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Abstract. For two symmetric Banach sequence spaces E and F , each either 2-convex
or 2-concave, we derive asymptotically optimal estimates for the norms of identity maps
En ⊗ε F m ↪→ `nm

2 , where En and F m denote the n-th and m-th sections of E and F , re-
spectively, and En ⊗ε F m their injective tensor product. This generalizes classical results of
Hardy and Littlewood as well as of Schütt for `p-spaces. Based upon this, we give applications
to Banach–Mazur distances, volume ratios and projection constants of tensor products, and
approximation numbers of certain tensor product identities. As examples we consider powers
of sequence spaces as well as Lorentz sequence spaces. Finally, we study the more general
context of tensor products of spaces with enough symmetries. In particular, we consider tensor
products involving finite-dimensional Schatten classes.
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1 Preliminaries

For I ⊂ N × N and two sequences (an,m) and (bn,m) of scalars, we write

an,m
I≺ bn,m (or bn,m

I� an,m) whenever there exists c > 0 such that an,m ≤ c bn,m
for all (n,m) ∈ I, and an,m

I� bn,m whenever an,m
I≺ bn,m and bn,m

I≺ an,m. We
simply write “≺” etc. when it is clear what I actually is, e.g., when I = N×N

or when we consider sequences depending on one index only. Whenever a third
index k is involved, the formulas then are meant to hold “for all k”, giving
restrictions on k in advance. Very often the special set D = {(n, n); n ∈ N}
will be considered. For 1 ≤ p ≤ ∞, its conjugate number p′ is defined by
1/p+ 1/p′ = 1.

We shall use standard notation and notions from Banach space theory, as
presented e. g. in [5,13,19,33]. If E is a Banach space, then BE is its (closed) unit
ball and E′ its dual. As usual L(E,F ) denotes the Banach space of all (bounded
and linear) operators from E into F endowed with the operator norm.

Throughout the paper by a Banach sequence space we mean a real Banach
lattice E which is modeled on N and contains a sequence x with suppx = N. A
Banach sequence space E is said to be symmetric, if ‖x‖E = ‖x∗‖E , where x∗

as usual stands for the decreasing rearrangement of x, and E is called maximal
provided its unit ball BE is closed in the pointwise convergence topology on the
space ω := RN of all real sequences. The Köthe dual

E× := {(xn) ∈ ω;
∑∞

n=1|xnyn| <∞ for all y ∈ E}
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equipped with the norm

‖x‖E× := sup
y∈BE

∑∞
n=1|xnyn|

is a maximal Banach sequence space which is symmetric provided E is. Recall
that if E is separable, then E ′ is order isometrically isomorphic to E× (in short
E′ ∼= E×), and E×× = E if and only if E is maximal.

The fundamental function λE of a Banach sequence space E is defined to be

λE(n) := ‖∑n
k=1ek‖E

where (ek) denotes as usual the standard unit vector basis in c0. It is well-known
that if E is symmetric, then we have λE(n)λE×(n) = n. By En we denote the
span of the first n standard unit vectors in Rn, endowed with the norm induced
by E.

For two Banach sequence spaces F and E the space of multipliers M(F,E)
from F into E consists of all real sequences x such that the associated multi-
plication operator (yn) 7→ (xn yn) is defined and bounded from F into E. Note
that M(F,E) equipped with the norm

‖x‖M(F,E) := sup{‖xy‖E ; y ∈ BF },

is a Banach sequence space (symmetric provided F and E are). If E is maximal,
then M(F,E) is maximal.

As usual, define E(X) := {(xi) ⊂ X; (‖xi‖X) ∈ E}, where E is a Banach
sequence space and X a Banach space. Together with the norm ‖(xi)‖E(X) :=
‖(‖xi‖X)‖E this space becomes a Banach space. The Banach space En(X) is
defined similarly.

Let E = (Rn, ‖ · ‖) be an n-dimensional Banach space. We say that E has
enough symmetries in O(n) if there is a subgroup G of GL(n) such that all
g ∈ G are isometries on `n2 as well as on E, and

∀u ∈ L(E) with ug = gu for all g ∈ G ∃ c ∈ R : u = c · idE . (1)

Basic examples of spaces with enough symmetries in the orthogonal group are
the finite-dimensional spaces En, Fm associated to symmetric Banach sequence
spaces E and F , and certain tensor products of spaces with enough symmetries,
i.e., Xn ⊗α Y m, where α is symmetrically invariant norm on Xn ⊗ Y m and
Xn, Y m spaces with enough symmetries in O(n) and O(m), respectively. We
will not recall this notion here, since we will only be dealing with the injective
tensor product X⊗εY , and the projective tensor product X⊗π Y , where X and
Y are Banach spaces. We will use very often the facts that X ⊗ε Y = L(X ′, Y )
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and X ⊗π Y = N (X ′, Y ) (the space of all nuclear operators from X ′ into Y )
whenever X and Y are finite-dimensional.

For the notion of type and cotype of Banach spaces, and convexity and
concavity of Banach lattices, we refer to [19]. For a Banach space X we denote
by T2(X) and C2(X) its type 2 and cotype 2 constant, respectively. For a
Banach sequence space E we write M(2)(E) and M(2)(E) for its 2-convexity
and 2-concavity constants, respectively. Clearly, this notation transfers to the
sublattice En. It is known (see, e.g., [19]) that a Banach sequence space E is
of cotype 2 if and only if it is 2-concave, and it is of type 2 if and only if it is
2-convex and of finite concavity.

2 Abstract tools

We will need the following basic properties.

1 Lemma. Let E and F be symmetric Banach sequence spaces.

(i) If E is 2-convex or 2-concave, then

‖En ↪→ `n2‖ ‖`n2 ↪→ En‖ � max

(
n1/2

λE(n)
,
λE(n)

n1/2

)
. (2)

(ii) If E is 2-convex and of finite concavity, or 2-concave and of non-trivial
convexity, then

M(2)(En) M(2)(E
n) � max

(
n1/2

λE(n)
,
λE(n)

n1/2

)
. (3)

(iii) If E is 2-concave and F is 2-convex, then

‖Fn ↪→ En‖ = λM(F,E)(n) � λE(n)

λF (n)
. (4)

(iv) If E and F both are 2-convex or both are 2-concave, then

‖M(Fn, En) ↪→ `n2‖ �
√
n

‖Fn ↪→ En‖ . (5)

Proof. For (i) see, e.g., [7, 3.5], and for (ii) [6, 6.2]. The upper estimate
in (iii) follows from (i) by factorization through `n2 , the lower one is trivial. For
(iv) observe that if E and F are both 2-convex, then the quasi-normed space
M(F,E)1/2 = M(F1/2, E1/2) (for this notation see Section 7) admits a norm
equivalent to the original quasi-norm, hence, it is 2-convex, and then (i) yields
the formula. For E and F both 2-concave, the formula follows by duality. QED
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Now we turn our attention to absolutely summing operators. Let E and F
be symmetric Banach sequence spaces such that F ↪→ E with norm one. An
operator T : X → Y is said to be (E,F )-summing if there is some constant
C > 0 such that for each choice of x1, . . . , xn ∈ X the following inequality
holds:

‖
n∑

k=1

‖Txk‖Y ek‖E ≤ C sup
‖x′‖X′≤1

‖
n∑

k=1

|x′(xk)| ek‖F ;

we denote the smallest constant C with this property by πE,F (T ). The class ΠE,F

of all (E,F )-summing operators between Banach spaces together with the norm
πE,F forms a Banach operator ideal. For E = `p and F = `q, 1 ≤ p ≤ q <∞ we
obtain the well-known ideal (Πq,p, πq,p) of all absolutely (q, p)-summing opera-
tors. In the case p = q, this ideal is usually denoted by (Πp, πp).

We will need the following formula for the absolutely 2-summing norm of
identity maps due to [11]; for the purposes needed here, tensor products of
symmetric spaces, this goes back to [3, p. 233].

2 Lemma. Let EN and FN have enough symmetries in O(N). Then

π2(EN ↪→ FN ) = N1/2 ‖`N2 ↪→ FN‖
‖`N2 ↪→ EN‖ . (6)

Our next tool needed is essentially due to [22] (see also [9]).

3 Lemma. Let E and F be two symmetric Banach sequence spaces. Then
ΠE,1 ⊂ ΠM(F×,E),F××, and πM(F×,E),F××(T ) ≤ πE,1(T ) for any T ∈ ΠE,1.

The following result due to [8, 4.1] improves upon classical results of Hardy
and Littlewood [16] as well as of Bennett [1], Carl [2], and Maligranda and
Masty lo [20]. It allows applications to a wide range of topics, as e.g. strictly
singular operators, approximation numbers, eigenvalues of compact operators
and interpolation theory (see [7–10]). Here, it is crucial for most of our upper
estimates for norms of tensor product identities.

4 Proposition. Let E be a 2-concave symmetric Banach sequence space.
Then the identity map id : E ↪→ `2 is (E, 1)-summing.

For some lower estimates and for volume ratio estimates, the `-norm of an
operator T : `n2 → X, defined by

`(T ) :=

(∫

Rn

‖
n∑

k=1

giTei‖2X dλ
)1/2

(g1, . . . , gn a collection of independent standard Gaussian variables), is crucial.
We will frequently use the fact that `(id`n2 ) =

√
n.
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5 Proposition. Let E and F be symmetric Banach sequence spaces. Then

`(`nm2 ↪→ En ⊗ε Fm)

is asymptotically equivalent to

λE(n)λF (m)

min(
√
n,
√
m)

whenever E and F are 2-concave;

max(λF (m), λE(n)) whenever E and F have type 2;

λF (m) max(1, λE(n)/
√
m) whenever E has type 2 and F is 2-concave.

