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Abstract. Here we show how, in the general context of locally convex spaces, it is possible
to get an n-tensor topology (on spaces of n-tensor products) from an n-tensor topology on
spaces of symmetric n-tensors products. Indeed, given an n-tensor topology on the spaces of
symmetric n-tensor products we construct an n-tensor topology on the spaces of all n-tensor
products whose restriction to the symmetric ones gives the original topology. Moreover, we
prove that when one starts with an n-tensor topology, restricts it to symmetric tensors and
then extends it, the original topology is obtained when it is symmetric, and we also obtain
some results on complementation with applications to spaces of polynomials. Part of these
results generalize to the context of locally convex spaces some Floret’s results in [17] and [18].
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Introduction

From the observation by Ryan in [22] that the space of continuous homoge-
neous polynomials on a locally convex space is the dual of the space of symmetric
tensor products endowed with the projective topology, the study of spaces of
symmetric tensors has became of great interest and several results related with
them have recently appeared in papers and books, e.g. [2–4,6,8,11,14,17,18].

Natural topologies on spaces of symmetric tensor products give rise to nat-
ural spaces of polynomials [14]. The standard topologies on spaces of tensor
products induce natural topologies on spaces of symmetric tensor products and
the main goal of this paper is to prove that the natural topologies on spaces
of symmetric tensor products come from natural topologies on spaces of tensor
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products. Moreover we obtain some applications of this. This has been done
by K. Floret [17,18] in the context of normed spaces and we use his ideas to
generalize his results to the context of locally convex spaces.

1 Notations and Definitions

Let us fix some notations: E;E1, . . . , En will be locally convex spaces over
the same field K = R or C, ⊗nj=1Ej will denote the tensor product E1⊗· · ·⊗En
and ⊗n the canonical mapping Πn

j=1Ej → ⊗nj=1Ej . When E1 = · · · = En = E
we use the notation ⊗nE and for x ∈ E, ⊗nx := x⊗ · · · ⊗ x.
⊗nsE will represent the space of symmetric n-tensor products on E. Its el-

ements are finite sums
∑m

l=1 δl ⊗n xl, xl ∈ E and δl = ±1, l = 1, . . . ,m. If
K = C, the δl can be assumed equal to 1. Given x1, . . . , xn ∈ E, we denote by
x1 ∨ · · · ∨ xn the symmetrization of the tensor product x1 ⊗ · · · ⊗ xn; that is,

x1 ∨ · · · ∨ xn =
1

n!

∑

η∈Sn

xη(1) ⊗ · · · ⊗ xη(n).

(Sn denotes the group of permutations of {1, . . . , n}). As proved in [17,22],

x1 ∨ · · · ∨ xn =
1

2nn!

∑

εj=±1

ε1 · · · εn ⊗n (ε1x1 + · · ·+ εnxn).

Given a locally convex space E we denote by inE the inclusion ⊗nsE ↪→ ⊗nE
and by σnE the linearization of the n-linear mapping

⊗ns : (x1, . . . , xn) ∈ En 7→ x1 ∨ · · · ∨ xn ∈ ⊗nsE.

Given n locally convex spaces E1, . . . , En we denote by JE1,...,En the compo-
sition of the mapping I1⊗· · ·⊗ In, where Ik denotes the natural inclusion of Ek

into Πn
j=1Ej , with

√
n!σnΠn

j=1Ej
. It is defined from ⊗nj=1Ej into ⊗ns

(
Πn
j=1Ej

)
.

We note that, for every xj ∈ Ej , j = 1, . . . , n,

JE1,...,En(x1 ⊗ · · · ⊗ xn) =
√
n!(x1, 0, . . . , 0) ∨ · · · ∨ (0, . . . , 0, xn).

