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EXISTENCE RESULTS FOR A CLASS OF NONHOMOGENEOUS
ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEYV EXPONENT

RAFAEL CASTRO, MARIO ZULUAGA

Abstract. In this paper we study the problem Au + u|u)*' =% + f(z) =0 inQ,u(z) =0
on 0Q. Since the embedding of HL(Q) in L*'(Q) is not compact, classical variational
and fixed-points approaches can not be applied to find solutions. We study that problem by
making use of a fixed-point Theorem as well as one from approximation methods.

1. INTRODUCTION

Let 2 be abounded domainin R™, n > 3. In this paper we are concerned with the problem
of finding u € H}(Q) satisfying the nonlinear elliptic equation

Au+ ulul* 2+f(z) =0 in Q
u(z) = 0 on 992,

(1.1)

2
Z_n>3.

n_2' =

The exponent 2* is critical for the Sobolev embedding of H}(Q) in L?"(Q). This
embedding is not compact and therefore classical variational and fixed-points approaches can
not be applied to find solutions of (1.1). In this paper we study this problem by making use
of a fixed-point Theorem as well as one from approximation methods. This approach has
already been used in [16] where the second author has studied a closely related problem. The
prcblem (1.1) has already been studied in [14] and [5] since a variational point of view and
in [10] with arguments of set valued functions.

In[14),if f#0 and

when f € L*°(Q2),2* =

(1.2) fn fu < e (llully ) "

for all u € H}(Q) and ||u|l,. = 1, where ¢, = , then (1.1) has,

2
4 n—2 =
n—2 \n+2

at least, a weak solution. And if the inequality (1.2) is strict, (1.1) has, at least, two weak

solutions. In particular (1.2) certainly holds if

(1.3) £l < €,8%,

where S is the best Sobolev constant, (cf. [13]), and where H~! denotes the dual Space
(Hg(2))*.
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For f > O itis know that (1.1) cannot admit positive solution when || f]| ;-1 is too large,
see [7], (11] and [15].

It would seem that (1.3) is sharp, but here we give, in some instances, a better esti-
mate than (1.3). For example in the case f € L?(Q) and n > 4. We will prove that

_ +2 1 1 : ,

if ||fll,. < cﬂSE’r, where vt e = 1, then (1.1) has a weak Solution. Notice that
1 _1

WAl < 1277 Z||fll, = lIfll, (f we assume, whitout loss of generality, that |QQ| = 1).

n—2

n— 1

2
Now, if f € L*(Q) then ||f|l, = ||f||4-:1- On the other hand S > n( ) . See [2],

p. 41. Then S > 1 for n > 4. Thus we have that '::1”,_5‘51L < ﬂnSnﬁz', for n > 4. It shows us
that our estimate is better than (1.3).

The problem (1.1) has been widely studied in the case f = 0. If for example 2 is star-
shaped, (1.1) has no nonzero solutions. It is a consequence of Pohozaev’s identity (cf. [12]).
On the other hand, by a remarkable result of Bahri and Coron, (cf. [1]), the Topology of
2 plays an important role which may cancel Pohozaev’s obstruction. They show that if
Q C R" n > 3, is a bounded domain with nontrivial Topology the problem (1.1), in the
case f = 0, has a nonzero solution. For a survey and perspectives about the problem (1.1)
we refer the reader to [3], [4] and [6].

2. NOTATIONS AND PRELIMINARIES
Letg : Q x R — R defined as g(z,u) = u|u]*~' + f(z),1 < s < N =2*~1. Then

the operator of Nemytsky G : L**1(Q) — Li';_l(ﬂ) defined as G(u)(zx) = g(z,u(x)) is
continuous and bounded, so that forevery € > O there exists r = r(€) such thatif ||u]|,,, < 7
then

”Q(I,U) _ Q(I:U)”;-;_l i €
and we have the following incquality, cf. [8] p. 26,

3

s+1 s+]
(2.1 ||g<z,u)nﬁ+?1_«;((”“”*“) +1) e+ 11fll 1.

