REMARKS CONCERNING THE SEPARABLE QUOTIENT PROBLEM

JERZY KAKOL, WIESLAW ŚLIWA

1. INTRODUCTION

One of the famous unsolved problems of Functional Analysis is whether every infinite dimensional Banach space

(*) E has a separable infinite-dimensional quotient.

Likely this problem has been considered since 1932, but the first mentions connected with this question appear in [8] and [5]. It is known that every infinite-dimensional reflexive Banach space, or even every infinite-dimensional WCG Banach space, has an infinite-dimensional separable quotient, [12], Corollary 15.3.7.

For a Banach space E condition (*) is equivalent to each of the following conditions (cf. [1], [4], [9], [10]):

- (a) E has a strictly increasing sequence of closed subspaces of E whose union is dense in E.
 - (b) E has a dense non-barrelled subspace.
 - (c) E has a dense proper subspace dominated by a Banach (or Frechet) space.

It is known that every non-normable Frechet space as well as every (LF)-space has an infinite-dimensional separable quotient, [6], [9], [11].

For F-spaces, i.e. metrizable and complete topological vector spaces (tvs), the separable quotient problem has been solved negatively: Popov, [7], showed that for every non-atomic measure space (Ω, Σ, μ) with $|\Sigma| > 2^{\aleph}o$ there exists a subset Ω_1 of Ω with $\mu(\Omega_1) > 0$ such that the space $L^p(\Omega_1), 0 , has no infinite-dimensional separable quotient.$

Because $L^p(\Omega_1)$ densely, properly and continuously includes $L^1(\Omega_1)$, the space $L^p(\Omega_1)$ has property (c) and property (b) (where barrelledness is replaced by ultrabarrelledness in the sense of Iyahen [2]). As easily seen $L^p(\Omega_1)$ satisfies also property (a).

Although problem (*) remains unsolved, we obtain several sufficient (and necessary) conditions for a tvs E to have an infinite-dimensional separable quotient E/M whose topological dual (E/M) separates points of E/M from zero. In this case we shall write: E has a quotient. Among the others we generalize a known result for Banach spaces by showing that every infinite dimensional dual-separating F-space which is WCG has a quotient. Developing ideas found in papers mentioned above we obtain the relationship between conditions (*), (a), (b), (c) but considered in the category of topological vector spaces.

The terminology and notations are, for the most part, those of [3]. Let (E, τ) be a tvs over the field $\mathbb K$ of either real or complex numbers. By E' we denote the topological dual

J. Kakol, W. Sliwa

of (E, τ) . It is easy to see that for a subspace M of (E, τ) the following assertions are equivalent:

- (i) M is weakly closed, i.e. closed in the weak topology $\sigma(E, E')$ of (E, τ) .
- (ii) The weak topology of the quotient space $(E/M, \tau/M)$ is Hausdorff.
- (iii) The space $(E/M, \tau/M)$ is dual-separating, i.e. (E/M)' separates points of E/M from zero.

We shall need several times the following variant of the Hahn-Banach theorem, cf. [3], Corollary 7.3.6:

Let V be a weakly closed absolutely convex subset of a tvs (E, τ) . Then for every $x \notin V$ there exists $f \in V^0$ such that f(x) > 1, where $V^0 = \{g \in E' : |g(y)| \le 1 \text{ for all } y \in V\}$.

By m = m(E, E') we denote the finest locally convex topology on E which is weaker than τ . The absolutely convex hulls of neighbourhoods of zero in (E, τ) form a fundamental system of neighbourhoods of zero for m. Clearly $\sigma(E, E') \leq m(E, E') \leq \tau$. If (E, τ) is a dual-separating ultrabarrelled space, then (E, m(E, E')) is a (Hausdorff) barelled space.

Finally, we shall say that (E, τ) is diminated by an F-space if E admits a finer metrizable and complete vector topology.

2. RESULTS

As we mentioned a Banach space E has a *quotient* if E has property (a). Our first proposition extends this result to tvs.

Proposition 1. Let $E = (E, \tau)$ be a tvs. The following assertions are equivalent:

- (i) E has a quotient.
- (ii) There exists a strictly increasing sequence (E_n) of weakly closed subspaces of E whose union is dense in E.
- (iii) There exists a biorthogonal sequence $((x_n, f_n)) \subset E \times E'$ such that $(\operatorname{sp}(x_k : k \in \mathbb{N})) + \cap (f_k^{-1}(0) : k \in \mathbb{N})$ is dense in E.