Finally QE1,...,En will denote the mapping

⊗ns
(
Πn
j=1Ej

) in
Πn

j=1
Ej−−−−−→ ⊗n

(
Πn
j=1Ej

) √
n!P1⊗···⊗Pn−−−−−−−−−→ ⊗nj=1Ej

being Pk, k = 1, . . . , n, the projections Πn
j=1Ej → Ek. For z = ⊗n(x1, . . . , xn) ∈

⊗ns
(

Πn
j=1Ej

)
,

QE1,...,En(z) =
√
n!x1 ⊗ · · · ⊗ xn.
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Note that QE1,...,En ◦ JE1,...,En is the identity on ⊗nj=1Ej .
These notations have been considered in [17,18], the introduction of JE1,...,En

is motivated by [7, Lemma 8].

In [3] the following definition is given, it is a generalization of the concept
of tensor norm, see [10,15,16,23].

1 Definition. Let n be a natural number. A tensor topology of order n
(or n-tensor topology) is a map which assigns to each n locally convex spaces
E1, . . . , En a topology τ on ⊗nj=1Ej such that

(1) The canonical mapping ⊗n : Πn
j=1Ej → (⊗nj=1Ej , τ) is separately contin-

uous.

(2) If Dj , j = 1, . . . , n, are equicontinuous subsets of E ′
j , then

{ϕ1 ⊗ · · · ⊗ ϕn : ϕj ∈ Dj} ⊂
(
⊗nj=1Ej

)∗

is τ−equicontinuous.

(3) The mapping property: If Ej and Fj , j = 1, . . . , n, are locally convex
spaces and Tj ∈ L(Ej , Fj), then

⊗nj=1Tj : ⊗nj=1Ej → ⊗nj=1Fj

is continuous with respect to the corresponding τ topologies.

Later on we will need to introduce a subscript to enhance the dependence
on n.

Examples. The injective topology ε of uniform convergence on the sets of
the form {ϕ1 ⊗ · · · ⊗ϕn : ϕj ∈ Dj}, with Dj ⊂ E′

j equicontinuous, j = 1, . . . , n,
and the inductive topology i, which is the finest locally convex topology on
⊗nj=1Ej that makes the canonical mapping ⊗n : Πn

j=1Ej → ⊗nj=1Ej separately
continuous, are tensor topologies of order n. The projective topology π, which is
the finest locally convex topology on ⊗nj=1Ej that makes the canonical mapping
⊗n continuous, is also an n-tensor topology. See [16] or [21] for n = 2. In [3]
other examples of n-tensor topologies are given.

Conditions (1) and (2) are equivalent to say that ε ≤ τ ≤ i.
We can adapt for locally convex spaces the above definition to the symmetric

case, generalizing Floret’s definition for normed spaces:

2 Definition. Let n be a natural number. An s-tensor topology of order n
is a map which assigns to each locally convex space E a topology τs on ⊗nsE
such that
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(1) The canonical mapping ⊗ns : En → (⊗nsE, τs) is separately continuous.

(2) If D is an equicontinuous subset of E ′, then

⊗nsD := {⊗nϕ : ϕ ∈ D} ⊂ (⊗nsE)∗

is τs−equicontinuous.

(3) The symmetric mapping property: If E and F are locally convex spaces
and T ∈ L(E,F ), then,

⊗nT : ⊗nsE → ⊗nsF

is continuous with respect to the corresponding τs topologies.

Examples. The topology εs of uniform convergence on the sets of the form
⊗nsD, D an equicontinuous subset of E ′ and is, here defined as the finest locally
convex topology on ⊗nsE that makes the canonical mapping ⊗ns : En → ⊗nsE
separately continuous, are s-tensor topologies of order n. The same happens for
the topology πs (see [14,18]), defined as the finest locally convex topology on
⊗nsE that makes ⊗ns continuous. The restriction of any n-tensor topology to
symmetric tensors gives an s-tensor topology of order n.

Conditions (1) and (2) are equivalent to say that εs ≤ τs ≤ is.
3 Definition. An n-tensor topology τ is said to be symmetric if for every

locally convex spaces E1, . . . , En and every η ∈ Sn the mapping

m∑

l=1

x1,l ⊗ · · · ⊗ xn,l ∈ ⊗nj=1Ej 7→
m∑

l=1

xη(1),l ⊗ · · · ⊗ xη(n),l ∈ ⊗nj=1Eη(j)

is continuous with respect to the corresponding τ topologies. The n-tensor
topologies ε, π and i are symmetric.