7

We will indicate the norm in LP(Q) with ||- ||pi Itis casy to see that for g( z, u) arelationship

between e and r can be taken as € = r°. Itis well known that ||ull,,, < K(s)||u||, ,, where

1 1 ]
(2.2) K(s) = —=|Q|5*T 17

VS
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Definition 2.1. We say that u € H}(Q) is aweak solutionof (1.1)ifforall v e H}(Q), s =
N,

(2.3) (u,v); 2 =/mg(:t:,u)u.

For u € Hy(Q) fixed, the right side of (2.3) defines a linear continuous functional, then by
Riesz’s Theorem there exists F, : Hy(Q) — Hy(K) such that

(2.4) (Fy(u),v) 5 =/9(ﬂ:,u)v-

{2

Then u € H}(Q) is a weak solution of (1.1) if and only if u is a fixed point of F,,. Itis
well known thatonly for s < 2* — 1 = N, F 1s compact.

3. THE MAIN RESULTS
Our first result is the following

Theorem 3.1. Assume that f € L*°(£2) and suppose that

n+ 2
. < ¢, 8%

(3.1) I/

then the problem (1.1) has, at least, a weak solution if we assume that 02 is sufficiently
smooth.

Proof. First we will consider the following problem

Au+ ulul* ' f(z) =0 in Q
(3.2)
u(zx) =0 on 002,
where 1 < s < N = 2* — 1. By (2.1), (2.4) and by using ||u|[,,; < K(s)||u]|,, we see
that (3.2) has a weak solution if there exists a > 0 such that for all ||ul}, , = «

T

||“||1,2 b wT 2
(3.3) K(s) + 1 €+ ||f||;,1;_1, K(s)||ull; 2 <llullf,-

See [9] p. 107. Since € = r* and we can take e sufficiently small we conclude that (3.2) has
a weak solution if there exists o« > 0 such that

(3.4) (K(s))*'a® + K(s)|Iflla1 < a.
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It is easy to see that (3.4) has the solution

s ) 1 =T
(3-3) = (sme)
if
(3.6) 1fllas, < ———
. +1 .
T (K (s) T

Now, since ||f||,_? — ||fll;+ if s = N = 2* — 1 and the right side of (3.6) converges to

the right side of (3.1) we conclude the existence of s, < N such that for all s € (sy, N)
the inequality (3.6) holds and there exists «,, as in (3.5), satisfying (3.4). That is, for all
8 € (8¢, N) the problem (3.2) has a weak solution u,. Also we know that ||u,||, , < a,,

and since {a,, s € (85, N)} is bounded, it follows that {u,} is bounded as well. Then there
exists a subsequence of {u,}, that we have labeled in the same form, such that u, — u,, for

some u, € H} (). Furthermore, there exists a subsequence of {u,}, labeled in the same
form, such that 4, — u,, strongly in H}(Q). Infact, let t € (s, N) fixed and let A be a
bounded subset of H}(£2). Then for s > t, s near t, and for u,v € A we have

|F,(v) — F(v)|]; 2 = sup 1{|<1u=lu-|*"‘ — vl 8), 1}

< o lulul* = vlol~"]as1
< cicyllulul’™ = vlvl |y

t—1
) — v]y[*?

s=1

s—t
ulul T (|ulul T

= C,Cy 1
s—t t+1 t_*l-Lr
”u]urf_ - v
< ¢ ey — 1 41 €.
T

Since ¢ = r* and we can take r arbitrarily small, we obtain

t
< 16 |Ju = vlftyy + o(1)

.
B IF® - E®Ia < e Julul®T - of
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as s — t, where

t

a—t
o(1) = sup c,c, (ﬂulul"‘“ i PP Ilu——vI|§+1) -

v ucA
Now, since {u,}, u, = F'(u,), is a bounded sequence in H,:l, (€2) thus by (3.7) we have
(38) ”ua - ut”l,?. < €1 Clllu‘a - t"’t”:+1 + o(1).

