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ON EMBEDDINGS OF RELATIONAL CATEGORIES
INTO ALGEBRAIC CATEGORIES

JOSEF SLAPAL

Abstract. We show that the fundamental relationship between relational systems and uni-
versal algebras, 1. e. the relationship that universal algebras are special cases of relational
systems, is valid also conversely: relational systems can be considered as special universal
algebras. This result is formulated on the category theoretical level - for relational systems
we define a special type of homomorphisms with respect to which relational categories can
be embedded into algebraic categories.

In [3], M. Novotny introduced and studied strong homomorphisms of binary relational sy-
stems. He proved that the category of binary relational systems with strong homomorphisms
as morphisms can be embedded into the category of unary algebras (with usual homomorphi-
sms as morphisms). An analogical result for ternary relational systems and groupoids has
been proved by the same author in [4]. The aim of this note is to generalize the results from
[3] and [4] to relational systems and algebras of arbitrary, not necessarily finite, arities.

In this paper, relations are considered in the general sense as introduced in [6]: if G, K
are sets, then any set of maps R C G is said to be a relationon G . The set K is called the
type of R. By a relational system we understand a pair (G, R) where G isasetand R is a
relation on G. The set GG is called the underlying set of (G, R) and the type of R is said to
be the fype of (G, R) . Throughout the paper, all relational systems are assumed to have non-
empty types. Let (G, R), (H, S) be relational systems of the same type. A homomorphism
of (G, R) into (H,S) isanymap p : G — H fulfilling f € R = pof € S (see[7]). If card
K = n < Ry, then relations of type K coincide with the well-known n-ary relations, and
~ homomorphisms of relational systems of type K coincide with the usual homomorphisms of
n-ary relational systems.

Definition. Let (G, R), (H,S) be relational systems of the same type K.t € K and let
po: G — H beamap. Then o is called a strong homomorphism of (G, R) into (H,S) w.r.t.
t whenever the following condition is fulfilled:

foranymap f € GX-{} if g € HX isamap with g(u) = o( f(u)) foreach u € K — {t},
then g € S iff there is an extension f of f onto K suchthat f € R and g(t) = o(F(1)) .

Obviously, any strong homomorphism is a homomorphism. The notion of a strong ho-
momorphism 1ntroduced above for relational systems of the same type is a generalization of
the notion of a strong homomorphism introduced for binary relational systems in [3] and for
ternary relational systems in [4]. Clearly, if n is a positive integer, (G, R), (H, S) relational
systems of type K = {1,2,...,n} (i. e. nary relational systems) and ¢t € K , then a strong
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homomorphism of (G, R) into (H,S) w.r.t. t isamap ¢ : G — H for which the following
is fulfilled: if z, € G foreach 1 € K — {t} and y € H, then putting y, = p(z,) for
every 1 € K — {t} and y, = y we have (y,,¥5,...,¥,) € S iff there is an z € G with
both (z,,z,,...,7,) € R whenever z, = z and ¢(z) = y. It can easily be shown that the
composition of two strong homomorphisms w.r.t. ¢ as well as any identity map is a strong
homomorphism w.r.t. ¢ (whenever t € K where K is the type considered). Consequently,
for any set K # 0 and any ¢t € K there is a category whose objects are relational systems of
type K and whose morphisms are strong homomorphisms w.r.t. ¢. This category i1s denoted
by Rely,.

The following algebraic concepts are taken from [5]. Given sets G, K, by an operation
of type K on G we mean amap p : G* — G. The pair (G, p) is then called an algebra of
type K . The set G is said to be underlying setof {(G,p). Let (G, p), (H, q) be two algebras
of the same type K and ¢ : G — H a map. Then ¢ is called a homomorphism of (G, p)
into (H,q) if p(p(f)) = g(po f) foreach f € GX . If card K = n < R, then algebras
of type K coincide with the well-known n-ary algebras, and homomorphisms of algebras of
type K coincide with the usual homomorphisms of n-ary algebras. Obviously, the class of
all algebras of the same given type K together with homomorphisms forms a category. This

category is denoted by Alg, .
Let (G, p) be an algebra of type K and let ¢ be an element with ¢ € K . We set

T,. = {f € GXU; f(t) = p(f1K) }

where f|K denotes the restriction of f onto K. The relational system (G, Tp,t> of type

K U {t} is said to be associated with the algebra (G, p). The reader can easily prove the
following

Proposition 1. Let (G, p), (H,q) be algebras of the same type K,t ¢ K an element and
let ¢ : G — H be amap. Then the following statements are equivalent:

(i) © is a homomorphism of {G,p) into (H,q).

(ii) ¢ is a homomorphism of (G, T, ,) into (H,T_,).

(iii) @ is a strong homomorphism of (G,T,,) into (H,T, )

w.rit t.