2 The results

To prove the main result (Theorem 5 below) we will use the following lemma.

4 Lemma. For the n-tensor topologies ε and i we have the following equal-
ities:

ε|⊗n
sE = εs, i|⊗n

sE = is

for every locally convex space E.
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Proof. By the definitions of εs and ε it follows straightforward that εs ≤
ε|⊗n

sE on ⊗nsE for every locally convex space E. On the other hand, given a
locally convex space E let ε⊗nD be a continuous seminorm on (⊗nE, ε), where
we assume D is a balanced, convex and equicontinuous subset of E ′,

ε⊗nD(z) = sup{|(ϕ1 ⊗ · · · ⊗ ϕn)(z)| : ϕ1, . . . , ϕn ∈ D}, z ∈ ⊗nE.

When ε⊗nD is applied to a symmetric tensor z =
∑m

l=1 δl ⊗n xl, we get

ε⊗nD(z) = sup

{∣∣∣∣∣
m∑

l=1

δlϕ1(xl) · · ·ϕn(xl)

∣∣∣∣∣ : ϕ1, . . . , ϕn ∈ D
}

(∗)
=

sup





∣∣∣∣∣∣

m∑

l=1

δl
1

2nn!

∑

εj=±1

ε1 · · · εn [(ε1ϕ1 + · · ·+ εnϕn)(xl)]
n

∣∣∣∣∣∣
: ϕ1, . . . , ϕn ∈ D



 =

sup





∣∣∣∣∣∣
1

2nn!

∑

εj=±1

ε1 · · · εnnn
m∑

l=1

δl [ψ(xl)]
n

∣∣∣∣∣∣
: ψ ∈ D



 ≤

sup

{∣∣∣∣∣
nn

n!

m∑

l=1

δl [ψ(xl)]
n

∣∣∣∣∣ : ψ ∈ D
}

=
nn

n!
ε⊗n

sD(z).

(*) is a consequence of the polarization formula that can be seen, for instance,
in [14, Section 1.1].

We now prove that for every locally convex space E, i|⊗n
sE is the finest

locally convex topology on ⊗nsE that makes separately continuous the mapping
⊗ns . Let us fix n− 1 elements, x1, . . . , xn−1 in E. The mapping

x 7→ x1 ∨ · · · ∨ xn−1 ∨ x

is the sum of applications of the following type:

x 7→ 1

n!
y1 ⊗ · · · ⊗ yn,

where, for some j = 1, . . . , n, yj = x, and the others are x1, . . . , xn. These
mappings are continuous from E into (⊗nE, i) because ⊗n : En → (⊗nE, i) is
separately continuous. Let T be a locally convex topology on ⊗nsE such that
the above mapping is continuous. Then, for every x∗ := (x1, . . . , xn−1) ∈ En−1

and for every convex balanced open neighborhood W of 0 in (⊗nsE, T ) there is
a convex and balanced neighborhood Vx∗ of 0 in E such that

{x1} ∨ · · · ∨ {xn−1} ∨ Vx∗ ⊂W.
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Then, since

Γ

[⋃

x∗

({x1} ∨ · · · ∨ {xn−1} ∨ Vx∗)

]
=

Γ

[⋃

x∗

[
1

n!
(Vx∗ ⊗ {x1} ⊗ · · · ⊗ {xn−1}+ · · ·+ {x1} ⊗ · · · ⊗ {xn−1} ⊗ Vx∗)

]]

∩ ⊗nsE,

(Γ denotes convex and balanced hull) is contained in W , we have that W con-
tains a neighborhood of 0 for i|⊗n

sE and then i|⊗n
sE is finer than T . QED

5 Theorem. Let τs be an s-tensor topology of order n, then there exists a
tensor topology τ̃s of order n, which is symmetric, such that τ̃s|⊗n

sE = τs on
⊗nsE for every locally convex space E.

