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TOTAL SUBSPACES WITH LONG CHAINS OF NOWHERE NORMING
WEAK* - SEQUENTIAL CLOSURES

M.I. OSTROVSKII

Abstract. If a separable Banach space X is such that for some nonquasireflexive Banach
space Y there exists a surjective strictly singular operator T : X — Y then for every coun-
table ordinal o the dual of X contains a subspace whose weak* sequential closures of orders

less than o« are nowhere norming and whose weak* sequential closure of order o + 1 coin-
cides with X* .

Let X be a Banach space, X* be its dual space. The closed unit ball and the unit sphere
of X are denoted by B(X) and S(X) respectively. The term «operator» means a bounded
linear operator.

Let us recall some definitions. A subspace M of X * is said tobe totalif forevery 0 # z €
X thereisan f € M suchthat f(z)#0. A subspace M of X* is said to be norming over
a subspace L of X if for some ¢ > 0 we have

(Vz € L) ( sup |f(z)| > c||:1:||) .

feS(M)

A subspace M of X* is said to be norming if it is norming over X . If M is not norming
over any infinite dimensional subspace of X then we shall say that M is nowhere norming.

The set of all limits of weak* convergent sequences in a subset M of X* 1s called the
weak*® sequential closure of M and is denoted by M(,,. If M is a subspace then M, is
also a subspace.

This subspace need not be closed and all the more need not be weak* closed [6]. In this
connection S. Banach introduced [3, p. 208, 213] the weak* sequential closures (S. Banach
used the term «derivé€ faible») of other orders, including transfinite ones. For ordinal « the
weak™ sequential closure of order o of asubset M of X* istheset M,y = Ug (M 4) -

It should be noted that for separable X the notion of the weak* sequential closure of order

a coincides with the notion of the derived set of order o considered in [1], [7], [8].
For the chain of the weak* sequential closures we have

M{l} C M(Z} C P C M(ﬂ') C M(ﬂ'*'ﬂ C —_

If we have M, = M, then all subsequent closures coincide with M, . The least
ordinal « for which M, = M., is called the orderof M .

The present paper deals with one of the aspects of the following general prblem: how far
from the norming subspaces can the total subspaces be and what is the structure of Banach
spaces the duals of which contain such subspaces?
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There are many works devoted to this problem (see [3, p. 208 - 215], papers [1, 4, 7, 8,
9, 10] and papers cited therein). We recall only the results which motivate us to carry out the
present research.

1. There is a total subspace M of [ = (/,)* suchthat M, is nowhere norming for all
ne N [1].

2. Let X be a nonquasirelexive separable Banach space. Then, for every countable ordi-
nal «, there is a total subspace of order a+ 1 in X* [9]. (V.B. Moscatelli [7], [8] obtained this
result 1in the case when « 18 not greater than the first infinite ordinal. The explicit construction
of [8] is useful in further investigation of such subspaces.)

3. Let X beaseparable Banach space. Its dual contains a total nowhere norming subspace
if and only if for some nonquasirefiexive Banach space Y there exists a surjective strictly
singular operator 7" : X — Y [10].

The main result of the present paper is the following.

Theorem. Let X be a separable Banach space such that for some nonquasireflexive Banach
space Y there exists a surjective strictly singular operator T : X — Y . Then for every
countable ordinal « there exists a subspace M of X* suchthat M.,y = X* and for every
ordinal § < a the subspace M, g C X" is nowhere norming.

Let us introduce some notation. For a subset A of a Banach space X , lin( A) and cl( A)
are, respectively, the linear span of A and the closure of A in the strong topology. By w* —
lim z, we denote the weak* limit of the sequence {z;, }>>_, in the dual Banach space (if

m—o0
this limit exists). For a subset A of X*, AT istheset {z € X : (Vz* € A) (z*(z) = 0) }.
Our sources for Banach space theory are [3], [12].
At first we shall prove the theorem in the case when « is a nonlimit ordinal. In order to
do this we need the following result.

Lemma 1. Let Y be a separable nonquasireflexive Banach space. Then for every countable
ordinal ~y there exist a subspace N of Y* and a bounded sequence {h_}2, in Y** such
that:

A. If a weak™ convergent sequence {x: }>°_, is contained in N5 for some B < ~ and

m=1

* = w* — lim :c:n then

m—00
(1) h (z%) = n!il—I-nm h (z).
B. There exists a collection {z; . }32), =1 Of vectorsin N, suchthat for every k,n € N
we have
(2) w* — lim z = =0;

m—00

(3) (Vm € N) (h(z%,) = §,.).
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At first we shall finish the proof of the theorem in the case of a nonlimit o with the help
of lemma 1.

