SYMMETRIES WHICH PRESERVE THE CHARACTERISTIC VECTOR FIELD OF K-CONTACT MANIFOLDS

JUN-ITI INOGUTI, MASAMI SEKIZAWA

As is well-known locally symmetric K-contact manifolds are spaces of constant curvature ([13]). This means that having isometric local geodesic symmetries is a very strong restriction for K-contact manifolds. Thus other classes of isometries shall fit for contact geometry. For example, T. Takahashi [15] has introduced the notion of φ -geodesic symmetries on Sasaki manifolds and also on K-contact manifolds. Since then, manifolds with such isometries have been studied extensively.

In this paper we generalize the notion of φ -geodesic symmetries. Because we notice that our diffeomorphisms preserve the characteristic vector field ξ of K-contact manifolds, we call them symmetries which preserve the characteristic vector-field, or ξ -preserving symmetries. Our idea for a construction of such local diffeomorphisms on K-contact manifolds is the lifting of symmetries on almost Kähler manifolds through the local fibering $p: M \to M/\xi$ of K-contact manifolds.

After recalling elementary facts on contact geometry in Section 1, we devote Section 2 to our definition of symmetries which preserve the characteristic vector field. Also we construct such a family of symmetries, which is an example of local S-rotations around curves in the sense of L. Nicolodi and L. Vanhecke [11]. In Section 3 we give some examples of our symmetries.

We thank Professor L. Vanhecke for useful discussions.

1. CONTACT GEOMETRY

A (2n+1)-dimensional manifold M is said to be an almost contact manifold if the structure group of its tangent bundle is reducible to $U(n) \times 1$. This is equivalent to the existence of a tensor field φ of type (1,1), a vector field ξ and a 1-form η satisfying

(1.1)
$$\varphi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1.$$

From these conditions we can deduce that

$$\varphi \xi = 0$$
, $\eta \circ \varphi = 0$.

Moreover, M admits a Riemannian metric g satisfying

$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y)$$

for all $X, Y \in \mathcal{X}(M)$. Here $\mathcal{X}(M)$ denotes the Lie algebra of all vector fields on M. Such a metric g is called a *compatible metric* of the almost contact manifold $(M; \varphi, \xi, \eta)$. With

respect to this metric g, the 1-form η is metrically equivalent to ξ , that is, $\eta(X) = g(X, \xi)$ for all $X \in \mathcal{X}(M)$. Hence ξ is a unit vector field with respect to g. A structure (φ, ξ, η, g) on M is called an almost contact Riemannian structure on M, and a manifold M together with these structure tensors is said to be an almost contact Riemannian manifold. Further, we can define a 2-form Φ on M by

$$\Phi(X,Y)=g(X,\varphi Y)$$

for all $X, Y \in \mathcal{X}(M)$. The 2-form Φ is called the fundamental 2-form of $(M; \varphi, \xi, \eta, g)$. If Φ satisfies $\Phi = d\eta$, then M is said to be a contact Riemannian manifold with contact Riemannian structure (φ, ξ, η, g) . On a contact Riemannian manifold $(M; \varphi, \xi, \eta, g)$, the 1-form η is called the contact form on M, and the vector field ξ is called the characteristic vector field on M with respect to the contact form η .

Next, if the characteristic vector field ξ of a contact Riemannian manifold M is a Killing vector field with respect to the metric g, then M is said to be a K-contact manifold. This is characterized by the condition

$$\nabla_X \xi = -\varphi X$$

for all $X \in \mathcal{X}(M)$. Here ∇ denotes the Levi-Civita connection of (M, g). It is obvious that each integral curve of ξ is a unit speed geodesic on M.

The following lemma is a result of the *conservation lemma* in Riemannian geometry (cf. O'Neill [14], p. 252).

Lemma 1.A. Let $(M; \varphi, \xi, \eta, g)$ be a K-contact manifold. Then, for any geodesic γ on M, the restriction $\xi|_{\gamma}$ is a Jacobi field and $g(\gamma', \xi)$ is constant along γ .

Lemma 1.A implies that geodesics which are initially orthogonal to ξ remain orthogonal to ξ . Such a geodesic is called a φ -geodesic.