Proof. For every n locally convex spaces E1,. . . , En and every τs continu-

ous seminorm α on ⊗ns
(

Πn
j=1Ej

)
let

α̃(z ) = α (JE1,...,En(z)) ; z ∈ ⊗nj=1Ej .

Then α̃ is a seminorm on ⊗nj=1Ej and {α̃ : α continuous seminorm on

(⊗ns
(

Πn
j=1Ej

)
, τs)} defines an n-tensor topology τ̃s on ⊗nj=1Ej with the prop-

erties mentioned in the theorem. Let us prove conditions (1), (2) and (3) in
Definition 1:

(1): We decompose the identity
(
⊗nj=1Ej , i

)
→ (⊗nj=1Ej , τ̃s) in the following

mappings:

(
⊗nj=1Ej , i

) JE1,...,En−−−−−−→
(
⊗ns
(
Πn
j=1Ej

)
, is
) Id−→

(
⊗ns
(
Πn
j=1Ej

)
, τs
) QE1,...,En−−−−−−→

(
⊗nj=1Ej , τ̃s

)
.

The first is continuous because of the mapping property, the symmetry of i
and the Lemma; the second, which is the identity, is continuous because τs is an
s-tensor topology. The continuity of the third follows in this way: For every con-

tinuous seminorm α on
(
⊗ns
(

Πn
j=1Ej

)
, τs

)
, and z =

∑m
l=1 δl⊗n(x1,l, . . . , xn,l) ∈

⊗ns
(

Πn
j=1Ej

)
,

α̃(QE1,...,En(z)) = α




m∑

l=1

1

2n
δl
∑

εj=±1

ε1 · · · εn ⊗n (ε1x1,l, . . . , εnxn,l)


 .
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Since the mappings

(y1, . . . , yn) ∈ Πn
j=1Ej 7→ (ε1y1, . . . , εnyn) ∈ Πn

j=1Ej

are continuous, the desired continuity follows from the symmetric mapping prop-
erty of τs.

(2): The identity
(
⊗nj=1Ej , τ̃s

)
→ (⊗nj=1Ej , ε) can be decomposed as:

(
⊗nj=1Ej , τ̃s

) JE1,...,En−−−−−−→
(
⊗ns (Πn

j=1Ej), τs
) Id−→

(
⊗ns (Πn

j=1Ej), εs
) QE1,...,En−−−−−−→ (⊗nj=1Ej , ε).

The first mapping is continuous by the definition of τ̃s, the second because
τs is an s-tensor topology and the third because the Lemma and the mapping
property for ε.

(3): The mapping property for τ̃s. Let Tj : Ej → Fj be linear continuous
mappings between locally convex spaces Ej and Fj , j = 1, . . . , n. Then,

⊗nj=1Tj : ⊗nj=1Ej → ⊗nj=1Fj

is continuous for the corresponding τ̃s topologies because it is the composition
of the continuous mappings:

(
⊗nj=1Ej , τ̃s

) JE1,...,En−−−−−−→
(
⊗ns
(
Πn
j=1Ej

)
, τs
) ⊗n(T1×···×Tn)−−−−−−−−−→

(
⊗ns
(
Πn
j=1Fj

)
, τs
) QF1,...,Fn−−−−−−→

(
⊗nj=1Fj , τ̃s

)
.

To see the symmetry of τ̃s we have to prove that for every η ∈ Sn, the
mapping

m∑

l=1

x1,l ⊗ · · · ⊗ xn,l ∈ ⊗nj=1Ej 7→
m∑

l=1

xη(1),l ⊗ · · · ⊗ xη(n),l ∈ ⊗nj=1Eη(j)

is continuous for the corresponding τ̃s topologies. But this mapping is the com-
position of the mappings:

(⊗nj=1Ej , τ̃s)
JE1,...,En−−−−−−→

(
⊗ns (Πn

j=1Ej), τs
) ⊗nTη−−−→

(⊗ns (Πn
j=1Eη(j)), τs)

QEη(1),...,Eη(n)−−−−−−−−−→ (⊗nj=1Eη(j), τ̃s)

and we have already seen that the first and the third of them are continuous.
The second one is also continuous because the mapping

Tη : (x1, . . . , xn) ∈ Πn
j=1Ej 7→ (xη(1), . . . , xη(n)) ∈ Πn

j=1Eη(j)
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is linear and continuous and τs has the symmetric mapping property.