We apply lemma 1 to v = aa— 1 (this ordinal is correctly defined since « 1s nonlimit). Let
N,{h,} and {z;,.} be asinlemma 1. Let {s;}?2, be a normalized sequence in X* such

that lin( {s}}) is a norming subspace of X*. Let ¢, = sup_ ||h,]|- Let v, > 0 (n€ N ) be

o0
such that E v, < 1/(2¢,). We may assume without loss of generality that T is a quotient
n=1
mapping. In this case T : Y* — X* is an isometric embedding. Therefore we may (and
shall) identify Y* with T*(Y™*) C X*.
Let R:Y* — X* be given by the equality

(4) R(y*) =y*+ Y v,h,(y")s].
=l

It 1s clear that

(5) (Vy" € Y™) ((1/)]ly"|[ < [IRy*[] < (3/D|y*[D) -

Let M = R(N). We prove that for every 8 < v we have
(6) Mg = R(N¢g)-

We use transfinite induction. For 8 = 0 we have (6) by definition. Let us suppose that
(6) 1s true for some B < ~y and prove that Mgy = R(N(ﬁ+1})‘ Let z* € M4,y 1. €.

*

- * 14 * * 00 . "
¥t = w rll_lgﬂ:::m for some sequence {z; }°, in M4 . Let y; € N4 be such that

z,, = R(y,,). Denote sup ||z || by ¢, . By (5) we have ||y} || < 2¢, forevery m € N

Therefore by the separability of X we can selecta weak* convergent subsequence {y},;y }2

i=1
of {yr}m=1- Let y* = w* —lim;_ _y> ., . Itis clear that y* € N4,,,. Since g < v then
by the assertion A of lemma 1 we have

lim b, (Yc) = hy(y7)

§ —+00

for every n € N . By the definition of R it follows that

o0 oG
fim 32 v (Vo) 35 = D vaha(6)s],
n=1 n=1
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where the limit is taken in the strong topology. Therefore we have:

w* — lim R( U:n(;)) = R(y").

$—+00

Hence, z* = R(y*) and M4,y C R(N{ﬁ+1}). The inclusion F( Nwﬂ}) C Mg, follows
immediately from (1), (4) and (6).
The case of a limit ordinal 8 < « is more simple:

Mg = UMy = U, gR(N(py) = R(U,.gN(y) = R(Ng).

Therefore formula (6) is proved. In particular, we have M, = R(N_,). Let us show that

this equality implies that M, is nowhere norming.
Suppose that this is not the case. Let an infinite dimensional subspace L of X be such

that M, is norming over L.
Recall that if U and V are subspaces of a Banach space X then the number

(U, V) =inf{Jlu—v||: ve S(U), veV}

is called the inclinationof U 0 V.

Since T is a strictly singular quotient mapping then X does not contain an infinite di-
mensional subspace with non-zero inclination to ker(T") . Using well-known arguments (see
[2], [S] or [11]) we can find a normalized sequence {2}, in L such that for some sequence

{t;}°, inker(T) we have ||z; — ;|| < 2~* and, furthermore,

(7) (Vne N) (lim si(t) = 0).

1—00

Let ¢ > 0 be such that
(Vz € L) (3f € S(M.,)) (I1f(z)| > dl|z|])

In particular,
(Vie N) (3f; € S( M(q})) (If‘(zl)l > c).

Since M., = R(N_,) then we can find y; € N, suchthat f; = R(y;),i. e. f; =

y; + Z v h_(y?) s . By (5) we have ||y}|| < 2. Furthemore, we have

n=1

¢ < 12D < Mfilzi = 1)1+ 1] < 27

0 oo
#| Y v () si(t) ] < 27+ ollyfll ) valsa ()]
n=1 n=1
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Using (7) and the boundedness of the sequences {s>} and {t,} we obtain a contradiction.
Hence, the subspace M ") 1s nowhere norming. Thus we proved that M satisfies the second
assertion of the theorem.

It remains to prove that M, .5 = X*.