If an almost contact Riemannian manifold $(M; \varphi, \xi, g)$ satisfies

$$(\nabla_{\mathbf{X}}\varphi)Y = g(X,Y)\xi - \eta(Y)X$$

for all $X, Y \in \mathcal{X}(M)$, then $(M; \varphi, \xi, \eta, g)$ is said to be a *Sasaki manifold*. A Sasaki manifold is a K-contact manifold.

Finally, we recall the basic facts about the local Riemannian fibering of a contact manifold for later use. Let x be a point of a K-contact manifold $(M; \varphi, \xi, \eta, g)$. Then we can take a sufficiently small neighborhood U of x on which ξ is a regular vector field. Since the structure tensors φ, η and g are invariant under the action of the local 1-parameter group of transformations generated by ξ , the fibering

$$p:U\to \bar U=U/\xi$$

induces an almost Kähler structure on the base manifold \bar{U} . It is defined by

(1.5)
$$J\bar{X} = p_{\star}\varphi\bar{X}^{\star}, \quad \bar{g}(\bar{X},\bar{Y}) \circ p = g(\bar{X}^{\star},\bar{Y}^{\star})$$

for all $\bar{X}, \bar{Y} \in \mathcal{X}(\bar{U})$, where * indicates the horizontal lift of vector fields on \bar{U} with respect to η . From now on, a bar(-) is used systematically to distinguish objects in \bar{U} from the corresponding objects in U.

Sasaki manifolds are characterized by the local fibering as follows.

Proposition 1.B. A K-contact manifold is a Sasaki manifold if and only if each base manifold of a local fibering (1.4) is a Kähler manifold.

For more details see Blair [2] and Ogiue [12].

2. SYMMETRIES WHICH PRESERVE THE CHARACTERISTIC VECTOR FIELD

In this section we shall introduce the notion of ξ -preserving symmetries which are a natural generalization of the φ -geodesic symmetries in the sense of Takahashi [15].

Definition 2.1. Let $(M; \varphi, \xi, \eta, g)$ be a K-contact manifold, x a point of M and α the geodesic on M with initial velocity ξ_x . A ξ -preserving symmetry s_x (with base point $x \in M$) is a local diffeomorphism such that

- (1) the map s_x fixes every point on α , that is, $s_x \circ \alpha = \alpha$;
- (2) for each point y on α , s_x sends any φ -geodesic through y to a φ -geodesic through y;
 - (3) in a small neighborhood of x, the points on α are the only fixed points of s_x .

If there exists a least integer $k(\geq 2)$ such that $(s_x)^k$ is the identity map, then s_x is said to be of order k. The geodesic α with initial velocity ξ_x is called the axial geodesic of s_x (cf. lemma 1.A).

Remark. A φ -geodesic symmetry in the sense of Takahashi [15] is a ξ -preserving symmetry of order 2 in our definition.

For ξ -preserving symmetries of order 2, we have the following result.

Proposition 2.2. Let $(M, \varphi, \xi, \eta, g)$ be a K-contact manifold. Then the following two conditions are equivalent:

- (1) Each base manifold of a local fibering (1.4) is a locally symmetric Kähler manifold.
- (2) There exists an isometric ξ -preserving symmetry of order 2 for every point $x \in M$.

In this case each ξ -preserving symmetry is an automorphism, and the structure (φ, ξ, η, g) is Sasakian.

J. Inoguti, M. Sekizawa

Proof. The result follows immediately from Theorem 2.1 in [15], Theorem 7 in [4] and Definition 2.1. q.e.d.

Proposition 2.2 gives a characterization of isometric ξ -preserving symmetries of order 2 in terms of the local fibering. This proof is based on tensor calculations. In the rest of this section we consider ξ -preserving-symmetries of arbitrary order. First we discuss the existence of such symmetries on K-contact manifolds with local symmetries.

Theorem 2.3. Let $(M; \varphi, \xi, \eta, g)$ be a K-contact manifold, x a point of M, U a sufficiently small normal neighborhood of x on which ξ is regular, $p: U \to \bar{U} = U/\xi$ the local fibering, and (J, \bar{g}) the almost Kähler structure of \bar{U} induced by p. If there exists a family of isometric symmetries $\bar{s}_{\bar{x}}$ on (\bar{U}, \bar{g}) with base point $\bar{x} = p(x)$, then there exists a family of ξ -preserving symmetries on (U, g). Moreover, if $\bar{s}_{\bar{x}}$ is of order $k \geq 2$, then s_x is also of order k.

