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Introduction

The purpose of this paper is to construct the counter examples mentioned
in the abstract. Unexplained notation about locally convex spaces can be seen
in [8] and [10].

Let X, Y be locally convex spaces, L ⊂ X a linear subspace, q : X −→ X/L
the corresponding quotient map and let j : Y −→ X/L be a linear continuous
map. Then the space Z := {(x, y) ∈ X × Y : q(x) = j(y)} provided with the
relative topology induced by the product X × Y together with the restricted
projections pX : Z −→ X and pY : Z −→ Y (the latter of which is a quotient
map) is called the corresponding pullback in the category of locally convex
spaces LCS. In fact, Z has the following universal property. Whenever a triple
(E, f , g) consisting of a locally convex space E and linear continuous maps
f : E −→ X, g : E −→ Y such that q ◦ f = j ◦ g, then there is a linear
continuous map h : E −→ Z satisfying f = pX ◦ h and g = pY ◦ h.

If j is injective, then Z is (via pX) topologically isomorphic to the subspace
q−1(j(Y )) provided with the initial topology w.r. to the inclusion q−1(j(Y )) ↪→
X and the restricted quotient map q|q−1(j(Y )) : q−1(j(Y )) −→ Y . In this
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shape, the pullback had several applications to three-space-problems (providing
counter examples, cf. [2], [3], [4] and [6]).

Trivially, Z inherits from X and Y all properties that are stable under
initial topologies in LCS. Concerning other properties, the behaviour of Z will
be rather bad in general.

In fact, let L be an arbitrary Hausdorff locally convex space, X a product
of Banach spaces containing L as a topological subspace and let Y be an arbi-
trary subspace of X/L provided with the strongest locally convex topology; let
q : X −→ X/L denote the quotient map. Then Z := q−1(Y ), endowed with the
initial topology mentioned above, contains the given locally convex space L as
a topologically complemented subspace. Thus Z can be obtained as bad as pos-
sible, whereas X and Y are nice spaces. In the following construction, the map
j : Y −→ X/L will be even bijective. By the example of Köthe and Grothendieck
(see [9]) of a Montel echelon space of type 1, having `1 as a quotient, the topo-
logical direct sum X :=

⊕
N

`∞ contains a closed linear subspace L which is not a

DF-space, hence not countably quasibarrelled. Let Y := X/L be endowed with
the strongest locally convex topology. Again the pullback Z := q−1(Y ) contains
L as a complemented subspace. Since in the above two examples, the restricted
quotient map q|Z : Z −→ Y leads into a space with the strongest locally convex
topology, it will remain an open map, if Z is given its associated bornological
topology. On the other hand, a continuous and open linear map f : X −→ Y will
not remain open in general as a map f : Xbor −→ Y bor between the associated
bornological spaces. In order to provide an example, we recall that every locally
convex space E is a quotient of a suitable complete locally convex space F , in
which all bounded sets have finite dimensional linear span (see [5]). Putting E
to be any bornological space, which does not carry the strongest locally convex
topology, we are done.

Returning to the pullback, W. Rump asked, whether there is a pullback in
the category of bornological spaces, which amounts to the problem, whether
in the above setting with X and Y bornological, the restricted projection pY :
Z −→ Y , which is easily shown to be open, remains open as a map pY : Zbor −→
Y , where Zbor denotes the associated bornological space.

1 Remark. A partial positive result can be obtained easily:

Let X, Y be bornological spaces, L ⊂ X a linear subspace, q : X −→ X/L
the quotient map, j : Y ↪→ X/L linear and continuous, and let Z, pX , pY be as
before. If for each bounded set A in Y there is a bounded set B in X such that
q(B) ⊃ j(A), then pY : Zbor −→ Y is open.

In fact, given A ⊂ Y bounded choose B ⊂ X bounded such that q(B) ⊃
j(A); the set C := (B×A)∩Z is bounded in Z and for all a ∈ A there is b ∈ B
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with j(a) = q(b) which implies (b, a) ∈ C. Thus pY (C) ⊃ A, and we are done.

On the other hand, the following example shows that the answer to Rump’s
question is negative in general.