Let {z; . }21, m=1 be the collection whose existence is asserted in lemma 1. By (6) we

n=1» m=
have R(z;,,) € M(,ﬂ forevery m,n € N . By (3) wehave R(z,, ) = =], + v,s;. Since
the sequence {z,,, },.-1 is weak® null and v #0, then we have s; € M., for every

n € N, therefore lin({s}}) C M, . Since the subspace lin( {s; }) is norming then by (3,
p. 213] we have M, .,y = X*. The theorem is proved in the case when ¢ is nonlimit.

Proof of lemma 1. By [4, theorem 2] Y contains a bounded away from O basic sequence

{z,}320 such that the set
r k o0 00
9 3;‘(;‘+1)f2+;}
=

L 1

7=0,k=)
is bounded. We may assume without loss of gencrality that ||z,|| < 1 forevery 1 € N . Let
Z = cl(lin({z,}2,)) . Itis easy to see that the following claims are true.

1. The space Z** may be identified with the weak* closure of Z in Y **.

2. Every weak* null sequence in Z* has a weak™ null sequence of extensions to Y.

3. If we denote the canonical embedding of Z into Y by £ then for every ordinal « and
every subspace N of Z* we shall have

(ft)ml(N(ﬂ)) = (('E*)_l N)(a}'

(In this connection see lemma 1 1n [9].)

4, If 2** € Z** and y* € Y* then the value z**(y*) depends only on the restriction of
y* to 4.

These claims imply that it is sufficient to prove lemma 1 with Y* and Y** replaced by
Z* and Z** respectively.

Let us introduce some notation. We shall write zf for z( i 1y(wiyj2e; (7 = 0,1,2,..0,

1 € N), while biorthogonal functionals to the system will be denoted by z_ or E;f . By the
result of [4] cited above we have

m

sup [| Y~ 2|l = ¢; < o0

Jm s

m N OO

Thercfore forevery j = 0,1, 2, ... the sequence {E zf > has at least one weak* limit

l:=1 o m=1

point in Z**. Let us choose one of these limit points and denote it by fj. It is clear that
||f}|| g CI .
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We need the following result from [9].

Lemma 2. For every vector g, € Z** of the form af; + z;,(a > 0,7# j), every countable

ordinal oo and every infinite subset A C N suchthat j,r ¢ A there exists a countable subset
2(gg, o, A) of Z** such that:

1. For a subspace K(g,,«,A) of Z2* defined by K(g,y,a,A) = (Q(gu,ﬂe,A))T we
have (K (gq, @, A))o C ker(gy) .
2. Allvectors h € Q2(gq,a, A) are of the form h = a(h) fim + z:HH with j(h),r(h) €

AU {j,r},a(h) > 0 andforevery h# g, from Q(gy, e, A) we have j(h)#r,7(h)#r.
3. If we denote by Q(b, gy, «, A) the intersection of the set

(8) b5, +u,  where  u € lin ({3}, seavq))

with K(gq,a, A) then the set (Q(b,g¢,a, A)) ) contains all vectors of the form (8) which
are in ker(g,) .

Let us introduce the functionals A, € Z** by the equalities A, = f, ,(n€ N) and the

vectors z; .. by the equalities z7 = = Efn“‘l . It is clear that the vectors h and z}
equalities (2) and (3).
Let {A_}32, beapartition of the set of even natural numbers into pairwise disjoint infinite

satisfy

m

sets. Let £,, > 0 (n,k € N) besuchthat ) ¢,, < oo. Define the family {g,, , }%%.;

nk=1
in the following way:

2n—1

Ok = 2k + EniSitnk)s

where the mapping j : N x N — IN is such that j(n, k) € A, and j(n, k) # j(n, 1) for
k#1.

Let {D, , }3%-1 beapartition of A, into pairwise disjoint infinite sets.

‘The cases of limit and nonlimit 4 will be treated separately.

Let v be a nonlimit ordinal and let Q(g,.,v—1,D,,) be the sets whose existence is
asserted in lemma 2. Let us define N C Z2* by N = (U5, Q(g,4,7—1,D,,))T . Letus
show that N satisfies the conditions of lemma 1.