Let us see how τ̃s|⊗n
sE = τs on ⊗nsE for every locally convex space E.

The identity

(⊗nsE, τ̃s|⊗n
sE)→ (⊗nsE, τs)

is the composition of the mappings:

(⊗nsE, τ̃s|⊗n
sE)

JE,...,E◦inE−−−−−−−→(⊗nsEn, τs)
σn

E◦QE,...,E−−−−−−−→(⊗nsE, τs).

The first one is continuous because of the definition of τ̃s and the second is
continuous because of the symmetric mapping property of τs: It is the linear
mapping on ⊗nsEn generated by

⊗n (x1, . . . , xn) ∈ (⊗nsEn, τs) 7→
1

2n
√
n!

∑

εj=±1

ε1 · · · εn ⊗n (ε1x1 + · · ·+ εnxn) ∈ (⊗nsE, τs).

On the other hand the identity

(⊗nsE, τs)→ (⊗nsE, τ̃s|⊗n
sE)

is the composition of the mappings:

(⊗nsE, τs)
JE,...,E◦inE−−−−−−−→(⊗nsEn, τs)

σn
E◦QE,...,E−−−−−−−→(⊗nsE, τ̃s|⊗n

sE).

The first is continuous because the symmetric mapping property of τs, since
each of the mappings

x ∈ E 7→ (ε1x, . . . , εnx) ∈ En

is continuous, and the continuity of the second can be obtained as follows:
For every continuous seminorm α on (⊗nsEn, τs) and every (x1, . . . , xn) ∈ En,

α̃(σnE ◦QE,...,E(⊗n(x1, . . . , xn))) ≤ 1√
n!2n

∑

εj=±1

α̃(⊗n(ε1x1 + · · ·+ εnxn)) =

1

n!22n

∑

εj ,γj=±1

α (⊗n(γ1(ε1x1 + · · ·+ εnxn), . . . , γn(ε1x1 + · · ·+ εnxn))).

Since the mappings

(x1, . . . , xn) ∈ En 7→ (γ1(ε1x1 + · · ·+ εnxn), . . . , γn(ε1x1 + · · ·+ εnxn)) ∈ En
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are continuous, the symmetric mapping property of τs gives that there is a τs
continuous seminorm β on ⊗nsEn such that

α̃(σnE ◦QE,...,E(⊗n(x1, . . . , xn))) ≤ β(⊗n(x1, . . . , xn))

and the same for linear combinations, that is, for tensors in ⊗nsEn. QED

Follow several consequences of the above theorem:

6 Corollary. For every locally convex space E, every n ∈ N, and every s-
tensor topology τs of order n, (⊗nsE, τs) is a complemented subspace of (⊗nE, τ̃s).

Proof. The continuity of the inclusion inE : (⊗nsE, τs) → (⊗nE, τ̃s) follows
from Theorem 5. On the other hand, for every η ∈ Sn the symmetry of τ̃s gives
that the mapping

x1 ⊗ · · · ⊗ xn ∈ (⊗nE, τ̃s) 7→ xη(1) ⊗ · · · ⊗ xη(n) ∈ (⊗nE, τ̃s)

is continuous, so is the mapping generated by

x1 ⊗ · · · ⊗ xn ∈ (⊗nE, τ̃s) 7→ x1 ∨ · · · ∨ xn ∈ (⊗nsE, τs),

(using again Theorem 5). Moreover the composition of inE with it is the identity.
QED

7 Corollary. For every locally convex spaces E1, . . . , En, (⊗nj=1Ej , τ̃s) is a
complemented subspace in (⊗ns (Πn

j=1Ej), τs).