Proof. Let γ be any φ -geodesic from a point y on the axial geodesic α in U. Then $p \circ \gamma$ is a geodesic in \bar{U} . Let $s_x \circ \gamma$ be the horizontal lift of $\bar{s}_{\bar{x}} \circ p \circ \gamma$ starting at y. Then it is a φ -geodesic in U (cf. pp. 244-245 of Besse [1]).

The map s_x clearly fixes every point on α . Further, in U, the points on α are only fixed points of s_x because \bar{x} is an isolated fixed point of $\bar{s}_{\bar{x}}$. It is clear that s_x is of order k if $\bar{s}_{\bar{x}}$ is of order k.

This completes the proof of Theorem 2.3.

Remark. The above theorem gives an example of local S-rotations around curves in the sense of Nicolodi-Vanhecke [11]. In fact, let S(t) be a linear transformation on $T_{\alpha(t)}M$ given by

$$S(t)\xi = \xi$$
, $S(t)\bar{X}^* = (\bar{S}\bar{X})^*$ for all $\bar{X} \in T_{poo(t)}M$,

where \bar{S} is the tangent tensor of $\bar{s}_{p\circ\alpha(t)}$. Then, since the horizontal lift $(\bar{S}(p\circ\gamma)'(0))^*$ is the initial velocity of $s_x\circ\gamma$, the local diffeomorphism s_x satisfies the following defining condition of local S-rotations:

$$s_{\alpha} = \exp_{\alpha} \circ S \circ \exp_{\alpha}^{-1}$$
.

Here \exp_{α} denotes the exponential map of the normal bundle of α .

Conversely, if there exists a ξ -preserving symmetry s_x with base point x then the local fibering $p: U \to \bar{U} = U/\xi$ induces a local symmetry $\bar{s}_{\bar{x}}$ with base point $\bar{x} = p(x)$.

Theorem 2.4. Let $(M; \varphi, \xi, \eta, g)$ be a K-contact manifold, x a point of M, U a sufficiently small neighborhood of x such that $(U; \varphi, \xi, \eta, g)$ is a regular K-contact manifold, $p: U \to \bar{U} = U/\xi$ the local fibering, and (J, \bar{g}) the almost Kähler structure of \bar{U} induced by p. If

there exists a ξ -preserving isometric symmetry s_x with base point x then there exists a local isometric symmetry $\bar{s}_{\bar{x}}$ on \bar{U} with base point $\bar{x} = p(x)$. Further, the order of $\bar{s}_{\bar{x}}$ is k if s_x is of order k.

Proof. Since s_x is a fibre-preserving map, we can define a map $\bar{s}_{\bar{x}}:\bar{U}\to\bar{U}$ by

$$\bar{s}_{\bar{x}}(\bar{z}) = p \circ s_{x}(z),$$

where z is any point on the fibre $p^{-1}(\bar{z})$.

Let $\bar{X}_{\bar{z}}$ be a tangent vector to \bar{U} , and ζ the φ -geodesic in U with initial velocity \bar{X}_z^* . Then, clearly, $\bar{X}_{\bar{z}}$ is the initial velocity of a geodesic $\bar{\zeta} = p \circ \zeta$. Here we have

$$(2.2) p_* s_{x^*} \bar{X}_z^* = \bar{s}_{\bar{x}^*} \bar{X}_{\bar{z}}.$$

In fact, by (2.1),

$$p_* s_{x^*} \bar{X}_z^* = p_* (s_x \circ \zeta)'(0) = (p \circ s_x \circ \zeta)'(0)$$
$$= (\bar{s}_{\bar{x}} \circ p \circ \zeta)'(0) = (\bar{s}_{\bar{x}} \circ \bar{\zeta})'(0) = \bar{s}_{\bar{x}^*} \bar{X}_{\bar{z}}.$$

Now, since s_x is a local isometry, s_x sends a φ -geodesic to a φ -geodesic because of the conservation lemma. Hence s_x , sends any horizontal vector field to a horizontal vector field. Thus (2.2) implies that s_x , \bar{X}_z^* is the horizontal lift of $\bar{s}_{\bar{x}}$, $\bar{X}_{\bar{z}}$, that is,

$$s_z.\bar{X}_z^* = (\bar{s}_{\bar{z}}.\bar{X}_{\bar{z}})^*.$$

Hence $\bar{s}_{\bar{x}}$ is an isometry of (\bar{U}, \bar{g}) because s_x is an isometry of (U, g).

