to a topological ∗-isomorphism. Such topologies have been also
studied in [7]. Because of (8), in the sequel we shall use the term inverse-limit
preserving tensorial topology for τ , instead of pq-admissible topology. Examples
and properties of inverse-limit preserving tensorial topologies are given in [14].
Clearly (8) leads to a corresponding to (5) set-theoretical identification; i.e.

R(A⊗̂
τ
B) = lim−→R(Ap⊗̃Bq), (9)

where the index set Γ ×Γ ′ gets a preorder by (p, q) ≤ (p′, q′) if both p ≤ p′ and
q ≤ q′. So Γ × Γ ′ is a directed set and (R(Ap) × R(Bq))(p,q)∈Γ×Γ ′ (as well as

((R(Ap⊗̃Bq))(p,q)∈Γ×Γ ′) is an inductive system of topological spaces, together
with the continuous maps (see discussion before (5))

Rp′p ×Rq′q : R(Ap)×R(Bq) −→ R(Ap′)×R(Bq′),
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with (p, q) ≤ (p′, q′) in Γ × Γ ′ (cf. [9, p. 425, 1.9]).
Suppose now that either of the algebras A[τΓ ], B[τΓ ′ ] is of type I [14, p.

25] and both of them have a bai. Let A[τΓ ] be of type I. Then, each Banach
∗-algebra Ap is of type I (ibid., p. 43, Lemma 5.11). If τ is an inverse-limit
preserving tensorial topology on A⊗B, K.B. Laursen proved in [20] that

R(Ap⊗̃Bq) = R(Ap)×R(Bq),

under a homeomorphism, which we denote by Gpq. Note that ([µp], [µq]) ∈
R(Ap)×R(Bq) goes through G−1

pq to [µp ⊗ µq] (where µp ⊗ µq also denotes the

unique extension of µp⊗µq to Ap⊗̃Bq [20]). Now, from [9, p. 422, 1.5 Theorem],
the map

G ≡ lim−→Gpq : lim−→R(Ap⊗̃Bq) −→ lim−→(R(Ap)×R(Bq)), (10)

is a homeomorphism and since the map

lim−→(R(Ap)×R(Bq)) −→ lim−→R(Ap)× lim−→R(Bq),

is a continuous bijection [9, p. 425, 1.9, (3)], combined with (10) gives that

G : lim−→R(Ap⊗̃Bq) −→ lim−→R(Ap)× lim−→R(Bq), (11)

is a continuous bijection too.

5 Theorem. Let A[τΓ ], B[τΓ ′ ] be Fréchet ∗-algebras, such that each one of
them has a bai and one of them is of type I. Let τ be an inverse-limit preserving
tensorial topology on A ⊗ B, such that B(E(A⊗̂

τ
B)) is locally equicontinuous.

Then, up to a homeomorphism, we have that:

R(A⊗̂
τ
B) = R(A)×R(B).

Proof. The local equicontinuity of B(E(A⊗̂
τ
B)) implies that of B(A⊗̂

τ
B) as

well as of B(E(A)⊗̂
α
E(B)), where α is the injective tensorial locally C∗-topology

on E(A) ⊗ E(B) (cf. [14, p. 27 and p. 44, Corollary 5.12]). In their turn the
preceding locally equicontinuous sets imply local equicontinuity for the sets
B(A), B(B) and B(E(A)), B(E(B)) respectively [11, Theorem 5.2]. Thus, from
Theorems 3 and 4, we conclude that the natural topologies of B(A), B(B),
B(A⊗̂

τ
B), R(A), R(B), R(A⊗̂

τ
B) coincide with their corresponding inductive

limit topologies. Therefore, looking at (5), (9) and (11) we get that

G : R(A⊗̂
τ
B) −→ R(A)×R(B)
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is a continuous bijection. It remains to prove that G−1 is continuous. For this
purpose, consider the following commutative diagram

R(A)×R(B) -

G−1 R(A⊗̂
τ
B)

?

δA×δB

?

δ⊗

B(A)× B(B) -
H B(A⊗̂

τ
B)

where δA, δB, δ⊗ are the corresponding to (4) GNS-maps. H and G−1 are
defined as follows: H(f, g) := f ⊗ g (cf. [11, Theorem 5.2]) and G−1([µ], [µ′]) =
[µ ⊗ µ′] (ibid., p. 23). For simplicity we retain the symbols f ⊗ g, µ ⊗ µ′ for
the unique extensions of f ⊗ g, µ ⊗ µ′ on A⊗̂

τ
B. Commutativity of the above

diagram gives G−1 ◦ (δA × δB) = δ⊗ ◦H, where δi, i = A,B,⊗ are continuous
by the definition of the topologies τδi , and H from [11, Theorem 5.2]. Thus,
G−1◦(δA×δB) is continuous with δA×δB continuous and open; for the openness
of δA, δB see [12, Theorem 6.4]); the local equicontinuity of the sets B(E(A)) and
B(E(B)) (mentioned above) is essential for the result of the last citation. The
continuity of G−1 follows now from [19, p. 95, Theorems 8, 9]. QED

There is a plethora of non-normedm∗-convex algebras, that attain a (normed)
C∗-enveloping algebra (cf. [3]). In this respect, we have the following

6 Corollary. Let A[τΓ ], B[τΓ ′ ] be Fréchet ∗-algebras such that both of them
have a bai and a C∗-enveloping algebra and one of them is of type I. Then, for
every inverse-limit preserving tensorial topology τ on A ⊗ B, the next equality
holds up to a homeomorphism:

R(A⊗̂
τ
B) = R(A)×R(B).