Strong homomorphisms can also be used for determining the relational systems that are
associated with some algebras. More precisely, we shall prove the following

Proposition 2. Let (G, R), (H,S) be two relational systems of the same type K, t € K and
let ¢ : G — H be an injective strong homomorphism of (G, R) into (H,S) w.r.t. t. If there
is an algebra (H,q) of type K — {t} withT,, = S, then there is an algebra (G, p) of type

K—-{t}withT,,= R.
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Proof. Let the assumptionis of the statement be fulfilled and let f € GX—{8 . Put g(u) =
o(f(u)) forany u € K — {t} and let g € HX be the extension of g onto K with g(t) =

¢(g) . Then g € T,, = S and hence there is an extension f of f onto K with f € R and
g(t) = (f(t)). As p is an injection, f(t) € G is uniquely determined. Thus, putting
p( f) = f(t) we have defined an operation p of type K — {t} on G. Clearly, T,: CR.To

prove the converse inclusion, let f € R be an arbitrary map and let f = f|K — {t}. Then
@ o feS= T, ., hence tp(?(t)) = g(p o f) = g(t) where g is defined in the same way

as in the first part of the proof. Consequently, f(t) = p( f) and thus ? € T,,. Therefore
R C T, and the proof is complete.

For any set G we denote by °(G) the power set of G (i. e. the set of all subsets of G).
If G, H aresetsand ¢ : G — H a map, then by ¢ we denote the map ¢ : 22(G) — F(H)
given by o(X) = {p(z);z € X} foreach X C G.

Let K beasetand ¢t € K . Forany relational system (G, R)of type K we set #,({G, R))
= {(#(@G),p) where p is the operation of type K — {t} on $(G) given by

p(r) ={z € G; thereis an f € Rsuchthat f(u) € r(u) foreach u € K — {t} and
f(t) =x}.

Next, if (G, R), (H, S) are relational systems of type K , then for any strong homomorphism
@ of (G, R) into (H,S) w.r.t. t we set #,(yp) = .

Theorem 1. Let K be asetandt € K. Then %, is an embedding of the category Rel, ,
into Algﬁ_{r}.

Proof. Obviously, %, assigns an object of Alg,_, toany objectof Rely,. Let (G, R), (H,

S) be relational systems of type K and ¢ : G — H a strong homomorphism w.r.t. t.
Let (PP(G),p) = F({(G,R)) and (#(H),q) = %,({H,S)). We shall show that { is
a homomorphism of {(#(G),p) into (P(H),q), ie. that p(p(r)) = ¢(p o r) for any
r € (P(G))K-{t} Tothisend, let r € (P(G))E-{ and y € H(p(r)). Then there is an
r € p(r) with y = p(z). Consequently, there isan f € R such that f(u) € r(u) for each
u € K—{t} and f(i) = z. Pulling g = po f we get g € S since y is a homomorphism. It
follows that g(u) = p(f(u)) € §(r(u)) foreach u € K — {t} and g(t) = p(f(¥)) = y.
Hence y € g(@ o r). We have proved the inclusion p(p(r)) C q(@ o r). Conversely, let
y € g(por). Thenthercisa g € S such that g(u) € p(r(u)) foreach u € K — {t} and
g(t) = y. Conscquently, forcach v € K — {t} thereisan z, € v(u) with g(u) = o(z,).
Let f € GK-{t} be the map defined by f(u) = z, foreach u € K — {t}. Then g(u) =

o( f(u)) foreach u € K — {t}. As yp is a strong homomorphism, there is an extension f
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of f onto K such that f € R and g(t) = (f(t)). Since f(u) = z, € r(u) for each

u € K —{t}, putting z = f(t) weget z € p(r). As y = g(t) = p(f(t)) = p(z) , we have
y € p(p(r)) . Hence g(por) C @(p(r)) and the equality p(p(r)) = g(p o) is proved.
Since %, clearly preserves both compositions of morphisms and identity morphisms, %, is
a (covariant) functor from Rel , into Alg,_,,,. It is evident that %, is one-to-one (both

on objects and morphisms). Therefore %, is an embedding of Rel ., into Alg, ., and the

proof is complete.
Now we are aiming to describe the subcategory of Algg ., that 1s 1somorphic with

Rely ,. For this purpose we use the following two concepts (see e.g. [3]):

Let G, H besets. Amap F : P(G) — P(H) iscalled rotally additiveif F (U Xi) =
i€l
U F(X,) forany system {X ;1 € I} of subsets of &, and it is called atom-preserving if for
i€l
any r € (G therei1sa y € H such that

F({z}) = {v}.

Obviously, amap F : 22(G) — Z°( H) is totally additive and atom-preserving iff there is a
map ¢ : G — H suchthat F = @ (the map ¢ is then given by o(z) = y where y € H is
the element with F({z}) = {y}).

Let G, K be sets and p an operation of type K on °(G) . The operation p is said to be

totally additive if p(r) = U{p( 7): 7 € (PP(G)) X isamapsuch that foreach u € K thereis

an , € r(u) with 7(u) = {z_,}} whenever r € (92(G))* . For unary or binary operations
this concept of total additivity coincides with that introduced in [3] or [4], respectively.