Proof. This is a consequence of Chevet’s inequality (see, e.g., [33, (43.2)])
which in our case says that

`(id) � max(‖`n2 ↪→ En‖ `(`m2 ↪→ Fm), ‖`m2 ↪→ Fm‖ `(`n2 ↪→ En)). (7)

To conclude, use the well-known fact that `(`n2 ↪→ En) � λE(n) whenever E has
finite concavity, together with (2). QED

To compute the `-norm of embeddings into projective tensor products, we
require the following formula for the type 2 constant thereof. It is a counterpart
of [6, 9.1] for type 2 constants instead of cotype 2 constants.

6 Proposition. Let E and F be symmetric Banach sequence spaces of non-
trivial type, each either 2-concave or 2-convex. Then

T2(En ⊗π Fm) � min(
√
nM(2)(Fm),

√
mM(2)(En)). (8)

Proof. Recall first that if X is a Banach lattice of non-trivial type, then
X itself as well as its dual X ′ have finite concavity (see, e.g., [19, 1.f.3, 1.f.13,
1.e.17, 1.f.9]). We start with the lower estimate: from [6, 9.1] we know that

C2((En)′ ⊗ε (Fm)′) � min(
√
nM(2)((E

n)′),
√
mM(2)((F

m)′)),

hence, by duality of ε and π (see, e.g., [5]) as well as T2 and C2 (see, e.g., [33]),

min(
√
nM(2)((En)′),

√
mM(2)((Fm)′)) ≺ C2((En)′⊗π(Fm)′) ≺ T2(En⊗εFm).

For the upper estimate, we will use the facts that

‖ id : En(Fm) ↪→ En ⊗π Fm‖ ≤ min(n/λE(n),KGM(2)(Fm)m1/2) (9)

(use [6, 5.4, 6.3] and duality; here, KG denotes Grothendieck’s constant) and

T2(En(Fm)) ≺M(2)(En(Fm)) ≺M(2)(En) M(2)(Fm) (10)
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(for the first inequality, use the fact that E(F ) has finite concavity, hence,
[19, 1.f.17] applies; for the second one use again duality plus the fact that
M(2)((E

n)′((Fm)′)) ≺ M(2)((E
n)′) M(2)((F

m)′)). Assume now that F is 2-
convex. Then by the trivial factorization

En ⊗π Fm
id

//

id &&NNNNNNNNNNN
En ⊗π Fm

En(Fm)
id

88ppppppppppp

we obtain from (9) and (10)

T2(En ⊗π Fm) ≤ KGM(2)(Fm)m1/2 T2(En(Fm))

≺M(2)(Fm)m1/2 M(2)(En) M(2)(Fm)

≺ m1/2 M(2)(En).

If E is 2-concave, the same reasoning yields

T2(En ⊗π Fm) ≺ n

λE(n)
M(2)(En) M(2)(Fm),

hence, we obtain from (3) that

T2(En ⊗π Fm) ≺ n1/2 M(2)(Fm).

This completes the proof. QED

The following estimates are a proper extension of [3, p. 247].

7 Proposition. Let E and F be symmetric Banach sequence spaces of non-
trivial type. Then

`(`nm2 ↪→ En ⊗π Fm)

is asymptotically equivalent to

min(
√
n,
√
m)λE(n)λF (m) whenever E and F are 2-convex;

min(nλF (m),mλE(n)) whenever E and F are 2-concave;

λE(n) min(m,
√
nλF (m)) whenever E is 2-convex and F is 2-concave.

Proof. The upper estimate follows from the fact that for S ∈ L(`N2 , Y ) one
has `(S) ≤ T2(Y )π2(S′) (see, e.g., [33, p. 83]): by (6) we have

π2(E×n ⊗ε F×m ↪→ `nm2 ) =

√
nm

‖En ↪→ `n2‖ ‖Fm ↪→ `m2 ‖
.
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Thus, (8) together with (2) gives the upper estimate. The lower one is a con-
sequence of `(id) `((id′)−1) ≥ nm (see, e.g., [3, Lemma 2]), and Proposition 5.

QED

3 Norms of tensor product identities

Based on results of Hardy and Littlewood [16], Schütt in [27, Proposition 17]
and [28, 3.4] proved the following norm estimates:

‖`np ⊗ε `mp ↪→ `nm2 ‖ �





1 1 ≤ p ≤ 4/3

min(n,m)3/2−2/p 4/3 ≤ p ≤ 2√
nm max(n,m)−1/p 2 ≤ p ≤ ∞,

and

‖`np ⊗ε `nq ↪→ `n
2

2 ‖ �





n1−1/min(p,q) 2 ≤ p, q ≤ ∞
n1/2−max(1/p+1/q−1,0) 1 ≤ p ≤ 2 ≤ q ≤ ∞
n3/2−1/p−1/q 1 ≤ p, q ≤ 2, 1/p+ 1/q ≤ 3/2

1 1 ≤ p, q ≤ 2, 1/p+ 1/q ≥ 3/2,

respectively.
We improve upon these results by considering injective tensor products

En ⊗ε Fm, where E and F are symmetric Banach sequence spaces which are
each either 2-convex or 2-concave. The following is the key result for most of
our asymptotic estimates in this paper, based on Proposition 4.

8 Proposition. Let E and F be symmetric Banach sequence spaces and
m ≤ n. Then

‖En ⊗ε Fm ↪→ `nm2 ‖ ≥ ‖M(F×m, Em) ↪→ `m2 ‖. (11)

If in addition E is 2-concave, then

‖En ⊗ε Fm ↪→ `nm2 ‖ � ‖M(F×m, Em) ↪→ `m2 ‖. (12)

Proof. To obtain the lower estimate, simply use the factorization

M(F×m, Em) ↪→ L(F×m, En) ↪→ HS(`m2 , `
n
2 )

(the latter denotes L(Rm,Rn) equipped with the Hilbert–Schmidt norm). For
the upper one recall Proposition 4: the inclusion map E ↪→ `2 is (E, 1)-summing.
Together with Lemma 3, this gives that E ↪→ `2 ∈ ΠM(F×,E),F×× . Thus,

‖En ⊗ε Fm ↪→M(F×m, Em)(`n2 )‖ � 1.

The conclusion now simply follows by factorization. QED
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9 Theorem. Let E and F be symmetric Banach sequence spaces and m ≤ n.
Then

‖En ⊗ε Fm ↪→ `nm2 ‖
is asymptotically equivalent to

(i)

√
nm

max(λE(n), λF (m))

(ii)

√
m

‖F×m ↪→ Em‖

(iii)
m3/2

λE(m)λF (m)

(iv) 1,

whenever

(i) E and F have type 2;

(ii) E is 2-concave and F is 2-convex;

(iii) E and F are 2-concave and M(F×, E) is 2-convex;

(iv) E and F are 2-concave and M(F×, E) is contained in `2,

respectively.

Proof. (i) The upper estimate easily follows from factorization through
the spaces `n∞ ⊗ε Fm and En ⊗ε `m∞, respectively, together with (2); note that
here we need 2-convexity only. For the lower estimate use the fact that ‖ id ‖ ≥√
nm/`(id−1), and Proposition 5.

(ii) This follows from (12) together with (5).

(iii) This is a consequence of (12) and (4) together with (2).

(iv) is clear by (12). QED

4 Application I: Banach–Mazur distances

For two Banach spaces X and Y isomorphic to each other, the Banach–
Mazur distance of X and Y is defined by

d(X,Y ) := inf{‖T‖ ‖T−1‖; T : X → Y invertible}.
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For an N -dimensional normed space X with enough symmetries in O(N), let
us denote by id the identity map `N2 ↪→ X and by id−1 its inverse. It is known
(see, e.g., [33, 16.4]) that for such a space X,

d(X, `N2 ) = ‖ id ‖ ‖ id−1 ‖. (13)

Since for two symmetric Banach sequence spaces E and F

‖`nm2 ↪→ En ⊗ε Fm‖ = ‖`n2 ↪→ En‖ ‖`m2 ↪→ Fm‖,
we immediately obtain the following results from those of the previous section:

10 Theorem. Let E and F be symmetric Banach sequence spaces and
m ≤ n. Then

d(En ⊗ε Fm, `nm2 )

is asymptotically equivalent to

(i)

√
nm

max(λE(n), λF (m))

(ii)
(m
n

)1/2 λE(n)

‖F×m ↪→ Em‖

(iii)
m√
n

λE(n)

λE(m)

(iv)
λE(n)λF (m)√

nm

whenever the conditions (i)–(iv) from Theorem 9 are satisfied, respectively.

Note that in each of the above cases,

d(En ⊗ε Fm, `nm2 ) � min(
√
n,
√
m). (14)

This is true for any choice of normed spaces En and Fm with enough sym-
metries in O(n) and O(m), respectively. Indeed, Chevet’s formula (7) and
`(`k2 ↪→ Gk) ≤

√
k ‖`k2 ↪→ Gk‖ for any k-dimensional normed space Gk give us

`(id) ≤ KC max(
√
n,
√
m) ‖`n2 ↪→ En‖ ‖`m2 ↪→ Fm‖, (15)

where KC > 0 denotes the constant occurring in (7). Hence, since ‖ id−1 ‖ ≥√
nm/`(id), by (13)

d(En ⊗ε Fm, `nm2 ) = ‖ id ‖ ‖ id−1 ‖

≥
√
nm ‖`n2 ↪→ En‖ ‖`m2 ↪→ Fm‖

`(id)
≥ K−1

C min(
√
n,
√
m),

the claim.
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5 Application II: approximation numbers

In the following we will show how results on Banach–Mazur distances and
norms of tensor product identities can be used to obtain asymptotically optimal
estimates for the approximation numbers of certain tensor product identities.
Recall that for any linear and bounded operator T : X → Y between Banach
spaces X and Y its k-th approximation number, k ∈ N, is defined by

ak(T ) := inf{‖T − S‖; S : X → Y has rank < k}.

