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SYMMETRIES WHICH PRESERVE THE CHARACTERISTIC VECTOR FIELD OF
K-CONTACT MANIFOLDS

JUN-ITT INOGUTI, MASAMI SEKIZAWA

As 1s well-known locally symmetric K -contact manifolds are spaces of constant curvature
([13]). This means that having isometric local geodesic symmetries is a very strong restriction
for K -contact manifolds. Thus other classes of isometries shall fit for contact geometry. For
example, T. Takahashi [15] has introduced the notion of p-geodesic symmetries on Sasaki
manifolds and also on K -contact manifolds. Since then, manifolds with such isometries have
been studied extensively.

In this paper we generalize the notion of p-geodesic symmetries. Because we notice that
our diffeomorphisms preserve the characteristic vector field £ of K-contact manifolds, we
call them symmetries which preserve the characteristic vector-field, or £€-preserving symme-
tries. Our idea for a construction of such local diffeomorphisms on K -contact manifolds is the
lifung of symmetrics on almost Kihler manifolds through the local fibering p : M — M/¢
of K -contact manifolds.

After recalling elementary facts on contact geometry in Section 1, we devote Section 2 to
our definition of symmetries which preserve the characteristic vector field. Also we construct
such a family of symmetries, which is an example of local S-rotations around curves in the
sense of L. Nicolodi and L. Vanhecke [11]. In Section 3 we give some examples of our
symmetries.

We thank Professor L. Vanhecke for useful discussions.

1. CONTACT GEOMETRY

A (2n+ 1)-dimensional manifold M is said to be an almost contact manifold if the structure
group of its tangent bundle is reducible to U(n) x 1. This is equivalent to the existence of a
tensor field ¢ of type (1,1), a vector field £ and a 1-form 7 satisfying

(1.1) . p’=—I+n®E ) =1.
From these conditions we can deduce that

wE=0, nop=0.
Moreover, M admits a Riemannian metric g satisfying
(1.2) 9(pX, oY) = g(X,Y) — n(X)n(Y)

forall X, Y € X (M). Here X (M) denotes the Lic algebra of all vector fields on M. Such
a metric g 1s called a compatible metric of the almost contact manifold (M ¢, €, n). With
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respect to this metric g, the 1-form n is metrically equivalent to £, thatis, n(X) = g( X, €)
forall X € X (M). Hence £ is a unit vector field with respect to g. A structure (¢, £,7,9)
on M 1s called an almost contact Riemannian structure on M, and a manifold M together
with these structure tensors is said to be an almost contact Riemannian manifold. Further, we
can define a 2-form & on M by

O(X,Y) =g(X,pY)

forall X,Y € X (M). The 2-form @ is called the fundamental 2-formof (M ; p,£€,7,9).
If @ satisfies @ = dn, then M is said to be a contact Riemannian manifold with contact
Riemannian structure (p, €, n,g). On a contact Riemannian manifold (M; p,£,n,g), the
1-form 7 is called the contact formon M, and the vector field £ is called the characteristic
vector fieldon M with respect to the contact form 7.

Next, if the characteristic vector field £ of a contact Riemannian manifold M 1s a Killing
vector field with respect to the metric g, then M is said to be a K -contact manifold. This 18
characterized by the condition

(1.3) Vi€=—pX

forall X € X (M). Here V denotes the Levi-Civita connection of (M, g). It is obvious
that each integral curve of £ 1s a unit speed geodesic on M.

The following lemma is a result of the conservation lemma in Riemannian geometry (cf.
O’Neill [14], p. 252).

Lemma 1.A. Let (M; p,&,m,9) bea K-contact manifold. Then, for any geodesic y on M,
the restriction §|, is a Jacobi field and g(+',£) is constant along ~y.

Lemma 1.A implies that geodesics which are initially orthogonal to £ remain orthogonal
to €. Such a geodesic is called a ¢-geodesic.
If an almost contact Riemannian manifold (M ¢, £, g) satisfies

(Vxp)Y = g(X,Y){ —n(Y)X

forall X, Y € X (M), then (M; p, €, n, g) is said to be a Sasaki manifold. A Sasaki mani-
fold is a K -contact manifold.

Finally, we recall the basic facts about the local Riemannian fibering of a contact manifold
for later use. Let z be a point of a K -contact manifold ( M; ¢, £, n,g). Then we can take
a sufficiently small neighborhood U of z on which ¢ is a regular vector field. Since the
structure tensors ¢, n and g are invariant under the action of the local 1-parameter group of
transformations generated by €, the fibering

(1.4) p:U -sU=UJE
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induces an almost K#hler structure on the base manifold U. It is defined by
(1.5) JX =p,pX*, §(X,Y)op=g(X* Y

for all X,Y € % (U), where x indicates the horizontal lift of vector fields on U with re-
spect to 1. From now on, a bar(-) is used systematically to distinguish objects in U from the
corresponding objects in U.