Indeed, the maps JE1,...,En and QE1,...,En are continuous as we have seen in
the proof of Theorem 5, and QE1,...,En ◦ JE1,...,En = Id.

In the next theorem we prove that when one restricts an n-tensor topology
τ to the space of symmetric tensors and then extends it with the procedure
given in the above Theorem 5 obtains an n-tensor topology finer than τ . Both
topologies are the same when τ is symmetric1.

8 Theorem. For every n-tensor topology τ , the extension of its restriction
to symmetric n-tensors is an n-tensor topology finer than τ . Moreover if τ is
symmetric, both topologies coincide.

Proof. Let us denote by τ |s the restriction of τ to spaces of symmetric

tensors. The identity (⊗nj=1Ej , τ̃ |s)→ (⊗nj=1Ej , τ), can be factorized as:

(⊗nj=1Ej , τ̃ |s)
JE1,...,En−−−−−−→

(
⊗ns
(
Πn
j=1Ej

)
, τ |s

) QE1,...,En−−−−−−→ (⊗nj=1Ej , τ).

1If τ is no symmetric the equality has no sense because fτ |s = τ y fτ |s is symmetric.
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The first mapping is continuous by the definition of τ̃ |s, and the second is
QE1,...,En which is continuous as has been proved in a previous similar situation.

Assume now that τ is symmetric. The identity

(⊗nj=1Ej , τ)→ (⊗nj=1Ej , τ̃ |s)

can be factorized as:

(⊗nj=1Ej , τ)
JE1,...,En−−−−−−→ (⊗ns (Πn

j=1Ej), τ |s)
QE1,...,En−−−−−−→ (⊗nj=1Ej , τ̃ |s).

The first is continuous by the mapping property and the symmetry of τ and
the second is also continuous for those spaces as we know. QED

From the above Theorem 8 and Corollary 7 we get

9 Corollary. For every locally convex space E and n ∈ N, LI(nE) :=
(⊗nE, ε)′β is a complemented subspace of the strong dual PI(nEn) := (⊗nsEn, εs)′β.

The elements in LI(nE) (resp. PI(nEn)) are called integral n-linear map-
pings (resp. integral n -homogeneous polynomials) and appear in several papers
and books, among others: [1,9,13,14,17,19,20].

Remark. Having in mind the above Theorem 8 we notice that Corollary 7
for τs = πs has been proved in [7, Lemma 8] for n = 2 and in [6] for arbitrary
n.

Other results on complementation for spaces of polynomials have been ob-
tained in [7] and [12].

3 Some applications

To give an application of Theorems 5 and 8 above we recall the definition of
tensor topology given in [3] and introduce the concept of s-tensor topology.

10 Definition. A tensor topology is a sequence τ = (τn)n∈N, where each τn
is an n-tensor topology, which is associative. That is, for all m and n ∈ N, with
m < n, and for every n locally convex spaces Ej , j = 1, . . . , n, the equality

((⊗mj=1Ej , τm)⊗ (⊗nj=m+1Ej , τn−m), τ2) = (⊗nj=1Ej , τn).

holds topologically. A tensor topology τ = (τn)n∈N is called symmetric if all τn
are symmetric according Definition 3 above.

The natural topologies ε, π and i are symmetric tensor topologies [3].



Symmetric tensor topologies 45

11 Definition. An s-tensor topology is a sequence τs = (τs,n)n∈N where
each τs,n is an s-tensor topology of order n such that τ := (τ̃s,n)n∈N is a tensor
topology. The topologies εs , πs and is are s-tensor topologies.

12 Corollary. For every locally convex space E and every s-tensor topology
τs = (τs,n)n∈N, (⊗nsE, τs,n) is a complemented subspace of (⊗n+1

s E, τs,n+1) for
each n ∈ N.