2 Example. Let E, F be Banach spaces with unit balls BE and BF , re-
spectively, and continuous inclusion F ↪→ E and such that BF ⊂ BE and

C := F ∩ BE
F is not absorbed by BF . Let X :=

⊕
N

E × c0(F ), let G :=
⊕
N

E + c0(F ) = indn→Gn, where Gn := En−1 × c0((F )k≥n), be the corre-

sponding LB-space of Moscatelli type (which is not regular in this case, see [1]),
and let q : X −→ G, ((xn)n, (yn)n) 7→ (xn + yn)n denote the natural quotient
map. L :=

{(
1
ny
)
n

: y ∈ F
}

is a linear subspace of G1 = c0(F ). We first show
that for each m ∈ N, Gm and G1 induce the same topology on L. In fact, let
(y(k))k be a sequence in F such that

((
1
ny

(k)
)
n

)
k

converges to (0)n in Gm; then(
1
my

(k)
)
k

converges to 0 in F , hence (y(k))k converges to 0 in F , from which one

easily obtains that
((

1
ny

(k)
)
n

)
k

converges to (0)n in G1.

Next we define A :=
{(

1
ny
)
n

: y ∈ C
}
⊂ L, and show that A is a bounded

subset of G. In fact, BN
F ∩ G is clearly bounded in G, and it suffices to prove

that A ⊂ BN
F ∩G

G
. For that purpose let ε > 0 and (εn)n ∈ (0,∞)N be given;

moreover, let y ∈ C. Choose nε ∈ N such that 1
ny ∈ εBF for all n ≥ nε;

furthermore, for all n < nε,
1
ny ∈ 1

nC = 1
nBF

E
⊂ 1

nBF + εnBE . Thus
(

1
ny
)
n
∈

G ∩BN
F + εBN

F +
⊕
N

εnBE .

Obviously, A is absorbing in L; consequently the Minkowski functional pA
is a norm on L, and the inclusion j : Y := (L, pA) ↪→ G is continuous.

Let, as above, Z := {(x, y) ∈ X × Y : q(x) = j(y)} and let pY : Z −→ Y
denote the restricted projection. We claim that pY : Zbor −→ Y is not open.
For that purpose we want to show that there is a bornivorous absolutely convex
set U in Z such that pY (U) does not absorb A.

Let us assume that the contrary is true. Let (εn)n ∈ (0, ∞)N be arbitrary.
Then

U :=
∑

n∈N

εn
2






⊕

k<n

BE ×
∏

k≥n
{0}


×

(
BN
F ∩ c0(F )

)
×A


 ∩ Z




is clearly bornivorous in Z. By assumption, A is absorbed by

pY (U) ⊂
∑

n∈N

εn
2






⊕

k<n

BE ×
∏

k≥n
{0}


+

(
BN
F ∩ c0(F )

)

 ∩A


 ⊂



66 J. Bonet, S. Dierolf

⊂
∑

n∈N

εn




⊕

k<n

BE ×
∏

k≥n
BF


 ∩ L


 .

This latter set is a typical O-nbhd in indn→(L, Sn ∩ L) where Sn denotes the
topology of Gn. Thus we obtain that A is bounded in indn→(L, Sn ∩ L). Since
Sn ∩ L = S1 ∩ L for all n ∈ N, A is bounded in (G1, S1) = c0(F ). Therefore
pr1(A) = C is a bounded subset of F , a contradiction. (L is in fact a subspace
of G = indn−→Gn which is not a limit subspace).

A suitable modification of the construction in the above example yields a
negative answer to a pullback in the category of ultrabornological spaces.

3 Example. By [7] there exist Banach spaces containing dense ultraborno-
logical hyperplanes H. Comparing H with a closed hyperplane in the same
Banach space, one obtains a Banach space (E, || · ||) admitting a strictly finer
ultrabornological normed topology S. Let us put F := (E, S). Then the identity
map id : (E, S) −→ (E, || · ||) is continuous, and we may clearly assume that
the unit ball BF in F = (E, S) is dense in the unit ball BE of (E, || · ||). Clearly,
BE is not absorbed by BF . Repeating the construction of Example 1 verbatim
(we never utilized the completeness of F in Example 1), we obtain:

There is a bornivorous absolutely convex set U in

Z ⊂
(⊕

N

(E, || · ||)× c0((E,S))

)
× (L, pA)

such that pY (U) does not absorb the set A =
{(

1
ny
)
n

: y ∈ C := BE
}

. As A

is closed in the unit ball of the Banach space {x = (xn) ∈ EN : |||x||| :=
sup
n
|| 1nxn|| < ∞} (diagonal transform of `∞(E, || · ||)), A is a Banach disc and

Y = (L, pA) a Banach space. Consequently, pY : Z −→ Y is not even open w.
r. to the associated bornological topology on Z.

It remains to prove that X =
⊕
N

(E, || · ||)× c0(E, S) is ultrabornological, or

- equivalently - that c0(E, S) is ultrabornological.

Since (E, S) is ultrabornological, the proof of 1.8.9 in [10] yields that in
c0(E, S) every absolutely convex set that absorbs all bounded Banach discs is
bornivorous, hence a 0-nbhd in the normed space c0(E, S).
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