Proof. Since E(A), E(B) are C∗-algebras, the same is true for E(A⊗̂
τ
B)

(see [14, Corollary 5.12]). Thus B(E(A⊗̂
τ
B)) is equicontinuous, hence locally

equicontinuous. The assertion now follows from Theorem 5. QED

4 Applications

In this Section we apply the results of Section 4 to some concrete m∗-convex
algebras.
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7 Proposition. Let G be a (non-abelian) locally compact group, C∞(X)
the Fréchet ∗-algebra of all smooth functions on a 2nd countable compact finite-
dimensional smooth manifold X and L1

C∞(X)(G) the generalized group algebra
of G. Then, up to a homeomorphism, one has that

R(L1
C∞(X)(G)) = R(C∗(G))×X, (12)

where C∗(G) is the group C∗-algebra of G.

Proof. Note that L1
C∞(X)(G) = L1(G)⊗̂

π
C∞(X), up to a topological ∗-iso-

morphism, with π the projective tensorial topology [21, p. 406]. The topology
π is an inverse-limit preserving tensorial topology (see [14, (4.15)]) and both
of L1(G), C∞(X) have a C∗-enveloping algebra (for the second one, cf. [21, p.
498, (6.4)]). In particular, E(C∞(X)) = C(X); hence E(C∞(X)) as a commu-
tative C∗-algebra is of type I [8, 4.2.2, 4.3.1, 5.5.2], therefore by [14, Lemma
5.11] C∞(X) is of type I too. Furthermore, since C∞(X) is commutative, its
structure space R(C∞(X)) coincides with its topological spectrum (Gel’fand
space), which is homeomorphic to X [21, p. 227]. The conclusion now follows
from Corollary 6, provided that R(L1(G)) = R(C∗(G)) up to a homeomor-
phism [20, Proposition 2.10]. QED

A unital locally convex algebra A[τΓ ] is called Q-algebra, if the group of its
invertible elements is open (C∞(X), X as in Proposition 7, is such an algebra).
Every m∗-convex Q-algebra with a bai, has a C∗-enveloping algebra (cf. [3]).
Thus, in Proposition 7, C∞(X) can be replaced, for instance, by any unital
Fréchet Q-∗-algebra A[τΓ ], so that the place of X in (12) will be taken by
R(A).

8 Proposition. Let X be as in Proposition 7 and A a (non-commutative)
Banach ∗-algebra with a bai. Let C∞(X,A) be the Fréchet ∗-algebra of all A-
valued smooth functions on X. Then, up to a homeomorphism, one has that:

R(C∞(X,A)) = X ×R(A).

Proof. From [21, p. 394, (2.8)] one has C∞(X,A) = C∞(X) ⊗̂
π=ε

A (topolog-

ically ∗-isomorphically), where ε is the injective tensorial topology. According to
the proof of Proposition 7, we have that C∞(X) is of type I, has a C∗-enveloping
algebra, R(C∞(X)) is homeomorphic to X and π is an inverse-limit preserving
tensorial topology. So the result is again taken by Corollary 6. QED

A ∗-algebra A is called symmetric if every element of the form x∗x, x ∈ A,
has its spectrum in R+.
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9 Proposition. Let X be a compact space and A[τΓ ] a unital symmetric
Fréchet ∗-algebra, the spectral radius of which is finite on the self-adjoint ele-
ments. Let C(X,A) be the unital Fréchet ∗-algebra of all A-valued continuous
functions on X. Then, the following equality holds up to a homeomorphism:

R(C(X,A)) = X ×R(A).

Proof. If Γ = {pn}, n ∈ N, the topology of C(X,A) is defined by the
family qn(f) := sup{pn(f(x)) : x ∈ X}, n ∈ N, f ∈ C(X,A) of m∗-seminorms.
From [21, p. 391, Theorem 1.1] we have that C(X,A) = C(X)⊗̂

ε
A, up to a

topological ∗-isomorphism, with “ε” the injective tensorial topology. C(X) is of
type I as a commutative C∗-algebra. A is a Q-algebra according to [5, Corollary
4.11], therefore it has a C∗-enveloping algebra (cf. comments after Proposition
7). Clearly, R(C(X)) coincides with the Gel’fand space of C(X), which is home-
omorphic to X. Finally, ε is an inverse-limit preserving tensorial topology on
C(X)⊗A (cf. [14, Corollary 4.8]), so that the claimed result follows from Corol-
lary 6. QED
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