Proof. We will use several times the above Theorem 5. Fix n ∈ N, e ∈ E
and ϕ ∈ E′ such that ϕ(e) = 1. The extension by linearity of the mapping J
considered in [6, Th. 3] defined by

J(⊗nx) =
n+1∑

k=1

(
n+ 1
k

)
(−1)k−1ϕ(x)k−1e ∨ k· · · ∨ e ∨ x ∨ n−k+1· · · ∨ x

is continuous between (⊗nsE, τs,n) and (⊗n+1
s E, τs,n+1). Indeed, it is a sum of

linear combinations of mappings of the following type (note that τ̃ = (τ̃s,n)n∈N

is associative and each τ̃s,n is symmetric):
For k = 1:

x1 ⊗ · · · ⊗ xn ∈ (⊗nE, τ̃s,n) 7→ e⊗ x1 ⊗ · · · ⊗ xn ∈ (E ⊗ (⊗nE, τ̃s,n), τ̃s,2),

which is continuous by property (1) of 2-tensor topologies.
For 1 < k < n+ 1:

x1 ⊗ · · · ⊗ xn ∈ (⊗nE, τ̃s,n) 7→

ϕ(x1) · · ·ϕ(xk−1)e⊗ k· · · ⊗ e⊗ xk ⊗ · · · ⊗ xn ∈
(
⊗n+1E, τ̃s,n+1

)

which is continuous by properties (1) and (3) of tensor topologies of a fixed
degree applied to the mappings:

x ∈ E 7→ ϕ(x)e ∈ E (k − 1 times)

xk ⊗ · · · ⊗ xn ∈ (⊗n−k+1E, ˜τs,n−k+1) 7→
e⊗ xk ⊗ · · · ⊗ xn ∈ (E ⊗ (⊗n−k+1E, ˜τs,n−k+1), τ̃s,2).

For k = n+ 1:

x1 ⊗ · · · ⊗ xn ∈ (⊗nE, τ̃s,n) 7→ ϕ(x1) · · ·ϕ(xn)e⊗ n+1· · · ⊗ e ∈ (⊗n+1
s E, τs,n+1),

which is the composition of the mappings

x1 ⊗ · · · ⊗ xn ∈ (⊗nE, τ̃s,n) 7→ ϕ(x1) · · ·ϕ(xn)e⊗ n· · · ⊗ e ∈ (⊗nsE, τs,n)
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⊗nx ∈ (⊗nsE, τs,n) 7→ (⊗nx)⊗ e ∈ ((⊗nsE, τs,n)⊗ E, τ̃s,2)

and both mappings are continuous by properties (1) and (3) of tensor topologies
of a fixed degree.

A projection Π can be defined as the linear map generated by

⊗n+1x ∈ (⊗n+1
s E, τs,n+1) 7→ ϕ(x)⊗n x ∈ (⊗nsE, τs,n).

Π is continuous as a consequence of the mapping property applied to the identity
(⊗nE, τ̃s,n)→ (⊗nE, τ̃s,n) and x ∈ E → ϕ(x) ∈ K. Note that (F ⊗K, τ̃s,2) = F
for every s-tensor topology of order 2 and every locally convex space F . In [6, Th.
3] the equality Π ◦ J = Id on ⊗nsE is checked. QED

Remark. The above corollary generalizes to every s-tensor topology Blasco’s
result for the projective topology [6, Th. 3] and gives a new proof of it without
using any seminorm description.

13 Corollary. PI(nE) is a complemented subspace of PI(n+1E) endowed
with the strong topologies as dual spaces.

Analogous results on the spaces of all continuous polynomials have been
obtained in [5] for the normed case and in [6] for locally convex spaces.
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[11] A. Defant, J. C. Dı́az, D. Garćıa, M. Maestre: Unconditional basis and Gordon-
Lewis constants for spaces of polynomials, J. Funct. Anal. 181, 119–145, 2001.

[12] A. Defant, M. Maestre: Property (BB) and holomorphic functions on Fréchet-Montel
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[21] G. Köthe: Topological Vector Spaces II. Springer-Verlag, Berlin, 1979.

[22] R. Ryan: Applications of topological tensor products to infinite dimensional holomorphy.
Ph. D. thesis, Trinity College Dublin, 1980.

[23] R. Ryan: Introduction to Tensor Products of Banach Spaces, Springer Monographs in
Math., Springer, 2002.