In [3, p. 250] it was shown, amongst other, that

ak(`
n2

2 ↪→ `np ⊗ε `nq ) � max

(
1

‖ id−1 ‖ ,
(
n2 − k + 1

n2

)1/2

‖ id ‖
)

(16)

whenever 2 ≤ p, q <∞, or 1 ≤ p, q ≤ 2 and 1/p+ 1/q ≤ 3/2. One ingredient of
their proof is the general fact that if E and F are symmetric Banach sequence
spaces and α a symmetrically invariant norm on the tensor product En ⊗α Fm
(for this notion we refer to the same paper; e.g., the injective and the projective
norms have that property), then for all 1 ≤ k ≤ [nm/2]

ak(`
nm
2 ↪→ En ⊗α Fm) � ‖ id ‖. (17)

Analyzing their proof and using (6) instead of their proposition [3, p. 233], one
can see that (17) also holds for En and Fm being spaces with enough symmetries
in O(n) and O(m), respectively, with only absolute constants involved. For k
larger than [nm/2], they provided lower and upper estimates which then gave
(16). For the injective norm, we will see that (17) can be extended in a certain
way to k ≤ nm − max(n,m) + 1, so the crucial point is to find appropriate
estimates for k larger than nm−max(n,m)+1. For this task, results on Banach–
Mazur distances and norms of tensor product identities can be used.

11 Proposition. Let m,n ≥ 2, and En and Fm have enough symmetries
in O(n) and O(m), respectively.

(i) For all 1 ≤ k ≤ nm−max(n,m) + 1,

ak(`
nm
2 ↪→ En ⊗ε Fm) �

(
nm− k + 1

nm

)1/2

‖ id ‖.

(ii) If d(En ⊗ε Fm, `nm2 )
I� min(

√
n,
√
m) for I ⊂ N>1 × N>1, then for all

(n,m) ∈ I and nm−max(n,m) + 1 ≤ k ≤ nm

ak(`
nm
2 ↪→ En ⊗ε Fm)

I� 1

‖ id−1 ‖
I� ‖ id ‖

min(
√
n,
√
m)

.
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In particular, this holds whenever I = D\{(1, 1)}, E and F are 2-concave
symmetric Banach sequence spaces and M(F×, E) is 2-convex.

(iii) If E and F are symmetric Banach sequence spaces with finite concavity
such that d(En, `n2 ) � √n/λE(n), d(Fm, `m2 ) � √m/λF (m), then for all
nm−max(n,m) + 1 ≤ k ≤ nm

ak(`
nm
2 ↪→ En ⊗ε Fm) � max(λE(n), λF (m), (nm− k + 1)1/2)√

nm
.

In particular, this holds whenever E and F have type 2.

Proof. (i) By what has been said above, the statement is clear for the case
1 ≤ k ≤ [nm/2]. It was shown in [3, p. 249] that for for all 1 ≤ k ≤ nm,

max

(
1

‖ id−1 ‖ ,
(
nm− k + 1

nm

)1/2

‖ id ‖
)
≤ ak(id), (18)

which yields the lower estimate in (i). Also, in [3, p. 250] it was proved (based
on [14, 2.2]) that for [nm/2] ≤ k ≤ nm the following upper estimate holds (also
valid within the extended framework of spaces with enough symmetries):

ak(id) ≺ max

(
`(id)√
nm

,

(
nm− k + 1

nm

)1/2

‖ id ‖
)

(19)

Since for 1 ≤ k ≤ nm−max(n,m) + 1 by (15),
(
nm− k + 1

nm

)1/2

‖ id ‖ ≥ max(
√
n,
√
m) ‖`n2 ↪→ En‖ ‖`m2 ↪→ Fm‖√

nm
≥ `(id)√

nm
,

the upper estimate in (i) follows.
(ii) By (18) and (19), it suffices to show that

max

(
`(id)√
nm

,

(
nm− k + 1

nm

)1/2

‖ id ‖
)

I≺ 1

‖ id−1 ‖ .

Indeed, on one hand, by (15) and the assumption,

1

‖ id−1 ‖ =
‖ id ‖

d(En ⊗ε Fm, `nm2 )

I� ‖`
n
2 ↪→ En‖ ‖`m2 ↪→ Fm‖

min(
√
n,
√
m)

� `(id)√
nm

.

On the other hand, since k ≥ nm−max(n,m) + 1,
(
nm− k + 1

nm

)1/2

‖ id ‖ ≤ ‖`
n
2 ↪→ En‖ ‖`m2 ↪→ Fm‖

min(
√
n,
√
m)

=
d(En ⊗ε Fm, `nm2 )

min(
√
n,
√
m) ‖ id−1 ‖

I≺ 1

‖ id−1 ‖ ,



Norms of tensor product identities 141

the claim.

(iii) Again by (18) and (19), it suffices to show that

`(id) ≺ max(λE(n), λF (m)) ≺ √nm/‖ id−1 ‖.

The assumptions on the Banach–Mazur distances imply that

‖`n2 ↪→ En‖ � ‖`m2 ↪→ Fm‖ � 1, ‖En ↪→ `n2‖ �
√
n

λE(n)
, ‖Fm ↪→ `m2 ‖ �

√
m

λF (m)
.

Thus, Chevet’s formula (7) together with the concavity assumptions give

`(id) ≺ max(λE(n), λF (m)).

By factorization through `n∞ ⊗ε Fm and En ⊗ε `m∞ one gets that

√
nm/‖ id−1 ‖ � max(λE(n), λF (m)),

which finishes the proof. QED

6 Application III: volume ratio estimates

Next we consider volume ratios. Let X be RN equipped with some norm.
The volume ratio of X is defined by

vr(X) := inf
E⊂BX

(
vol(BX)

vol(E)

)1/N

,

where E is an ellipsoid. Szarek and Tomczak-Jaegermann in [30] proved that
vr(`n2 ⊗π `np ) � 1 whenever 1 ≤ p ≤ 2. Schütt in [28, 3.1] then gave the whole
asymptotically optimal order of vr(`np ⊗π `nq ):

vr(`np ⊗π `nq ) �





1 1 ≤ p, q ≤ 2, or 2 ≤ p, q ≤ ∞
and 1/p+ 1/q ≥ 1/2

n1/2−1/q+min(1/q+1/p−1,0) 1 ≤ p ≤ 2 ≤ q
n1/2−1/p−1/q 1/p+ 1/q ≤ 1/2.

We will give analogs of his formulas for the general setting of projective
tensor products of n-th sections of symmetric Banach sequence spaces. The
crucial tool for this is the following:
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12 Proposition. There exists an absolute constant Kvr > 0 such that for
all dimensions N and any space X = (RN , ‖ · ‖X) with enough symmetries in
O(N),

1

Kvr

√
N ‖`N2 ↪→ X‖
`(`N2 ↪→ X)

≤ vr(X) ≤ Kvr
`(`N2 ↪→ X ′) ‖`N2 ↪→ X‖√

N
. (20)

Proof. By [11], the ellipsoid of maximal volume contained in the unit ball
BX is ‖`N2 ↪→ X‖−1B`N2

. Hence, by [25, 7.2],

vr(X) = ‖`N2 ↪→ X‖
(

vol(BX)

vol(B`N2
)

)1/N

� ‖`N2 ↪→ X‖
(

vol(B`N2
)

vol(BX′)

)1/N

.

Now Urysohn’s inequality (see, e.g., [25, 3.14]), in this particular case given as
(

vol(BX)

vol(B`N2
)

)1/N

≺ `(`N2 ↪→ X ′)√
N

and

(
vol(B`N2

)

vol(BX′)

)1/N

�
√
N

`(`N2 ↪→ X)
,

yields the desired result. QED

Now we are prepared to state the following general estimates for the volume
ratio of projective tensor products:

13 Theorem. Let E and F be symmetric Banach sequence spaces and
m ≤ n. Then

vr(En ⊗π Fm)

is asymptotically equivalent to

(i) 1

(ii)

√
n

λE(n) ‖Fm ↪→ E×m‖

(iii)
( n
m

)1/2 λE(m)

λE(n)

(iv)

√
n

λE(n)λF (m)

whenever

(i) E and F are 2-concave and of non-trivial convexity;

(ii) E has type 2, and F is 2-concave and of non-trivial convexity;

(iii) E and F have type 2 and M(F,E×) is 2-convex.

(iv) E and F have type 2 and M(F,E×) is contained in `2,

respectively.
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Proof. Everything follows from the dualized version of Theorem 9 and (20)
together with Proposition 5 and Proposition 7. QED

Note that in all cases from above, and in general for two spaces En and Fm

with enough symmetries in O(n) and O(m), respectively,

vr(En ⊗π Fm) ≤ KC Kvr max(
√
n,
√
m). (21)

Indeed, (20), (15) and (13) yield

vr(En ⊗π Fm)

≤ Kvr
`(`nm2 ↪→ (En)′ ⊗π (Fm)′) ‖`nm2 ↪→ En ⊗π Fm‖√

nm

≤ KC Kvr
max(

√
n,
√
m) ‖En ↪→ `n2‖ ‖Fm ↪→ `m2 ‖ ‖`nm2 ↪→ En ⊗π Fm‖√

nm

= KC Kvr
max(

√
n,
√
m) d(En ⊗π Fm, `nm2 )√

nm
≤ KC Kvr max(

√
n,
√
m).