Let {z }>_, bea weak* convergent sequence in Ng(B<~y—1) andlet * = w* —
lim z; . By lemma 2 we have

m—+00

(9) (Vn,k € N) (z;, € ker(g,,))
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Since the sequence {z_}22, is abasis of Z, then its biorthogonal sequence {z_}>°, is a w*-

Schauder basis of Z* [12, p. 155]. (It means that every vector z* € Z* can be represented
k

* __ .k > - _ %
as 2" = w -—JLH; a,z,,where a, = 2*(z.)).
n=0

Using (9) we can estimate some of the coefficients of the weak* decompositions of the
vectors z, (m € N) . Precisely, if we denote sup ||z} || by ¢, , then we obtain

m

2n—1
[Zm (2" )| < €qp 16y

o0
Therefore x; can be represented as u; + v; , where u; = E zt (g™ 1)z (we note
nk
that this series converges unconditionally, therefore we need not indicate the order of summa-
bility), and

(10) (Vn,kEN)(u;(zE"‘_l) = 0)

Since weak* convergence implies coordinatewise convergence for w*-Schauder bases, we
can represent x* in an analogous way, z* = u* + v*.
We have

uw* = w*' — lim u:‘n.
i e 16 ]

By (10) and by the definition of A it follows that

(11) (Vm,n € N) (h,(v%) = 0);
(12) (Vne N) (h (v*) = 0).

Since the vectors {u; }>°_, and u* are contained in the strongly compact set

00

_ ~2n-1 ,
C= § : Ay g2k : Iﬂ'n,kl S E.xCi1C s
nk=1

the weak* convergence of {u} } to u* implies the weak convergence of {u; } to u*. The-
refore for every n € N we have lim h_(u; ) = h_(u"). From here by (11) and (12) we

m—+00

obtain lim h_(z; ) = h_(z"). Thus the assertion A of lemma 1 is proved.

m—00

~2n—1

In order to prove the assertion B it is sufficient to check that ;™" € N, . Let 2(1) =

E%“’l — Ef(“’k} /En,k(t € N). Itis clear that z(t) € ker(gmk) and that E;":““‘l = w* —



224 M.I. Ostrovskii

lim (2(t)). Furthermore, the vectors z(t) are of the form (8) with b = 1,r = 2n —

t—o00

(Q(lngn,k 7 I:Dmk))(q) .
[t remains to show that

(13) (VT:S € N) (Q(lmgmkif}r T lan,k) C (Q(Qf_,s’)‘ o llDr_s))T)

For r = n,s = k this follows immediately from the definition of Q. Let (r,8) #(n, k).
Recall that every element of Q(g,_,,v— 1,D,,) 1s a weak® limit point of linear combina-

tions of z27=! /"9 (¢ € N) and zP(p € D, ,,q € N) and that Q(1,g9,,,7v—1,D,,)

consists of linear combinations of Ei“‘l ,‘é;"{"’k} (t € N) and EE(P € D,,,qg € N). Our

construction is such that the sets {2n— 1,j(n,k)} U D, , and {27 — 1,/(r,s)} U D,,

intersect if and only if 2n — 1 = 27 — 1. Since in this case we have s# k, we obtain (13).
Thus we have finished the proof of lemma 1 in the case when - is a nonlimit ordinal.

Let us pass to the case when ~ is a limit ordinal. Let {~_}°2, be an increasing sequence of

ordinals for which v = lim ~_. Let us introduce the subspace N C Z* by the equality

n— o0

N = (U1 @ (s Yneks D))

We shall show that N satisfies all the conditions of lemma 1. Let {z} }>°, be a weak®
convergent sequence in N5 with 8 < y and let z* = w* — lim z7 . Let ¢ € IN be such

m—00 m

that «y;_, < B8 < «; (welet 4y = 0). The definition of the sets (g, ., Yok, D, ) implies

that for those pairs (n, k) for which n+ k > ¢ we have z; € ker (g, ), and, consequently,
we have

2n—1
[z (2" < gapcicp

At the same time, since ||z2"!|| < 1, then

(Vn,k € N) (Jz5,(2," )| < ).

Therefore we may argue in the same way as in the first part of lemma 1 if we define the set C
in the following way:

rm ™

— ~2n—1 , : - . :
C = < E 0k 2k ekl <enpcicy if n+ k>4 and Ja, | <cy if n+k<ip .
[ k=1

-

The proof of the lemma 1 is complcte.
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Thus in the case when o 1s a nonlimit ordinal the proof of the theorem is finished.
Let us describe the changes which should be made in the proof of the theorem in the case
when « is a limit ordinal.