By the condition (3) of Definition 2.1, the points on α are the only fixed points of s_x in a small neighborhood of x. Hence \bar{x} is a isolated fixed point of $\bar{s}_{\bar{x}}$ because the axial geodesic α is the fibre over \bar{x} .

Thus $\bar{s}_{\bar{x}}$ is a symmetry with base point \bar{x} .

It is clear that $\bar{s}_{\bar{x}}$ is of order $k(k \ge 2)$ if s_x is of order k.

This completes the proof of Theorem.

Corollary 2.5. Under the assumptions in Theorem 2.4, if a ξ -preserving symmetry s_x is φ -preserving, then $\bar{s}_{\bar{x}}$ is a holomorphic isometry.

Proof. Because of a lemma due to Tanno [16], the φ -preserving map s_x is an isometry. Hence, by Theorem 2.4, $\bar{s}_{\bar{x}}$ is an isometry. Moreover, using (1.5), we have

(2.3)
$$J\bar{s}_{\bar{x}}.\bar{X}_{\bar{z}} = Jp_{*}s_{\tau}.\bar{X}_{z}^{*} = p_{*}\varphi s_{\tau}.\bar{X}_{z}^{*} = p_{*}s_{\tau}.\varphi \bar{X}_{z}^{*}$$

for all vectors \bar{X}_z at \bar{z} . Since $\varphi \bar{X}_z^*$ is a horizontal vector, there exists a φ -geodesic ζ with initial velocity $\varphi \bar{X}_z^*$. Hence

$$(2.4) p_* s_x \cdot \varphi \bar{X}_z^* = (p \circ s_x \circ \zeta)'(0) = (\bar{s}_{\bar{x}} \circ p \circ \zeta)'(0) = \bar{s}_{\bar{x}} \cdot p_* \varphi \bar{X}_z^* = \bar{s}_{\bar{x}} \cdot J \bar{X}_{\bar{z}}$$

for all vectors $\bar{X}_{\bar{z}}$. The equations (2.3) and (2.4) imply that $\bar{s}_{\bar{z}}$ is holomorphic. q.e.d.

J. Inoguti, M. Sekizawa

3. EXAMPLES OF ξ -PRESERVING SYMMETRIES

We shall apply our construction in the previous section to some examples of symmetries on base manifolds.

Example 3.1. A locally φ -symmetric space may be defined as a K-contact manifold with ξ -preserving isometric symmetries of order 2. In this case the structure is Sasakian and all the ξ -preserving symmetries are automorphisms (by Proposition 2.2). Well-known examples of locally φ -symmetric spaces are Sasaki manifolds of constant φ -sectional curvature, the Heisenberg group, the universal covering space of $SL(2; \mathbf{R})$ and SU(2) (Blair-Vanhecke [3]). See Takahashi [15] for other examples, also Kowalski-Węgrzynowski [9] and Jiménez-Kowalski [7] on classifications of φ -symmetric spaces.

Example 3.2. Let s_x be a local diffeomorphism on a K-contact manifold defined by

$$s_x = \exp_x \circ (\varphi_x + \eta_x \otimes \xi_x) \circ \exp_x^{-1}.$$

Then it is a ξ -preserving symmetry of order 4. This is an analogue of a J-rotation on an almost Hermitian manifold in the sense of L. Nicolodi-L. Vanhecke [10]. The first author of this paper has investigated this symmetry in [5].