Compared to this, the volume ratio of injective tensor products is rather large:
for any choice of symmetric Banach sequence spaces E and F ,

vr(En ⊗ε Fm) ≥ (KC Kvr)
−1 min(

√
n,
√
m). (22)

This also follows from (20), (15) and (13):

vr(En ⊗ε Fm) ≥
√
nm ‖`n2 ↪→ En‖ ‖`m2 ↪→ Fm‖
Kvr `(`nm2 ↪→ En ⊗ε Fm)

�
√
nm ‖`n2 ↪→ En‖ ‖`m2 ↪→ Fm‖

KvrKC max(
√
n,
√
m) ‖`n2 ↪→ En‖ ‖`m2 ↪→ Fm‖

= (KvrKC)−1 min(
√
n,
√
m).

We illustrate this fact by giving the following counterpart to the preceding
theorem, which immediately follows from (20) and the results on `-norms.

14 Theorem. Let E and F be symmetric Banach sequence spaces of non-
trivial type. Then

vr(En ⊗ε Fm)
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is asymptotically equivalent to

(i)

√
nm

max(λE(n), λF (m))

(ii)
√
n min

(
1,

√
m

λE(n)

)

(iii) min(
√
n,
√
m)

whenever

(i) E and F are 2-convex;

(ii) E is 2-convex and F is 2-concave;

(iii) E and F are 2-concave,

respectively.

We continue with a remark about a connection of the minimality of Banach–
Mazur distances and volume ratios.

15 Proposition. For (n,m) ∈ I ⊂ N × N let En and Fm be spaces with
enough symmetries in O(n) and O(m), respectively. Then the following are
equivalent:

(i) d(En ⊗ε Fm, `nm2 )
I� min(

√
n,
√
m);

(ii) vr(En ⊗ε Fm)
I� min(

√
n,
√
m) and vr((En)′ ⊗π (Fm)′)

I� 1.

Proof. The equations (20) and (13) show that

vr(En ⊗ε Fm) vr((En)′ ⊗π (Fm)′) � d(En ⊗ε Fm, `nm2 ). (23)

Then it is clear that (ii) implies (i), and the converse follows by (20). QED

Let us also indicate a connection of the minimality of volume ratios of projec-
tive tensor products and the maximality of projection constants thereof. Recall
that the projection constant λ(X) of a finite-dimensional normed space X is
defined as

λ(X) := sup{λ(i(X), Z); i : X ↪→ Z is an isometric embedding into Z},

where for a subspace Y of a Banach space Z,

λ(Y,Z) := inf{‖P‖; P ∈ L(Z,Z) a projection onto Y }.
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For injective tensor products, the projection constant is the product of those of
the underlying spaces: λ(X ⊗ε Y ) = λ(X)λ(Y ) whenever X and Y are finite-
dimensional normed spaces (see, e.g., [5, 34.6]). This is not true for projective
tensor products, which follows, e.g., from the lower bound provided below. How-
ever, the following holds:

16 Proposition. For (n,m) ∈ I ⊂ N × N let En and Fm be spaces with
enough symmetries in O(n) and O(m), respectively. Then:

(i) λ(En ⊗π Fm) ≥ C min(
√
n,
√
m) for some absolute constant C > 0.

(ii) vr(En ⊗π Fm)
I� 1 implies λ(En ⊗π Fm)

I� √nm.

Proof. Recall the definition of the cubic ratio of an N -dimensional normed
space X:

evr(X,QN ) := inf
P⊃BX

(
vol(P)

vol(BX)

)1/N

,

where P is a parallelotope. It was shown in [15, Corollary 2] that evr(X,QN ) �√
N/ vr(X). Hence, by [15, Corollary 7],

λ(X) ≥ evr(X,QN ) �
√
N/ vr(X).

Now (21) gives (i). The general estimate λ(X) ≤
√
N (see, e.g., [33, 9.12]) and

the assumption on the volume ratio yield (ii). QED

17 Corollary. Let E and F be symmetric Banach sequence spaces and
I ⊂ N× N. Then

λ(En ⊗π Fm)
I� √nm

whenever one of the following holds:

(i) I = N× N, and E and F are 2-concave and of non-trivial convexity;

(ii) I = D, and E, F and M(F×, E) are 2-convex.

Proof. Everything follows from the above proposition and Theorem 13;
simply note that for m = n the type 2 assumption occurring in Theorem 13 (iii)
can be omitted. QED

7 Case study I: powers of a sequence space

We continue with a case study where we apply our abstract results to powers
of sequence spaces Ep, which in particular leads to the known results for `p-
spaces (cf. [28]) and new results for Lorentz sequence spaces d(w, p).
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Let E be a symmetric Banach sequence space. For 1 ≤ p <∞, the space Ep
consists of all x ∈ `∞ such that |x|p ∈ E. Introducing the quasi-norm

‖x‖Ep := ‖|x|p‖1/pE ,

this again forms a symmetric Banach sequence space, which is always p-convex.
When E = `1, then Ep = `p. Another prominent example is E = d(w, 1), which
gives Ep = d(w, p). Here, for 1 ≤ p <∞, the symmetric Banach sequence space
d(w, p) is defined as follows: Let (wn) be a non-increasing sequence of positive
real numbers such that w1 = 1, limn→∞wn = 0 and

∑∞
n=1wn = ∞ (called

a Lorentz function). The symmetric Banach sequence space of all sequences
of scalars x = (xn) for which ‖x‖ := supπ(

∑∞
n=1 |xπ(n)|pwn)1/p < ∞, where

π ranges over all the permutations of the integers, is denoted by d(w, p) and
called a Lorentz sequence space. It is easy to see that λd(w,p)(n) = (

∑n
i=1wi)

1/p.
Reisner in [26] showed that d(w, 1) is r-concave, 1 < r < ∞, whenever the
weight (wn) is r′-regular, that is,

∑n
i=1w

r′
i � nwr

′

n .
We list up some well-known facts needed for our purposes.

18 Lemma. Let E be a symmetric Banach sequence space and 1 ≤ p <∞.

(i) λEp(n) = λE(n)1/p.

(ii) Ep is 2-convex whenever p ≥ 2, and for 1 ≤ p ≤ 2 it is 2-concave whenever
E is 2/p-concave.

(iii) M(En
q , E

n
p ) = En

r whenever 1 ≤ p < q < r <∞ such that 1/r = 1/p−1/q,
and M(En

q , E
n
p ) = `∞ whenever 1 ≤ q ≤ p <∞.

Proof. (i) is easy, for (ii) and (iii) see, e.g., [4, Lemma 2] and [21, Theo-
rem 5]. QED

Using the above facts and our abstract results from the previous sections, we
are now able to formulate the following results. We omit detailed formulations
for Lorentz sequence spaces, since these would be very similar to the more
general case presented here. To translate, simply use the facts mentioned right
after the definition of Lorentz sequence spaces. In particular, for 1 < r ≤ 2, the
space E = d(w, 1) is 2/r-concave whenever the weight (wn) is 2/(2− r)-regular,
and it has finite concavity whenever (wn) is at least 1-regular.

19 Example. Let E be a symmetric Banach sequence space. Then

‖L(En
q , E

n
p ) ↪→ `n

2

2 ‖

is asymptotically equivalent to

(i) 1
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(ii)
√
n

(iii) n1/2 λE(n)1/q−1/p

(iv) min(λE(n)1/q, n/λE(n)1/p)

whenever

(i) 1 ≤ p ≤ 2 ≤ q <∞, 1/r := 1/p− 1/q > 1/2 and E is 2/r-concave;

(ii) 2 ≤ q < p <∞;
1 ≤ q ≤ p ≤ 2 and E is 2/q-concave;

(iii) 2 ≤ p < q <∞;
1 ≤ p ≤ 2 ≤ q <∞ and 1/p− 1/q ≤ 1/2;
1 ≤ p < q ≤ 2 and E is 2/p-concave;

(iv) 1 < q ≤ 2 ≤ p <∞ and E is 2/q-concave,

respectively.

20 Example. Let E be a symmetric Banach sequence space. Then

d(L(En
q , E

n
p ), `n

2

2 )

is asymptotically equivalent to

(i)
√
n

(ii) λE(n)1/p−1/q

(iii) max(λE(n)1/q, n/λE(n)1/p)

(iv) min(λE(n)1/q, n/λE(n)1/p)

whenever

(i) 2 ≤ q ≤ p <∞;
1 ≤ q ≤ p ≤ 2 and E is 2/p-concave;
1 ≤ p ≤ 2 ≤ q <∞, E is 2/p-concave and 1/r := 1/p− 1/q ≤ 1/2;

(ii) 1 ≤ p ≤ 2 ≤ q <∞, 1/r := 1/p− 1/q > 1/2 and E is 2/r-concave;

(iii) 2 ≤ p < q <∞;
1 ≤ p < q ≤ 2 and E is 2/q-concave;

(iv) 1 < q ≤ 2 ≤ p <∞ and E is 2/q-concave,
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respectively.

21 Example. Let E be a symmetric Banach sequence space. Then

vr(N (En
p , E

n
q ))

is asymptotically equivalent to

(i) 1

(ii)
n1/2

λE(n)1/min(p,q)

(iii)
λE(n)1/max(p,q)

n1/2

(iv)
λE(n)1/p−1/q

n1/2

whenever

(i) 1 < q < 2 ≤ p <∞ and E is 2/q-concave;
1 ≤ p < 2 ≤ q <∞, 1/p− 1/q ≤ 1/2 and E is 2/p-concave;

(ii) 2 ≤ p, q <∞ and E has finite concavity;

(iii) 1 < p, q ≤ 2 and E is 2/max(p, q)-concave;

(iv) 1 < p < 2 ≤ q <∞, 1/r := 1/p− 1/q > 1/2 and E is 2/r-concave,

respectively.