Proof. (i) \Rightarrow (ii): Assume that $Z:=(E/M,\tau/M)$ is a quotient. Let (y_n) be a linearly independent sequence in Z such that $\operatorname{sp}(y_n:n\in\mathbb{N})$ is dense in Z. Since the quotient map $Q:E\to Z$ is weakly continuous and open, $E_n:=Q^{-1}(\operatorname{sp}(y_i\dots y_n))$ is a weakly closed proper subspace of $E,n\in\mathbb{N}$, and $\bigcup E_n$ is dense in E.

(ii) \Rightarrow (iii): We may assume that $\dim(E_{n+1}/E_n) \geq n$ for all $n \in \mathbb{N}$. We construct a biorthogonal sequence $((x_n,f_n)) \subset ExE'$ such that $x_n \in E_{n+1}$ and $f_n \in E_n^0$ for all $n \in \mathbb{N}$. Let $x_1 \in (E_2 \setminus E_1)$. Then there exists $f_1 \in E_1^0$ such that $f_1(x_1) = 1$. Suppose we have already found $(x_1,f_1)\dots(x_n,f_n)$ as claimed. Let

$$x_{n+1} \in (E_{n+2} \cap f_1^{-1}(0) \cap \dots \cap f_n^{-1}(0) \setminus E_{n+1}).$$

Then there exists $f_{n+1} \in E_{n+1}^0$ such that $f_{n+1}(x_{n+1}) = 1$.

Since $E_{n+1} \subset (\operatorname{sp}(x_1, x_2, \dots, x_n) + \cap (f_k^{-1}(0) : k \in \mathbb{N}))$ for all $n \in \mathbb{N}$, so $(\operatorname{sp}(x_k : k \in \mathbb{N}) + \cap (f_k^{-1}(0) : k \in \mathbb{N}))$ is dense in E.

(iii)
$$\Rightarrow$$
 (i): $E/\cap (f_k^{-1}(0): k \in \mathbb{N})$ is a quotient.

In order to prove our next result we shall need the following simple Lemma; its proof is obvious.

Lemma 1. Let V be a weakly closed absolutely convex subset of a tvs (E, τ) and L a finite-dimensional subspace of E. Then (V + L) is weakly closed in (E, τ) .

Proposition 2. Let (E, τ) be a tvs such that

- (i) E contains an increasing sequence (V_n) of weakly closed absolutely convex subsets of E whose union is linearly dense in (E, τ) .
- (ii) E contains a subspace E_0 dominated by an F-space (E_0, τ_0) such that $\dim(E_0/E_0 \cap \operatorname{sp}(V_n)) = \infty$ for all $n \in \mathbb{N}$. Then (E, τ) has a quotient.

Proof. Let (U_n) be a basis of balanced neighbourhoods of zero in (E_0, τ_0) such that $U_{n+1} + U_{n+1} \subset U_n$, $n \in \mathbb{N}$. First we construct a biorthogonal sequence $((x_n, f_n)) \subset E \times E'$ such that $x_n \in U_n$ and $f_n \in V_n^0$ for all $n \in \mathbb{N}$. Choose $x_1 \in U_1 \cap (E_0 \setminus \operatorname{sp}(V_1))$. Then there exists $f_1 \in V_1^0$ with $f_1(x_1) = 1$. Suppose we have found $(x_1, f_1), \ldots, (x_n, f_n)$ as claimed. Choose

$$x_{n+1} \in U_{n+1} \cap [(E_0 \cap f_1^{-1}(0) \cap \dots \cap f_n^{-1}(0) \setminus (E_0 \cap \operatorname{sp}(V_{n+1} \cup \{x_1, \dots, x_n\}))];$$

this is possible since $E_0 \cap f_1^{-1}(0) \cap \ldots \cap f_n^{-1}(0)$ has finite codimension in E_0 and $E_0 \cap \operatorname{sp}(V_{n+1} \cap \operatorname{sp}(x_1, \ldots, x_n))$ is a subspace of E_0 of infinite-codimension. Then there exists $f_{n+1} \in (V_{n+1} + \operatorname{sp}(x_1, x_2, \ldots, x_n))^0$ with $f_{n+1}(x_{n+1}) = 1$.