Let {a,}32, be an increasing sequence of nonlimit ordinals such that « = '}ng a, . In-

stead of lemma 1 we shall use the following result.

Lemma 3. There exists a subspace N of Y* and a bounded sequence {h_}>2, in Y** such
that:
A", If aweak® convergent sequence {x;, }o., is containedin N g for some B < « and

m=]

z* = w* — lim z* ., then we have

i ’
m—00

ho(z*) = lim h, ()
for those n for which B < «,,.
B"*Y. For every n € N there exists a sequence {z; . }o=_, in N, , such that the condi-

m=1

tions (2) and (3) are satisfied.

At first we finish the proof of the theorem with the help of lemma 3. Let {s}}}2, and
{v,}2, be the same as in the first part of the theorem. Let R : Y* — X* be defined by
equality (4). For every ordinal 8 < o we denote by W(3) the set of natural numbers n for
which a, < B. Itis clear that W( 3) is a finite set.

Let us show that for every ordinal 8 < o we have
(14) M{ﬁ) = lin (R(N(ﬁ))u{‘sz}kEW(ﬁ))-

We shall prove this with the aid of transfinite induction. For 8 = 0 (14) follows imme-
diately from the definition. Let us suppose that (14) is valid for some 8 < « and prove
the analogous inclusion for g+ 1. Let z* € M(ﬂﬂ}, i. . z* = w* — lim z, , where

Ty, € Mg C lin (R(Ng) U {si}rew(s) - Itis clear that the last space is a subspace
of c1(R(N4)) @ F, where F is some subspace of lin ({st }rew g) - Therefore, we may
write =7, = uy, + vy, where uy € C1(R(N4)) and vy, € F. Itis clear that the sequences
{u* }°_, and {v} }%_, are bounded and that we may suppose without loss of generality that

m=1

u;, € R(N ). Let uy = Ry; . By (5) the sequence {y; } is also bounded. So we can find

a sequence {m(1) }$2, of natural numbers such that the sequences {vy ;y}2; and {y, s}y
are weak* convergent. Let v* and y* be the corresponding weak* limits. By lemma 3 we
have h, (y*) = lim h_(y; ) forall n for which «, > (. Therefore,

100

;-111 Z Vnho(Ym(i)) 80 = E voha(y7) sy,
ngW(f+1) ngW(B+1)
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where the limit is taken in the strong topology.

Since the set W (S + 1) 1s finite, without loss of generality we may assume that the se-
g AR
quence < Z v h, (Yriny) s, ¢ 18 strongly convergent. Let Z a, s, beits li-
 nEW(S+1) ncW(5+1)

J =1

mit. It follows that

"= R(y*) — E v h (y*)s, + E a,sptv™ € 1in (RON g 1)) ULSy b ncwsen ) -

neW (8+1) ncW(B+1)

Therefore M 5,y C lin (R(Ng,1y) U {3} }ocw(g+1y) - The converse inclusion follows im-

B "% and the induction hypothesis.

mediately from
If 8 is a limit ordinal and (14) i1s proved for all ordinals less than 3, then (14) follows
immediately from the following fact: W (B) = W(7) for some 7 < (. So (14) is proved
for all ordinals which are less than «.
It is not hard to check that the linear span of the union of a finite-dimensional and a nowhere
norming subspaces is nowhere norming. Therefore, by (14) and the arguments of the first part

of the theorem, M 4, is a nowhere norming subspace for every 5 < «.

The proof of the equality M = X * is the same as in the first part of the theorem.

(et 1)

Proof of Lemma 3. We repeat the arguments of the proof of lemma 1 up to the passage
where A, was presented in the form A, = U>._, D, , . Now we continue in the following

way. Let {«, }°, be the increasing sequence of nonlimit ordinals introduced above. Let

=1

Q(g,,o,—1,D,,) bethe sets whose existence is guaranteed by lemma 2. Let us introduce

the subspace N C Z* by the equality
N = (U::‘:Z:l Q(an , Ay — I ) Dn,k))rr'

. The assertion A™W of lemma 3 is proved in the same way as the assertion A of lemma
1. The only distinction is that we have relation (9) not for all natural »n but only for n €
IN\ W (/3+ 1) . This does not prevent us to finish the proof, since the assertion A™Y concerns
only those h_ for which nec N\W (3 + 1).

BHEW .

The proof of the assertion of is the same as the proof of the assertion B of lemma 1.
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