8 Case study II: Lorentz sequence spaces

The following lemma gathers several facts for Lorentz sequence spaces, some
of them already folklore and others easy to prove. However, for the convenience
of the reader, we give some hints for the proofs.

22 Lemma. Let 1 < p0, p1 <∞ and 1 ≤ q0, q1 ≤ ∞.

(i) If p0 6= p1, or p0 = p1 and q0 ≤ q1, then

‖`np0,q0 ↪→ `np1,q1‖ � nmax(1/p1−1/p0,0). (24)

If p0 = p1 and q0 > q1, then

‖`np0,q0 ↪→ `np1,q1‖ � (1 + log n)1/q1−1/q0 . (25)
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(ii) If p0 > p1, then for 1/p = 1/p1 − 1/p0 and 1/q = max(1/q1 − 1/q0, 0),

M(`p0,q0 , `p1,q1) = `p,q. (26)

If p0 < p1, or p0 = p1 and q0 ≤ q1, then

M(`p0,q0 , `p1,q1) = `∞. (27)

(iii) For 1 < p <∞ and 1 ≤ q ≤ ∞,

`(`n2 ↪→ `np,q) � n1/p. (28)

Proof. (i) The lower estimates in (24) are trivial. For p0 < p1 or p0 = p1

and q0 ≤ q1, the space `np0,q0 is contained in `p1,q1 . The remaining cases follow by
Hölder’s Inequality (when q0 > q1) and interpolation. (25) follows by considering
appropriate vectors with logarithmic weights for the lower estimates (see, e.g.,
[23, 2.1.12]) and again Hölder’s inequality for the upper ones.

(ii) Obviously, (27) holds since in those cases, `p0,q0 is contained in `p1,q1 . In
the case p0 > p1 and q0 ≥ q1, (26) is essentially known (see, e.g., [23, 2.1.13]),
and for q0 < q1 it follows by factorization that

`p,∞ = M(`p0,q1 , `p1,q1) ↪→M(`p0,q0 , `p1,q1).

On the other hand, (24) implies that λM(`p0,q0 ,`p1,q1 )(n) � n1/p, hence we get
that M(`p0,q0 , `p1,q1) ↪→ `p,∞.

(iii) For q < ∞, this is clear since then `p,q has finite concavity. If q = ∞,
then the upper estimate follows by factorization from the case q <∞, and the
lower one by comparison of Gauss and Rademacher averages. QED

In the case of tensor products of Lorentz sequence spaces, the restrictions in
Proposition 5 and Proposition 7 can be essentially weakened. This allows us to
cover the whole range of possible indices for the injective tensor product.

23 Lemma. Let 1 < p0 ≤ p1 <∞ and 1 ≤ q0, q1 ≤ ∞. Then

`(`n
2

2 ↪→ `np0,q0 ⊗ε `np1,q1)

is asymptotically equivalent to

(i) n1/p0

(ii) n1/p0+1/p1−1/2

(iii) (1 + log n)1/min(q0,q1)−1/2 n1/2
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whenever

(i) p1 > 2;

(ii) p0 < p1 ≤ 2, or p1 < 2, or p0 = p1 = 2 and q0, q1 ≥ 2;

(iii) p0 = p1 = 2 and min(q0, q1) < 2,

respectively.

Proof. Everything here follows from Chevet’s formula (7) together with
the above lemma. QED

For the projective tensor product, the only case missing is when p0 = p1 = 2
and max(q0, q1) > 2.

24 Lemma. Let 1 < p0, p1 <∞ and 1 ≤ q0, q1 ≤ ∞. Then

`(`n
2

2 ↪→ `np0,q0 ⊗π `np1,q1)

is asymptotically equivalent to

(i) n1+1/p0

(ii) n1/2+1/p0+1/p1

whenever

(i) p1 ≤ p0 < 2, or p1 < 2 ≤ p0;

(ii) p0 ≥ p1 > 2, or p0 > p1 ≥ 2, or p0 = p1 = 2 and q0, q1 ≤ 2,

respectively.

Proof. All the lower estimates follow from the relation `(id) `((id′)−1) ≥
n2, and the upper estimates as follows:

(ii) If p0 ≥ p1 > 2 and 2 ≤ q0, q1 < ∞, the upper estimate follows from
Proposition 7, and then also for all remaining cases in (ii) by factorization
through `np ⊗π `np with p > max(p0, p1).

(i) If p1 ≤ p0 < 2 and q0, q1 ≤ 2, or p1 < 2 < p0 and q1 ≤ 2 ≤ q0 <∞,
then again Proposition 7 applies. Thus, by factorization through the space
`np0,min(q0,2)

⊗π `np1,min(q1,2)
we can eliminate the restrictions on q0, q1 in the first

case. Similarly, the restriction on q1 in the second case can be omitted, and
then the one on q0 by factorization through `np ⊗π `np1,q1 with p > p0. The same
factorization gives the upper estimate when p1 < 2 = p0. QED
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After these preparations, we are able to formulate our results for norms of
tensor product identities, Banach–Mazur distances and volume ratios for tensor
products of n-th sections of Lorentz sequence spaces. The four indices involved
each time make formulas as well as proofs look complicated, and some cases
(few though) are left unsolved.

25 Example. Let 1 < p0, p1 <∞ and 1 ≤ q0, q1 ≤ ∞. Then

‖`np0,q0 ⊗ε `np1,q1 ↪→ `n
2

2 ‖

is asymptotically equivalent to

(i) n1/p′0

(ii)
√
n

(iii)

√
n

(1 + logn)1/min(q0,q1)+1/max(q0,q1,2)−1

(iv) n3/2−1/p0−1/p1

(v) 1

(vi) (1 + log n)min(3/2−1/q0−1/q1,1/2)

whenever

(i) 2 < p0 ≤ p1;
p0 = 2 < p1 and q0 ≤ 2;

(ii) p0 < 2 < p1 and p′1 < p0;
p′1 = p0 ≤ 2 and q′1 ≤ q0;

(iii) p′1 = p0 < 2 < p1 and q0 < q′1 ≤ 2;
p0 = p1 = 2 and q0 < q′1;

(iv) p0 < 2, p0 < p′1 and 1/p0 + 1/p1 < 3/2;

(v) p0, p1 < 2 and 1/p0 + 1/p1 > 3/2;
p0, p1 < 2 and 1/p0 + 1/p1 = 3/2 and 1/q0 + 1/q1 ≥ 3/2;

(vi) 1/p0 + 1/p1 = 3/2, 1/q0 + 1/q1 < 3/2 and min(q0, q1) ≤ 2,

respectively.
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Proof. (i) The upper estimate follows from factorization through
`np0,q0 ⊗ε `n∞. For the lower estimate, ‖ id ‖ ≥ n/`(id−1) � n1/p′0 gives the claim.

(ii) In both cases, M(`p′1,q′1 , `p0,q0) = `∞, which immediately gives us the
lower estimate. The upper estimate in the case when p0 < 2 < p1 follows by
factorization through `n2 ⊗ε `np1,q1 , the second case in (i). When p0 = p1 = 2, the
upper estimate follows by factorization through `n4/3 ⊗ε `n4/3.

(iii) The first case follows directly from Theorem 9 (ii). In the second case, for
q0, q1 ≤ 2 the lower estimate follows as in (i) and for q0 < 2 < q1 by factorizing
the identity map id : `n2,q0 ⊗ε `n2,q′0 ↪→ `n

2

2 through `n2,q0 ⊗ε `n2,q1 . For the upper

estimate, consider first the special case q0 < q1 = 2. Then

‖ id ‖ ≤ π2(`n2,q0 ↪→ `n2 ) =

√
n

‖`n2 ↪→ `n2,q0‖
�

√
n

(1 + logn)1/q0−1/2
.

Now factorize through `n2,q0 ⊗ε `n2 to obtain the upper estimate for q1 arbitrary.
(iv) We immediately see that for some s ≥ 1 we have that M(`p′1,q′1 , `p0,q0) =

`r,s, where 0 < 1/r = 1/p0 + 1/p1 − 1 < 1/2. This gives the lower estimate, and
by (12), in the case q0 ≤ 2 the upper one. For q0 > 2, let p < p0 such that still
1/p + 1/p1 < 3/2. Then the upper estimate follows by factorization through
`np,2 ⊗ε `np1,q1 .

(v) The assumptions yield that in both cases M(`p′1,q′1 , `p0,q0) ↪→ `2. By (12),
this gives the claim in the second case, and in the first case when additionally
q0 ≤ 2 is assumed. For q0 > 2, take p > p0 such that still 1/p+ 1/p1 > 3/2, and
factorize through `np,2 ⊗ε `np1,q1 .

(vi) Here, M(`p′1,q′1 , `p0,q0) = `2,s with 1/s = max(1/q0 + 1/q1− 1, 0), and we
can apply (12). QED

For the sake of completeness, let us list up the combinations of indices miss-
ing in the above:

• p0 = 2 < p1 and q0 > 2;

• p′1 = p0 < 2 and q′1 > max(q0, 2);

• 1/p0 + 1/p1 = 3/2, 1/q0 + 1/q1 < 3/2 and q0, q1 > 2.