For every $m \in \mathbb{N}$ and $y \in V_m$ the series $\sum_{n=1}^{\infty} f_n(y) x_n$ converges in (E_0, τ_0) , hence

also in
$$(E.\tau)$$
. If $y_0 = \sum_{n=1}^{\infty} f_n(y) x_n$, then $f_n(y-y_0) = 0$ for all $n \in \mathbb{N}$, so $(y-y_0) = 0$

$$y_0) \in M$$
, where $M = \bigcap_{k \ge 1} f_k^{-1}(0)$, and $y \in \overline{M + \operatorname{sp}(x_n : n \in \mathbb{N})}^{\tau}$. Hence $\operatorname{sp}\left(\bigcup_{k \ge 1} V_k\right) \subset$

 $\overline{M + \operatorname{sp}(x_n : n \in \mathbb{N})}^{\tau}$, so the space $M + \operatorname{sp}(x_n : n \in \mathbb{N})$ is dense in (E, τ) . Therefore $\operatorname{sp}(x_n + M : n \in \mathbb{N})$ is dense in $(E/M, \tau/M)$. We proved that E/M is a quotient.

280 J. Kakol, W. Sliwa

Corollary 1. Let (E, τ) be a tvs which contains a sequence (V_n) as in Proposition 2. If E contains a compact absolutely convex subset K such that $\dim(\operatorname{sp}(K)/\operatorname{sp}(K\cap V_n) = \infty$, $n \in \mathbb{N}$, then (E, τ) has a quotient.

We shall say that a subset V of a tvs (E, τ) is a (proper) generator of (E, τ) if V is an absolutely convex set whose linear span is a (proper) dense subspace of (E, τ) .

Lemma 2. Every separable F-space contains a compact generator.

Proof. Let (y_n) be a sequence in E such that $Z:=\operatorname{sp}(y_n:n\in\mathbb{N})$ is dense in E and $\Sigma||y_n||<\infty$, where $||\cdot||$ denotes and F-norm defining the original topology of E. It is enough to see that $T:l^1\to E$, $T((x_k)):=\sum_{j=1}^\infty x_jy_j$ is a compact linear map.

Proposition 3. Let (E, τ) be a tvs dominated by an F-space (E, τ_0) . Then the space (E, τ) has a quotient if E contains a weakly closed generator V such that $\dim(E/\operatorname{sp}(V)) = \infty$.

Proof. Let $H := (E/M, \tau/M)$ be a quotient and S a dense \aleph_0 -dimensional subspace of H. By S_0 we denote the (τ_0/M) -closure of S. Since $(S_0, (\tau_0/M)|S_0)$ is a separable F-space, it contains a compact generator K. Hence K is (τ_0/M) -compact, and K is weakly closed in H. Clearly K is also linearly dense in H. Moreover, $\dim(S_0/\operatorname{sp}(K)) = \infty$; otherwise K would be a compact neighbourhood of zero in $(\operatorname{sp}(K), (\tau_0/M)|\operatorname{sp}(K))$ (see [2], Proposition 3.1). Therefore $V := Q^{-1}(K)$, where $Q : E \to E/M$ is the quotient map, is a weakly closed generator of (E, τ) such that $\dim(E/\operatorname{sp}(V)) = \infty$.

For the converse, it is enough to use Proposition 2 (we put $V_n = V$, $n \in \mathbb{N}$).

It is easy to see that a Banach (or barrelled) space E contains a dense non-barrelled subspace if E contains a proper closed generator.

Our Proposition 3 and Iyahen's Proposition 3.1 lead to the following generalization of the equivalence between (*) and (b).

Corollary 2. An F-space E has a quotient if E has a proper weakly closed generator.

Corollary 3. If a dual-separating F-space (E, τ) contains a proper dense subspace L dominated by a Frechet space (L, τ_0) , then (E, τ) has a quotient.

Proof. Let m := m(E, E'). Then (E, m) is barrelled. Since $m_0 := m|L$ is strictly weaker than τ_0 , the space (L, m_0) is not barrelled (by the open mapping theorem, [3], 11.3.5). Hence (L, m_0) contains a barrel W which is not a neigbourhood of zero in (L, m_0) . Then $V := \overline{W}^m$ is a proper weakly closed generator of (E, τ) . Now Corollary 2 completes the proof.

Remark. The assumption that (E, τ) is dual-separating cannot be removed; cf. Introduction, remark concerning Popov's result.

A tvs (E, τ) is called *weakly compact generated (WCG)* if E has a weakly compact generator.

The following corollary generalizes a known result for Banach spaces.