Now, we do not lose generality by assuming v, — u, in L**!(Q). In fact, since {u,} is
bounded and the embedding Hj(Q) «— L*'(Q) is compact u, — @, in L*!(Q). Then,
by (3.7) we get &, = F(%,). Thus we can take u, = #,. By using (3.8) we get that {u,}
has a Cauchy’s subsequence, then u, — u,, strongly. Our next step is to show that u,, is a
weak solution of (1.1). First let us notice that since f € L*(£2), by an iterative argument
(bootstrapping procedure) we can see that u, € C°#(Q),8 € (0,1), and since 3Q is

smooth, u, 1s, in particular, continuous on Q  see[2] p. 50. We will prove that u, is a weak
solution of (1.1) making use of the following diagram

A

(wlud ™ 4 fv) s (M ),
s - N|C rs— N\ D Bls—iN
(unluny™" + £,v), rfﬁ * (h+ f,v),
rsN\ F I|H

(“N|“N|N—l + f,v),
1
(un, ”)1,2

The 1dentity I shows us that u,, € H[}(Q) 1S a weak solution of (1.1). We proceed now to
establish the displayed convergences.

VERIFICATION OF CONVERGES

A) We see that the convergence A holds by using the following two facts: a) for all v €
H}(Q) fixed, (.,v), defines a continuous functional on L? () and b) since u, is conti-
nuous we have, by Lebesgue’s dominated convergence Theorem, that

uﬂluﬁlr_l - ulluﬂlﬁ_l L r— N'-'
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on L*"(Q).

B) The sequence {u,} is bounded in H§(Q) and thus is bounded in L?"(Q) as well.
Furthermore, Nemytsky’s operator L2'(Q) — L? (Q) defined by u|u|V~! is bounded, so
that {u,|u |V~ s € (sy,N)} is bounded in L? (Q) and therefore there is a subsequence,
labeled in the same form, of {u,|u,|¥~'} and h € L?" (Q) such that B holds.

C) Since u, — uy, we have that u |u,|"™! — uyluy|™,s = N, in L+rr_1(ﬂ). Then
the convergence C holds.
D) We claim that for each € > O there exists s, = s,(¢€) such that

€
~ )

(39) I(“alualr_l + ft”)Z - (uNIHHIT_l + f! U)ZI < 2

forall s € (s,,N) andforall r € [s,, N]. In fact:

r—1 If“

|<“a|”a|r_l = uNI“’N/ V)| < ||U".grl'“",srrn1 —upluy lll@"UHﬁ;

< dlluglu ™ = uylugl™ Mzt lollye,

(3.10)

r+l

U — u r+1 T
g (” 3 6r+{f”r+1 + 1) 9":“”””4.1

+l
= (Jlu, - “N”:i + 5”1) 7 c||v]|pets

where @ = 6" and ¢ = |Q |¥I+_TFFJ:". Since § can be taken arbitrarly small we obtain from
(3.10)

(3.11) (uglu )™ — uplun|™™v)2) < Hlu, = unllive lvllyer (¥ + d),

for some d > 0. Let t; < N suchthat |ju, — uy||y.; < 1 for s > t,, then by (3.11) we
have

(3.12) (uglu "™ = upluy ™", v)a] < llu, = upllRallv]lper (V1 + @),

for s > t,. By (3.12) and since u, — u,, in H)(Q) we get (3.9). Now, by using (3.9), the
convergence B and that {u, } are continuous it is easy to see that the double limit D holds.
E) Follows from C, D and F.
F) Since uyuy|™'v < (Juy|V+1)|v| if |up| > 1, Lebesgue’s dominated convergence
Theorem tells us that F holds.
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H) It is a consequence of D and the fact that
<“a|“a|a_1 + fiv) = (F,(1,),v); 2 = (u,,v)1 2 = (uy, V)12,
if s — N. The proof is complete. o

The following Theorem takes on the same steps of Theorem 3.1 and then its proof will be
left out

Theorem 3.2. Suppose that

(3.13) 2 S pe)f < S,

Then if f € L*™°(2) satisfies

(3.14) | f

+2 IE,%' 4
z+gcn(1 2?&”9&) z”f%(l)% ,

for n> 3, the following problem has a week solution

Au+ du+ ulul* *+f(z) =0 in Q
(3.15)
u(z) =0 on 0Q2.

Remark. For )\ = 0 the estimate (3.14) does not coincide with (3.1), therefore (3.14) is not
sharp. For f > 0 and A > O the solutions of the problems (1.1) and (3.15) are positive
solutions. This is a consequence of maximum principle.
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