For Banach–Mazur distances, we arrive at the following (rather extensive)
formulas (same combinations of indices missing as above):

26 Example. Let 1 < p0, p1 <∞ and 1 ≤ q0, q1 ≤ ∞. Then

d(`np0,q0 ⊗ε `np1,q1 , `n
2

2 )

is asymptotically equivalent to
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(i) n1−1/p0

(ii)
√
n (1 + logn)1/q0−1/2

(iii)
√
n (1 + logn)1/min(q0,q1,2)−1/2

(iv)
√
n (1 + logn)|1/max(q0,q1)−1/2|

(v) n1/p0

(vi)
n1/p0

(1 + logn)1/q1+1/q0−1

(vii) n1−1/p1

(viii)
√
n (1 + logn)1/min(q1,2)−1/2

(ix)
√
n

(x) n1/p0+1/p1−1

(xi)
√
n (1 + logn)min(3/2−1/q0−1/q1,1/2)

whenever

(i) 2 < p0 ≤ p1;

(ii) p0 = 2 < p1 and q0 ≤ 2;

(iii) p0 = p1 = 2 and q′1 ≤ q0;

(iv) p0 = p1 = 2 and q0 < q′1;

(v) p′1 < p0 < 2 < p1;
p′1 = p0 < 2 < p1 and q′1 ≤ q0;

(vi) p′1 = p0 < 2 < p1 and q0 < q′1 ≤ 2;

(vii) p0 < 2 < p1 and p0 < p′1;

(viii) p0 < 2 = p1;

(ix) p0, p1 < 2 and 1/p0 + 1/p1 < 3/2;
p0, p1 < 2, 1/p0 + 1/p1 = 3/2 and 1/q0 + 1/q1 ≥ 3/2;

(x) p0, p1 < 2 and 1/p0 + 1/p1 > 3/2;

(xi) p0, p1 < 2, 1/p0 + 1/p1 = 3/2, 1/q0 + 1/q1 < 3/2 and min(q0, q1) ≤ 2,
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respectively.

Proof. Everything follows by using the fact that for any symmetric Banach
sequence spaces E and F ,

d(En ⊗ε Fn, `n
2

2 ) = ‖En ⊗ε Fn ↪→ `n
2

2 ‖ ‖`n2 ↪→ En‖ ‖`n2 ↪→ Fn‖;

we leave the detailed calculations to the interested reader. QED

Finally, we consider volume ratios. Here, the combinations of indices miss-
ing are the dual ones to those missing in the above, plus p0 = p1 = 2 and
min(q0, q1) < 2 < max(q0, q1). Note that by Proposition 16 it follows that
λ(`np0,q0 ⊗π `np1,q1) � n for all combinations of indices occurring in (i).

27 Example. Let 1 < p0, p1 <∞ and 1 ≤ q0, q1 ≤ ∞. Then

vr(`np0,q0 ⊗π `np1,q1)

is asymptotically equivalent to

(i) 1

(ii) n1/2−1/p0

(iii)
n1/2−1/p0

(1 + logn)1−1/q0−1/q1

(iv) n1/p1−1/2

(v) n1/2−1/p0−1/p1

(vi) (1 + log n)min(1/q0+1/q1−1/2,1/2)

whenever

(i) p0, p1 < 2;
p1 < p0 = 2 and q0 ≥ 2;
p0 = p1 = 2 and q0, q1 ≤ 2 or q0, q1 ≥ 2;
2 = p1 < p0;
2 < p0, p1 and 1/p0 + 1/p1 > 1/2;
2 < p0, p1, 1/p0 + 1/p1 = 1/2 and 1/q0 + 1/q1 ≤ 1/2;

(ii) p1 < 2 < p0 < p′1;
p1 < 2 < p0 = p′1 and q0 ≤ q′1;

(iii) p1 < 2 < p0 = p′1 and q′0 < q1 ≤ 2;

(iv) p1 < 2 < p′1 < p0;
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(v) 2 < p0, p1 and 1/p0 + 1/p1 < 1/2;

(vi) 2 < p0, p1 and 1/p0 + 1/p1 = 1/2, 1/q0 + 1/q1 > 1/2 and max(q0, q1) ≥ 2,

respectively.

Proof. Everything follows by using (20). Note that for those cases where
the volume ratio is asymptotically equal 1, only the upper estimate is needed.

QED

We conclude with the volume ratio of injective tensor products. The only
case missing is when p0 = p1 = 2 and min(q0, q1) < 2 < max(q0, q1).

28 Example. Let 1 < p0, p1 <∞ and 1 ≤ q0, q1 ≤ ∞. Then

vr(`np0,q0 ⊗ε `np1,q1)

is asymptotically equivalent to

(i)
√
n

(ii) n1/p′0

(iii)
√
n (1 + logn)1/min(q1,2)−1/2

(iv)
√
n (1 + logn)1/min(q0,2)−1/2

(v)
√
n (1 + logn)1/max(q0,q1)−1/2

whenever

(i) p0, p1 < 2;
p0 < 2 < p1;
p0 = p1 = 2 and q0, q1 ≥ 2;

(ii) 2 < p0 ≤ p1;

(iii) p0 < p1 = 2;

(iv) 2 = p0 < p1;

(v) p0 = p1 = 2 and q0, q1 ≤ 2,

respectively.

Proof. Everything follows again from (20), except of the last case. Here,
we apply (23) and the corresponding dual result for the volume ratio of the
projective tensor product from above. QED
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9 The Hilbert space case

In the case that one of the spaces is `n2 with dominating dimension, our
techniques turn out to be quite efficient: norms of tensor product identities,
Banach–Mazur distances, approximation numbers, volume ratios and projection
constants, all can be estimated in an asymptotically optimal way regardless of
any geometric assumptions on the second space involved. Note that the volume
ratio estimate for the projective tensor product is a generalization of [30, 3.4]
where it was shown that vr(`n2 ⊗ε `np ) � 1 whenever 1 ≤ p ≤ 2.

29 Proposition. Let Fm be a normed space with enough symmetries in
O(m). Then for n ≥ m and 1 ≤ k ≤ nm the following asymptotically optimal
formulas hold, with absolute constants involved only:

(i) ‖`n2 ⊗ε Fm ↪→ `nm2 ‖ �
√
m

‖`m2 ↪→ Fm‖ ;

(ii) d(`n2 ⊗ε Fm, `nm2 ) � √m;

(iii) vr(`n2 ⊗ε Fm) � √m and vr(`n2 ⊗π Fm) � 1;

(iv) λ(`n2 ⊗π Fm) � √nm.

(v) ak(`
nm
2 ↪→ `n2 ⊗ε Fm) � max

((
nm− k + 1

n

)1/2

, 1

)
‖`m2 ↪→ Fm‖√

m
.

Proof. (i) follows from (6) and [33, 18.4] by the assumption m ≤ n:

‖ id ‖ ≤ π2(Fm ↪→ `m2 ) =

√
m

‖`m2 ↪→ Fm‖ ≤
√

2 ‖ id ‖.

Then (ii) is clear by (13), since ‖`nm2 ↪→ `n2 ⊗ε Fm‖‖`m2 ↪→ Fm‖. (iii)–(v) then
follow from Proposition 15, Proposition 16 and Proposition 11, respectively, by
taking I = {(n,m); n ≥ m}. QED

The Hilbert space `2 is unique (up to isomorphisms) with property (ii) (and
therefore with property (iii)). Indeed, let En have enough symmetries in O(n).
Then

‖En ⊗ε `m∞ ↪→ `nm2 ‖‖`m∞(En) ↪→ `m2 (`n2 )‖ =
√
m ‖En ↪→ `n2‖.

Thus, d(En ⊗ε `m∞, `nm2 ) =
√
md(En, `n2 ).
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10 Tensor products involving Schatten classes

In this section we consider tensor products where at least one part is the
n-th section of a unitary ideal. Naturally, we now have to consider complex
spaces; we leave the easy task to make the right adjustments to the definitions
and results from the previous sections to the reader.

The unitary ideal SE associated to a symmetric Banach sequence space E is
the Banach space of all compact operators T ∈ L(`2, `2) with singular numbers
(si(T )) in E endowed with the norm ‖T‖SE

:= ‖(si(T ))‖E ; with SnE we denote
L(`n2 , `

n
2 ) together with the norm ‖T‖Sn

E
:= ‖(si(T ))‖E , which is a space with

enough symmetries in O(n2). For E = `p (1 ≤ p <∞) one gets the well-known
Schatten-p-class Sp; for simplicity put S∞ := L(`2, `2). It is well-known that if
E is separable, then S ′E = SE× (see e. g. [29, 3.2]).

The first tool needed is an analogue of Proposition 5.

30 Lemma. Let E and F be symmetric Banach sequence spaces. Then

`(`mn
2

2 ↪→ SnE ⊗ε Fm)

is asymptotically equivalent to

λE(n)λF (m) max

(
1√
n
,

√
n

m

)
whenever E and F are 2-concave;

max(
√
nλE(n), λF (m)) whenever E is 2-convex and F has type 2;

λE(n)√
n

max(n, λF (m)) whenever E is 2-concave and F has type 2;

λF (m) max

(
1,

√
n

m
λE(n)

)
whenever E is 2-convex, F is 2-concave.

Proof. Everything follows in the usual way from (7) and the well-known
facts that ‖`n2

2 ↪→ SnE‖ = ‖`n2 ↪→ En‖ and `(`n
2

2 ↪→ SnE) � √nλE(n) (see, e.g.,
[33, 45.1]). QED

As we could see in the proof of Proposition 7, `-norms of identities into
projective tensor products are quite difficult to estimate from above. We only
prove the following formula needed for our purposes.