Sasaki manifolds are characterized by the local fibering as follows.

Proposition 1.B. A K -contact manifoldis a Sasaki manifold if and only if each base manifold
of a local fibering (1.4) is a Kdhler manifold.

For more details see Blair [2] and Ogiue [12].

2. SYMMETRIES WHICH PRESERVE THE CHARACTERISTIC VECTOR FIELD

In this section we shall introduce the notion of £-preserving symmetries which are a natural
generalization of the ¢ -geodesic symmetries in the sense of Takahashi [15].

Definition 2.1. Let (M; p,€,n,9) be a K-contact manifold, z a point of M and o the
geodesicon M withinitial velocity . A £ -preserving symmetry s_ (with base point x € M)
is a local diffeomorphism such that

(1) the map s,_ fixes every pointon «, thatis, s_o a = qa;

(2) for each point y on «, s, sends any p-geodesic through y to a p-geodesic through
Y

(3) in a small neighborhood of x, the poinis on « are the only fixed points of s..

If there exists a least integer k(> 2) such that (SI)“‘ is the identity map, then s_ is said
to be of order k. The geodesic o with initial velocity €, is called the axial geodesic of s_ (cf.
lemma 1.A).

Remark. A p-geodesic symmetry in the sense of Takahashi [15] is a £ -preserving symmetry
of order 2 in our definition.

For {-preserving symmetries of order 2, we have the following result.

Proposition 2.2. Let (M, p,€,n,9) be a K-contact manifold. Then the following two con-
ditions are equivalent:
(1) Each base manifold of a local fibering (1.4) is a locally symmetric Kdhler manifold.
(2) There exists an isometric -preserving symmetry of order 2 for every point T € M .
In this case each §-preserving symmetry is an automorphism, and the structure (p, £, 1, g)
is Sasakian.
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Proof. The result follows immediately from Theorem 2.1 in [15], Theorem 7 in [4] and Defi-
nition 2.1. qg.ce.d.

Proposition 2.2 gives a characterization of isometric £-preserving symmetries of order 2
in terms of the local fibering. This proof 1s based on tensor calculations. In the rest of this
section we consider £-preserving-symmetries of arbitrary order. First we discuss the existence
of such symmetries on K -contact manifolds with local symmetries.

Thecrem 2.3. Let (M; p,€,n,9) bea K-contact manifold, x a point of M, U a sufficiently
small normal neighborhood of = on which ¢ is regular,p: U — U = U/€ the local fibering,
and (J,§) the almost Kdhler structure of U induced by p. If there exists a family of isometric
symmetries 3; on (U, §) withbase point T = p(x), then there exists a family of §-preserving
symmetries on (U, g). Moreover, if 3- isof order k > 2, then s_ is also of order k.

Proof. Let v be any p-geodesic from a point y on the axial geodesic o in U. Then p o~y
is a geodesic in U. Hence 3. o po v is a geodesic in U. Let s_ o« be the horizontal lift of
3. o po« starting at y. Then itis a p-geodesic in U (cf. pp. 244-245 of Besse [1]).

The map s, clearly fixes every point on «. Further, in U, the points on « are only fixed
points of s, because z is an isolated fixed point of 5;. It is clear that s, is of order k if 5;
is of order k.

This completes the proof of Theorem 2.3.

Remark. The above theorem gives an example of local S-rotations around curves in the
sense of Nicolodi-Vanhecke [11]. In fact, let S(t) be a linear transformation on T, M
given by

SE=¢ SHX*=(SX)* forall X €T, yM,

where S is the tangent tensor of 3. Then, since the horizontal lift (S(po~)(0))* is
the initial velocity of s_ o 4, the local diffeomorphism s_ satisfies the following defining
condition of local S-rotations :

s, = exp oSoexp;'.
Here exp_ denotes the exponential map of the normal bundle of «.

Conversely, if there exists a £-preserving symmetry s_ with base point z then the local
fibering p : U — U = U/€ induces a local symmetry s, with base point T = p(z).

Theorem 2.4. Let (M; ¢, £,n,g) bea K-contact manifold, x a point of M,U a sufficiently
small neighborhood of = such that (U; p,&,n,9) isaregular K -contact manifold, p: U —
U = U/¢ the local fibering, and (J,g) the almost Kdhler structure of U induced by p. If



Symmetries which preserve the characteristic vector field of K -contact manifolds 233

there exists a §-preserving isometric symmetry s_ with base point x then there exists a local
isometric symmetry s. on U with base point © = p(x). Further, the order of S; IS k if s,
is of order k.