Example 3.3. Let $(\bar{M}, \bar{g}, \{\bar{s}_{\bar{x}}\})$ be the space of dimension 4 given by Example III.53 and also Theorem VI.3 in Kowalski [8]. The underling Riemannian manifold (\bar{M}, \bar{g}) is the number space $\mathbb{R}^4(x, y, u, v)$ with metric

$$\bar{g} = \left(-x + \sqrt{x^2 + y^2 + 1}\right) du^2 + \left(x + \sqrt{x^2 + y^2 + 1}\right) dv^2 - 2y du dv \vartheta +$$

$$+ \lambda^2 \frac{(1 + y^2) dx^2 + (1 + x^2) dy^2 - 2xy dx dy}{x^2 + y^2 + 1},$$

where λ is a positive constant. A typical symmetry of order 3 at the origin (0,0,0,0) is the transformation

$$u' = \cos \frac{2\pi}{3} u - \sin \frac{2\pi}{3} v, \quad v' = \sin \frac{4\pi}{3} u + \cos \frac{4\pi}{3} v,$$

$$x' = \cos \frac{2\pi}{3} x - \sin \frac{2\pi}{3} y, \quad y' = \sin \frac{4\pi}{3} x + \cos \frac{4\pi}{3} y.$$

The space with this structure is a 3-symmetric almost Kähler manifold.

Let $M = \mathbb{R}^5(x, y, u, v, t)$ be the Riemannian product of \overline{M} and $\mathbb{R}(t)$. Then M has an almost contact structure whose characteristic vector field is a Killing vector field (see p. 35 of

[2] for details). Since, as seen easily, Theorem 2.3 is still valid for a pair of such manifolds M and \bar{M} , we have ξ -preserving symmetries of order 3. Because M is neither Sasakian nor cosympletic, M does not admit isometric φ -geodesic symmetries (of order 2) (see Proposition 2.2 and also [3]).

Remark. We can see, in Inoguti [6], that there also exist ξ -preserving symmetries of order 3 on nearly cosymplectic manifolds.

J. Inoguti, M. Sekizawa

REFERENCES

[1] A.L. BESSE, Einstein Manifolds, A Series of Modern Surveys in Mathematics, 10, Springer-Verlag, Berlin (1987).

- [2] D.E. BLAIR, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, Heidelberg, New York, (1976).
- [3] D.E. Blair, L. Vanhecke, Symmetries and φ-symmetric spaces, Tôhoku Math. J., 39 (1987), 373-383.
- [4] P. BUEKEN, L. VANHECKE, Reflections in K-contact geometry, Math. Rep. Toyama Univ. 12 (1989), 41-49.
- [5] J. INOGUTI, Rotations and φ-symmetric spaces, Math. J. Toyama Univ. 15 (1992), 123-130.
- [6] J. Inoguti, Nearly cosymplectic manifolds with rotations of order 3, to appear.
- [7] J.A. JIMÉNEZ, O. KOWALSKI, The classification of φ-symmetric Sasakian manifolds, preprint.
- [8] O. Kowalski, Generalized Symmetric Spaces, Lecture Notes in Math. 805, Springer-Verlag, Berlin, Heidelberg, New York, (1980).
- [9] O. KOWALSKI, S. WEGRZYNOWSKI, A classification of five-dimensional φ-symmetric spaces, Tensor N.S. 46, (1987), 379-386.
- [10] L. NICOLODI, L. VANHECKE, Rotations and Hermitian symmetric spaces, Monatsh. Math. 109, (1990), 279-291.
- [11] L. NICOLODI, L. VANHECKE, Isometric and harmonic rotations around a curve, to appear in Illinois J. Math.
- [12] K. OGIUE, On fiberings of almost contact manifolds, Kodai Math. Sem. Rep. 17 (1965), 53-62.
- [13] M. OKUMURA, Some remarks on spaces with a certain contact structures, Tôhoku Math. J. 14 (1962), 135-145.
- [14] B. O'NEILL, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
- [15] Τ. ΤΑΚΑΗΑSHI, Sasakian φ-symmetric spaces, Tôhoku Math. J. 29 (1977), 91-113.
- [16] S. Tanno, Some transformations on manifolds with almost contact and contact metric structures I, II, Tôhoku Math. J. 15 (1963), 140-147, 322-331.

Received February 5, 1991
J. Inoguti, M. Sekizawa
Department of Mathematics,
Tokyo Gakugei University,
Nukuikita-machi 4-1-1,
Koganei-shi, Tokyo 184, Japan