31 Lemma. Let 2 ≤ p, q <∞. Then

`(`n
4

2 ↪→ Snp ⊗π `n
2

q ) � n3/2+1/p+2/q. (29)

Proof. We first estimate T2(Snp ⊗π `n
2

q ). First observe that by [33, 32.7]
one has that γ∞(idSn

p′
) = λ(Snp′) � n since by [32] the space Sp′ has cotype 2.
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Thus, by [33, 16.1] we obtain

π1(idSn
p′

) =
n2

γ∞(idSn
p′

)
� n.

Now by [13, 2.8] and the above, we have

‖`n2

q (Snp ) ↪→ `n
2

q ⊗π Snp ‖ = ‖`n2

q′ ⊗ε Snp′ ↪→ `n
2

q′ (Snp′)‖ ≤ πq′(idSn
p′

) ≤ π1(idSn
p′

) ≺ n.

Thus, by factorization, [13, 11.12] and the fact that Sp has type 2 (see [32]),

T2(Snp ⊗π `n
2

q ) ≤ T2(`n
2

q (Snp )) ‖`n2

q (Snp ) ↪→ `n
2

q ⊗π Snp ‖ ≺ n.

Now we obtain, as in the proof of Proposition 7, by (6)

`(`n
4

2 ↪→ Snp ⊗π `n
2

q ) ≤ T2(Snp ⊗π `n
2

q )π2(Snp′ ⊗ε `n
2

q′ ↪→ `n
4

2 )

≺ n3

‖Snp ↪→ Sn2 ‖ ‖`n
2

q ↪→ `n
2

2 ‖
= n3/2+1/p+2/q.

The lower estimate follows from `(id) `((id′)−1) ≥ n4 and the preceding lemma.
QED

Now we are able to prove the following:

32 Proposition. Let 1 ≤ p, q ≤ 2. Then the following hold for m ≥ n2:

(i) ‖Snp ⊗ε `mq ↪→ `mn
2

2 ‖ �
{
n5/2−1/p−2/q 1/p+ 1/q ≤ 3/2

n1−1/q 1/p+ 1/q > 3/2;

(ii) d(Snp ⊗ε `mq , `mn
2

2 ) �
{
n2−2/qm1/q−1/2 1/p+ 1/q ≤ 3/2

n1/2+1/p−1/qm1/q−1/2 1/p+ 1/q > 3/2;

(iii) ak(`
n4

2 ↪→ Snp ⊗ε `n
2

q ) � max

(
1

‖ id−1 ‖ ,
(
n4 − k + 1

n4

)1/2

‖ id ‖
)

for all

1 ≤ k ≤ n4 whenever 1/p+ 1/q ≤ 3/2.

Proof. Let 1 ≤ p, q ≤ 2, and set 1/s = 3/2− 1/q, 1/r = 1− 1/q. Then by
[18] (see also Lemma 3) one has Πs,1 ⊂ Π2,q ⊂ Πr,2, thus, by [31], Π2,q(X,Y ) =
Πr,2(X,Y ) whenever X is a Banach space with cotype 2. Now [11, 7.2] and the
fact that Sp has cotype 2 (see [32]) imply that

‖Snp ⊗ε `mq ↪→ `mn
2

2 ‖ ≤ π2,q(Snp ↪→ Sn2 ) �
{
n5/2−1/p−2/q 1/p+ 1/q ≤ 3/2

n1−1/q 1/p+ 1/q > 3/2,
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which gives the upper estimates in (i).

For 1/p+ 1/q ≤ 3/2, the lower estimate for all m ≥ n2 follows from the case
m = n2, and this itself from ‖ id ‖ ≥ n2/`(id−1) and Lemma 30. In the case
1/p + 1/q > 3/2 the lower estimate is easy, since Snp ⊗ε `n

2

q contains `n2 ⊗ε `nq ,
and use Proposition 29. (ii) now follows from (13) together with

‖`mn2

2 ↪→ Snp ⊗ε `mq ‖ = ‖Sn2 ↪→ Snp ‖ ‖`m2 ↪→ `mq ‖ = n1/p−1/2m1/q−1/2.

For m = n2, statement (iii) follows from (ii) by Proposition 11 (ii). QED

33 Corollary. Let 2 ≤ p, q <∞. Then the following hold:

(i) vr(Snp ⊗π `n
2

q ) � nmax(1/2−1/p−1/q,0);

(ii) λ(Snp ⊗π `n
2

q ) � n2 whenever 1/p+ 1/q ≥ 1/2.

Proof. (i) follows from (20) by the lemmas and the proposition above, and
then (ii) by Proposition 16. QED

For p, q ≥ 2, the above proposition has the following, more satisfying coun-
terpart:

34 Proposition. Let E and F be symmetric Banach sequence spaces such
that E is 2-convex and F has type 2. Then the following hold:

(i) ‖SnE ⊗ε Fm ↪→ `mn
2

2 ‖ � n
√
m

max(
√
nλE(n), λF (m))

;

(ii) ak(`
mn2

2 ↪→ SnE ⊗ε Fm) � max

(
1

‖ id−1 ‖ ,
(
mn2 − k + 1

mn2

)1/2

‖ id ‖
)

for all 1 ≤ k ≤ mn2.

Proof. (i) The lower estimates all follow from Lemma 30 and the estimate
‖ id ‖ ≥ n√m/`(id−1). The upper ones can be obtained by factorization through
the spaces `n

2

∞ ⊗ε Fm and SnE ⊗ε `m∞, respectively; note that ‖SnE ↪→ `n
2

∞‖ ≤ 1
(see, e.g., [33, p. 336]). (ii) follows as in the proof of Proposition 11 (iii); to see
this, just observe that here, `(id) � n√m/‖ id−1 ‖. QED

35 Corollary. Let E and F be symmetric Banach sequence spaces such
that E and F are 2-concave and F is of non-trivial convexity. Then it is
vr(SnE ⊗π Fm) � 1 and λ(SnE ⊗π Fm) � n√m.

Proof. This follows from the above together with (20), Lemma 30 and
Proposition 16. QED
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For spaces E and F lying on different sides of `2, things seem to be com-
plicated. However, some partial answers for m considerably smaller than n2

can be found in the upcoming more general result, which somewhat generalises
Proposition 29. We conjecture that the assumption on E in the statement is
superfluous when considering m ≤ n only. Note that a similar result holds in
the case ‖En ↪→ `n2‖ �

√
n/λE(n) when substituting SnE by En and considering

m ≤ λE(n)2; we leave this task to the interested reader.

36 Proposition. Let E be a symmetric Banach sequence space and m such
that either m ≤ n and E ↪→ `2, or m ≤ nλE(n)2 and ‖En ↪→ `n2‖ �

√
n/λE(n).

Then for any normed space Fm with enough symmetries in O(m) the following
hold:

(i) ‖SnE ⊗ε Fm ↪→ `mn
2

2 ‖ � √m ‖E
n ↪→ `n2‖

‖`m2 ↪→ Fm‖ ;

(ii) d(SnE ⊗ε Fm, `mn
2

2 ) � √md(En, `n2 );

(iii) ak(`
mn2

2 ↪→ SnE ⊗ε Fm) � max

(
1

‖ id−1 ‖ ,
(
mn2 − k + 1

mn2

)1/2

‖ id ‖
)

for all 1 ≤ k ≤ mn2 whenever ‖En ↪→ `n2‖ �
√
n/λE(n).

In particular, ‖Snp ⊗ε`nq ↪→ `n
3

2 ‖ � n3/2−min(1/p,1/2)−max(1/q,1/2) for 1 ≤ p, q ≤ ∞.

Proof. In (i), the upper estimate follows by factorization through Sn2 ⊗εFm
and Proposition 29. The lower one in the case E ↪→ `2 is clear by Proposition 29
and the assumption m ≤ n, since SnE ⊗ε Fm contains `n2 ⊗ε Fm. Furthermore,
by (7) and the assumption m ≤ nλE(n)2,

`(`mn
2

2 ↪→ SnE ⊗ε Fm) � √nλE(n) ‖`m2 ↪→ Fm‖, (30)

which by ‖ id ‖ ≥ n
√
m/`(id−1) gives the lower estimate in the case when

‖En ↪→ `n2‖ �
√
n/λE(n). (ii) then follows as usual by (13), and (iii) by (30)

as in the proof of Proposition 11. QED

37 Corollary. Let E be a symmetric Banach sequence space such that it
holds ‖`n2 ↪→ En‖ � λE(n)/

√
n. Then for all m ≤ nλE(n)2 and any normed

space Fm with enough symmetries in O(m), it is vr(SnE ⊗π Fm) � 1 and
λ(SnE ⊗π Fm) � n√m.

Proof. In the proof of the proposition above, we have seen that the lower
asymptotic estimate `(id−1) � n√m/‖ id ‖ holds. This together with Proposi-
tion 15 and Proposition 16 gives the claim. QED
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Note that for E = `p, 1 ≤ p < 2, the upper bound n for m in the proposition
above is sharp, since for q such that 1/p+1/q ≥ 3/2, we have proved altogether
that

‖Snp ⊗ε `mq ↪→ `mn
2

2 ‖ � n1−1/q for all m ≥ n.
Furthermore, the proof of the following corollary fills a gap in the proof of the
same result stated in [11, 7.3] and shows that for E = `p, 2 ≤ p ≤ ∞, the upper
bound n1+2/p for m in the proposition above is also sharp.

38 Corollary. Let 1 ≤ p, q ≤ ∞ and 2 ≤ r ≤ ∞. Then

πr,2(Snp ↪→ Snq ) � n1/r πr,2(`np ↪→ `nq ).