Proof. Since s, is a fibre-preserving map, we can define a map s : U — U by
(2.1) $;(2) = pos,(2),

where z is any point on the fibre p~!(z).
Let X; be a tangent vector to U, and ¢ the p-geodesic in U with initial velocity X?.
Then, clearly, X, is the initial velocity of a geodesic { = p o {. Here we have

(2.2) P8, X, =3
In fact, by (2.1),

P, X; = P.(5,04)(0) = (pos, () (0)

=(330p0¢)'(0) = (5;0¢)'(0) = 3;.X;.
Now, since s_ is a local isometry, s_ sends a p-geodesic to a p-geodesic because of the
conservation lemma. Hence s_. sends any horizontal vector field to a horizontal vector field.
Thus (2.2) implies that s_.X* is the horizontal lift of 5..X ., that is,

s X) = (3:..X;)".

Hence 5, is an isometry of (U, g) because s_ is an isometry of (U, g).

By the condition (3) of Definition 2.1, the points on « are the only fixed points of s_ in a
small neighborhood of z. Hence Z is a isolated fixed point of 5. because the axial geodesic
« 1s the fibre over 7.

Thus 5. is a symmetry with base point z.
Itis clear that 5. is of order k(k > 2) if s_ is of order k.
This completes the proof of Theorem.

Corollary 2.5. Under the assumptions in Theorem 2.4, if a {-preserving symmetry s_ is
p-preserving, then s is a holomorphic isometry.

Proof. Because of a lemma due to Tanno [16], the p-preserving map s_ is an isometry.
Hence, by Theorem 2.4, 5. is an isometry. Moreover, using (1.5), we have

(2.3) J5..X; = Jp,s,. X} = p,ps,. X} =p,s,.0X]

for all vectors X, at z. Since rp}‘_C; 1s a horizontal vector, there exists a p-geodesic ¢ with
initial velocity X *. Hence

(2.4) P8, 0X; = (pos, 0¢)'(0) = (5;0p0()(0) = 3;.p,pX; = 5,.JX

for all vectors X ;- 1he equations (2.3) and (2.4) imply that s; is holomorphic. g.e.d.
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3. EXAMPLES OF {-PRESERVING SYMMETRIES

We shall apply our construction in the previous section to some examples of symmetries on
base manifolds.

Example 3.1. A Jocally p-symmetric space may be defined as a K -contact manifold with
§-preserving i1sometric symmetries of order 2. In this case the structure is Sasakian and all
the £-preserving symmetries are automorphisms (by Proposition 2.2). Well-known examples
of locally ¢-symmetric spaces are Sasaki manifolds of constant p-sectional curvature, the
Heisenberg group, the universal covering space of SL(2; R) and SU(2) (Blair-Vanhecke
[3]). See Takahashi [15] for other examples, also Kowalski-Wegrzynowski [9] and Jiménez-
Kowalski [7] on classifications of ¢-symmetric spaces.

Example 3.2. Let s, be a local diffeomorphism on a K -contact manifold defined by

s, =exp,o(p, +n,QE,) 0 exp;I :

Then it is a £-preserving symmetry of order 4. This is an analogue of a J-rotation on an
almost Hermitian manifold in the sense of L. Nicolodi-L. Vanhecke [10]. The first author of
this paper has investigated this symmetry 1n [5].

Example3.3. Let (M, g, {3;}) bethe space of dimension 4 given by Example I11.53 and also

Theorem V1.3 in Kowalski [8]. The underling Riemannian manifold (M, g) is the number
space R4 (z,y, u, v) with metric

g = (—:.c+ \/mz + y2 + 1) du® + (n:+ \/mz + y? + 1) dv? — 2 ydudvid+

.32 (1+ y2)dz? + (1 + 2%)dy? — 2zydxdy
2 + y? + 1 !

where ) is a positive constant. A typical symmetry of order 3 at the origin (0,0,0,0) is the
transformation

u' = cos 2ﬂu sin Z.—ﬂ-u v/ = sin 4—£u + COS if—u
3 37 3 3

T’ = COS Ez — §in ?—Ey y' = sin ﬂm + COS 4———ﬂy.
3 37 3 3

The space with this structure is a 3-symmetric almost Kdhler manifold.
Let M = R3(z,y,u,v,t) be the Riemannian product of M and R(t). Then M has an
almost contact structure whose characteristic vector field is a Killing vector field (see p. 35 of
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[2] for details). Since, as seen easily, Theorem 2.3 is still valid for a pair of such manifolds M
and M, we have £-preserving symmetries of order 3. Because M is neither Sasakian nor co-
sympletic, M does not admit isometric p-geodesic symmetries (of order 2) (see Proposition
2.2 and also [3]).

Remark. We can see, in Inoguti [6], that there also exist £-preserving symmetries of order 3
on nearly cosymplectic manifolds.
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