Corollary 4. If (E, τ) is an infinite-dimensional dual-separating F-space which is WCG, then (E, τ) has a quotient.

Proof. Let V be a weakly compact generator of (E, τ) . By Corollary 2 it is enough to consider the case when sp(V) = E. But then (E, m(E, E')) is a reflexive Banach space, and consequently $\tau = m(E, E')$.

A tvs (E,τ) will be called an $(LF)_{tv}$ -space if (E,τ) is the inductive limit of a strictly increasing sequence (E_n,τ_n) of F-spaces such that $\tau_{n+1}|E_n\leq \tau_n, n\in \mathbb{N}$; the sequence (E_n,τ_n) will be called a *defining sequence* for (E,τ) .

Proposition 4. Let (E, τ) be an $(LF)_{tv}$ -space with a proper weakly closed generator V. Then (E, τ) has a quotient.

Proof. If $Q: E \to E/L$ is the quotient map, where $L: \cap (f^{-1}(0): f \in E')$, then (as easily seen) Q(V) is a proper weakly closed generator of the ultrabarrelled space $(E/L, \tau/L)$. Hence $\operatorname{sp}(Q(V))$ is a non-barrelled subspace of the barrelled space (E/L, m(E/L), (E/L)'). By Theorem 11.3.2 of [3] $\dim((E/L)/\operatorname{sp}(Q(V))) > \aleph_0$, and consequently $\dim(E/\operatorname{sp}(V)) > \aleph_0$. Therefore there exists $n_0 \in \mathbb{N}$ such that $\dim(E_{n_0}/E_{n_0} \cap \operatorname{sp}(V)) = \infty$, where (E_n, τ_n) is a defining sequence for (E, τ) . Now the conclusion follows from Proposition 2.

Corollary 5 ([9], Theorem 3). Every (LF)-space (E, τ) has a quotient.

Proof. Let (E_n, τ_n) be a defining sequence for (E, τ) . If no space E_n is τ -dense we can apply Proposition 1. Now suppose that E_k is τ -dense for some $k \in \mathbb{N}$. Since the identity map $(E_k, \tau_k) \to (E, \tau)$ is not almost open (by the open mapping theorem), (E, τ) contains a proper weakly closed generator.

J. Kakol, W. Sliwa

REFERENCES

- [1] G. BENNET, N.J. KALTON, Inclusion theorems for k-Spaces, Canadian J. Math. 25 (1973), 511-524.
- [2] S.O. IYAHEN, On certain classes of linear topological spaces, Proceedings of the London Math. Soc. 18 (1968), 285-307.
- [3] H. JARCHOW, Locally convex spaces, B.G. Teubner, Stuttgart, 1981.
- [4] J.B. JOHNSON, H.P. ROSENTHAL, On ω^* basic sequences, Studia Math. 43 (1975), 166-168.
- [5] E. LACEY, Separable quotients of Banach spaces, Anals. da Academia, Brasileina, 44 (1972), 185-189.
- [6] P.P. NARAYANASWAMI, S.A. SAXON, (LF)-spaces, Quasi-Baire spaces and the strongest locally convex topology, Math. Ann. 274 (1986), 627-641.
- [7] M.M. Popov, On the codimension of subspaces of $L_p(\mu)$, 0 , Funkt. Anal. i Prilozen. 18 (1984), 94-95 (Russian).
- [8] H.P. ROSENTHAL, Quasi complemented subspaces of Banach spaces, J. Functional Analysis 4 (1969), 176-214.
- [9] S.A. SAXON, P.P. NARAYANASWAMI, (LF)-spaces, (db)-spaces and the Separable Quotient Problem, Bull. Austr. Math. Soc. 23 (1981), 65-80.
- [10] S.A. SAXON, A. WILANSKY, The equivalence of some Banach space problems, Coll. Math. 37 (1977), 217-226.
- [11] S.A. SAXON, P.P. NARAYANASWAMI, Metrizable [normable] (LF)-spaces and two classical problems in Frechet [Banach] spaces, Studia Math. 43 (1989), 1-16.
- [12] A. WILANSKY, Modern Methods in Topological Vector Spaces, McGraw-Hill, 1978.

Received January 20, 1993 J. Kakol Institute of Mathematics, A. Mickiewicz University, 60-769 Poznań, Matejki 48/49, Poland

W. Śliwa
Institute of Mathematics,
Pedagogical University,
Pl. Slowiański 6,
65-046 Zielona Góra,
Poland