Proof. The proof of [11, 7.3] only lacks the appropriate lower estimate in
the case 2 ≤ p ≤ ∞, 2 ≤ r <∞ and 1/q ≥ 1/r + 1/p− 2/pr. We have to show
that in this case

πr,2(Snp ↪→ Snq ) � n1/r−1/p+1/q+2/pr.

Using the proposition above and factorization, we obtain for m ≤ n1+2/p

πr,2(Snp ↪→ Snq ) ≥ ‖Snp ⊗ε `m2 ↪→ `mr (Snq )‖

≥
‖Snp ⊗ε `m2 ↪→ `m2 (Sn2 )‖
n1/2−1/qm1/2−1/r

� n1/q−1/pm1/r.

Taking m = [n1+2/p], this gives the claim. If q ≤ 2, we have by [13, 12.6], the
fact that `2(Sq) has cotype 2 (this follows from [32] together with [13, 11.12])
and (6)

‖Snp ⊗ε `m2 ↪→ `m2 (Snq )‖ ≥
`(`m2 (Sn2 ) ↪→ `m2 (Snq ))

`(`m2 (Sn2 ) ↪→ Snp ⊗ε `m2 )
�
π2(`m2 (Sn2 ) ↪→ `m2 (Snq ))

`(`m2 (Sn2 ) ↪→ Snp ⊗ε `m2 )

=
n1/2+1/q√m
n1/2+1/p

= n1/q−1/p√m.

Hence,

πr,2(Snp ↪→ Snq ) � n1/q−1/p√m
m1/2−1/r

= n1/q−1/pm1/r.

Now the claim follows as above by taking m = [n1+2/p]. QED

11 Tensor products of Schatten classes

In this concluding section, we deal with tensor products of finite-dimensional
unitary ideals. We first consider the situation when the underlying sequence
spaces both are 2-convex.
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39 Proposition. Let E and F be 2-convex symmetric Banach sequence
spaces. Then the following hold:

(i) ‖SnE ⊗ε SmF ↪→ Snm2 ‖ �
nm

max(
√
nλE(n),

√
mλF (m))

;

(ii) ak(Snm2 ↪→ SnE ⊗ε SmF ) � max

(
1

‖ id−1 ‖ ,
(
n2m2 − k + 1

n2m2

)1/2

‖ id ‖
)

for

all 1 ≤ k ≤ n2m2.

Proof. Using once more (7), it is easy to see that for E and F as above,

`(Snm2 ↪→ SnE ⊗ε SmF ) � max(
√
nλE(n),

√
mλF (m)). (31)

Thus, ‖ id ‖ ≥ nm/`(id−1) yields the lower estimates in (i), The upper ones
follow by factorization through `n

2

∞ ⊗ε SmF and SnE ⊗ε `m
2

∞ , respectively. (ii) then
follows as in the proof of Proposition 11 (iii), since `(id) � nm/‖ id−1 ‖. QED

40 Corollary. Let E, F be 2-concave symmetric Banach sequence spaces.
Then vr(SnE ⊗π SmF ) � 1 and λ(SnE ⊗π SmF ) � nm.

Proof. This follows from the above proposition, and (20), (31) and Propo-
sition 16. QED

The remaining results all deal with Snp ⊗ε Snq only. Note that with regard to
the proof of the forthcoming lemma and the remarks in [11], it is far from obvious
what may happen for arbitrary finite-dimensional unitary ideals (in contrast to
the sequence space case). The following is a non-commutative analogue of the
fact (see, e.g., [17, p. 103], or [10, 4.2] for a more general result) that for the
same combination of indices as stated below, the map `p⊗ε `q ↪→ Sr is bounded.

41 Lemma. Let 1 ≤ p, q ≤ 2 and 1 ≤ r ≤ ∞ such that 1/r = 1/p+1/q−1.
Then

‖Snp ⊗ε Snq ↪→ Sn
2

r ‖ � n1/r.

Proof. Consider first the case p = 2. Let T : Sn2 → Sn2 , and denote by inq2
the inclusion map Snq ↪→ Sn2 . Set T0 : Sn2 ↪→ Snq , T0x := Tx for x ∈ Sn2 . Then
by [13, 10.3] and [11, 7.2]

‖T‖Sn2
r

= πr,2(T ) = πr,2(inq2 T0) ≤ Cq n1/r ‖T0‖,

where Cq > 0 does not depend on n and T . Now let p be arbitrary. By Pisier’s
Factorization Theorem ( [24, 4.1] or [5, 31.4]) and the fact that Sp and Sq have
cotype 2 (see again [32]), there exists Cp,q not depending on n such that for
any operator T0 : Snp′ → Snq there exist R0 : Snp′ → Sn2 and S0 : Sn2 → Snq
such that T0 = S0R0 and ‖S0‖ ‖R0‖ ≤ Cp,q ‖T0‖. By the above together with



Norms of tensor product identities 163

duality, S := inq2S0 and R := R0i
n
2p′ satisfy ‖S‖Sn2

s0

≤ Cq n
1/q−1/2 ‖S0‖ and

‖R‖Sn2
r0

≤ Cp n
1/p−1/2 ‖R0‖, where 1/s0 = 1/q − 1/2 and 1/r0 = 1/p − 1/2.

Hence, by [13, 6.3] for T := inq2 T0 i
n
2p′

‖T‖Sn2
r

= ‖SR‖Sn2
r
≤ ‖S‖Sn2

s0

‖R‖Sn2
r0

≤ CpCq Cpq n1/p+1/q−1 ‖T0‖,

which gives the upper estimate. The lower one is clear by considering the identity
map id : Sn2 → Sn2 . QED

Now we are able to formulate a non-commutative analogue of Schütt’s result
mentioned at the beginning of Section 3:

42 Proposition. Let 1 ≤ p, q ≤ ∞. Then the following hold:

(i) ‖Snp ⊗ε Snq ↪→ Sn
2

2 ‖ �
√
n ‖`np ⊗ε `nq ↪→ `n

2

2 ‖;

(ii) d(Snp ⊗ε Snq ,Sn
2

2 ) � √nd(`np ⊗ε `nq , `n
2

2 );

(iii) ak(Sn
2

2 ↪→ Snp ⊗ε Snq ) � max

(
1

‖ id−1 ‖ ,
(
n4 − k + 1

n4

)1/2

‖ id ‖
)

for all

1 ≤ k ≤ n4 whenever 1 ≤ p, q ≤ 2 and 1/p+ 1/q ≤ 3/2, or 2 ≤ p, q ≤ ∞.

Proof. (i) We have to show the following:

‖Snp ⊗ε Snq ↪→ Sn
2

2 ‖ �





n3/2−1/min(p,q) 2 ≤ p, q ≤ ∞
n1−max(1/p+1/q−1,0) 1 ≤ p ≤ 2 ≤ q ≤ ∞
n2−1/p−1/q 1 ≤ p, q ≤ 2, 1/p+ 1/q ≤ 3/2√
n 1 ≤ p, q ≤ 2, 1/p+ 1/q ≥ 3/2.

The first case is contained within a more general setting in the previous proposi-
tion. For the remaining cases, observe that by the above lemma, for 1 ≤ p, q ≤ 2
such that 1/p+ 1/q = 3/2 it is ‖Snp ⊗ε Snq ↪→ Sn2

2 ‖ �
√
n. The rest of the

upper estimates in (i) now follow by factorization from this special case and
from factorization through Snp ⊗ε `n

2

∞ , respectively. The lower estimates are true
by ‖ id ‖ ≥ n/‖Snp′ ↪→ Snq ‖ and considering the general lower bound

√
n, since

Snp ⊗ε Snq contains `n2 ⊗ε `n2 . (ii) follows as usual, and for (iii) observe that in

those cases, ‖ id ‖ ≥ n2/`(id−1), and proceed as usual. QED

43 Corollary. Let 2 ≤ p, q ≤ ∞ such that 1/p + 1/q ≥ 1/2. Then it is
vr(Snp ⊗π Snq ) � 1 and λ(Snp ⊗π Snq ) � n2.

For p, q arbitrary, the computation of the volume ratios of projective tensor
products of Schatten classes turns out to be more complicated due to a lack
of knowledge on `-norms. We believe that the logarithmic factor in the second
part of the upcoming statement is superfluous.
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44 Corollary. Let 1 ≤ p ≤ q ≤ ∞. Then

vr(Snp ⊗π Snq ) � vr(`np ⊗π `nq )

whenever 1/p+ 1/q ≥ 1/2 and q 6=∞. If 1/p+ 1/q < 1/2 or q =∞, then

vr(`np ⊗π `nq )/(1 + logn) ≺ vr(Snp ⊗π Snq ) ≺ vr(`np ⊗π `nq ).

Proof. The upper estimates all follow from Proposition 42 by (7) and (20),
and the lower ones with the additional logarithmic factor by taking into account
that `(id) `((id−1)′) ≤ C (1 + log n)n4 for some universal constant C > 0 (see,
e.g., [3, Lemma 2]). Taking into account the corollaries so far from this section,
we are left with giving the appropriate lower estimate in the case 1 ≤ p ≤ 2 ≤
q <∞. First, by factorization, [13, 11.12] and [32],

T2(Snp ⊗π Snq ) ≤ T2(`n
2

2 (Snq )) ‖`n2

2 (Snq ) ↪→ `n
2

1 (Snq )‖ ≺ n.

Hence, as in the proof of Proposition 7, by (6)

`(`n
4

2 ↪→ Snp ⊗π Snq ) ≤ T2(Snp ⊗π Snq )π2(Snp′ ⊗ε Snq′ ↪→ `n
4

2 ) ≺ n5/2+1/q.

The claim now follows again by applying (20) and the proposition above. QED
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