Lemma. Let K beasetandt € K. If (G,R) € Relyg, is an object and (P(G),p) =
F.({G, R)) , then the operation p is totally additive.

Proof. Let the assumptions of the statement be fulfilled. Let r € (P(G))X-{} and z €
p(r). Then thereisan f € R suchthat f(u) € r(u) foreach u € K — {t} and f(t) = =z.
Forany u € K — {t} put #(u) = {f(u)} and z, = f(u). Then 7 € (P(G)) K" and
z, € r(u), 7(u) = {z,} foreach u € K — {t}. Since f(u) € 7(u) foreach u € K — {t}
and f(t) = z, we have = € p(7). Consequently, let z € p(7) where # € (P())K is
a map such that for each u € K — {t} there is an z, € r(u) with #(u) = {z,}. From
z € p(¥) it follows that there is an f € R such that f(u) € #(u) foreach v € K — {t}
and f(t) = z. We have f(u) € 7(u) = {z,} C r(u) foreach u € K — {t}. Therefore
z € p(r). The total additivity of p is proved.
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Obviously, identity maps of power sets are totally additive and atom preserving, and
the composition of two totally additive atom-preserving maps is also totally additive atom-
preserving. For this reason, given a set K, we can define a subcategory Paly, of Alg, as
follows: the objects of Pal, are precisely the algebras (#?(G),p) of type K where G is a
set and p is a totally additive operation of type K on 9°(G), and the morphism in Pal, are
precisely the totally additive atom-preserving homomorphisms.

Theorem 2. Let K beasetandt € K . Then #, is anisomorphismof Rely , onto Paly_ .

Proof. By virtue of Theorem 1 and Lemma it is sufficient to prove that the functor %, :
Relyg . — Palg_, is surjective both on objects and morphisms. Therefore, let (9X(G),p) €

Pal,_,,, be an object. Put R = {f € G¥; f(t) € p(s) where s € (P(G))¥~1 is the
map given by s(u) = {f(u)} foreach u € K — {t}}. Then (G,R) € Rely, and we
shall show that #({G, R)) = (#(G),p), ie. that p(r) = {z € G thereisan f € R
such that f(u) € r(u) foreach v € K — {t} and f(t) = z} forany r € (P(G)) K-t}
To this end, let r € (PP())YX-{t and z € p(r). As p is totally additive, there is a map
7 € (P(G)) X1} with € p(7) such that for each u € K — {t} thereis an z, € r{u}
fulfilling #(u) = {z,}. Let f € G be the map given by f(u) = z, foreach u € K — {t}
and f(t) = . Then f(t) € p(¥) and 7(u) = {f(u) } foreach u € K —{t}. Hence f € R.
We have found an f € R such that f(u) € r(u) foreach v € K — {t} and f(t) = z.

Conversely, let z € G be an element such that there is an f € R with f(u) € r(u) for
each u € K — {t} and f(t) = z. From f € R it follows that f(t) € p(s) where

s € (P(@))K-{t} is the map given by s(u) = {f(u)} foreach u € K — {t}. Hence
z € p(s) and putting z, = f(u) foreachu € K —{t} wegetz, € r(u) and s(u) = {z,}.
This yields x € p(r) because p is totally additive. The equality %,({G, R)) = (9°(G), p)
is proved and therefore the functor % : Rely , — Paly _ (¢} 18 surjective on objects. Further,
let F: (P(G),p) — (#(H),q) be amorphism in Palx_{t}. Let (G, R), (H,S) € Rely,
be the objects with Z,((G, R)) = (#(G),p) and F,({H,S)) = (#°(H),q). Denote by ¢
the map p : G — H givenby p(z) = y «& F({z}) = {y}. Then F = p = #,(p) and we
are to prove that ¢ is a strong homomorphism of (G, R) into (H,S) w.r.t. t.

I

To thisend, let f € GX—{t} and let ¢ € H¥ be a map with g(u) = o(f(u)) for

each u € K — {t}. Assume g € S. Denote by s the map s € (P(H))X-{ given
by s(u) = {(f(u))} = o({f(u)}) foreach u € K — {t}. Then g(u) € s(u) for
each u € K — {t} and thus g(t) € ¢(s). Let r € (PP(G))%~ be the map defined by
r(u) = {f(u)} foreach u € K — {t}. Then s = por,hence g(s) = q(por) = p(p(r)).
Thus g(t) € p(p(7r)) ,i.e. thereisan z € p(r) with g(t) = p(x) . It follows that there is an
h € R suchthat h(u) € r(u) foreach u € K —{t} and h(t) = . Forany u € K —{t} we
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have h(u) = f(u),1.e. h is an extension of f onto K, and g(t) = p(h(t)). Conversely,

assume that there is an extension f of f onto K such that f € R and g(t) = o(f(1)).
Let r € (PP(G))X—{*} be the map defined by r(u) = {f(u)} for each u € K — {t}.
Then f(u) = f(u) € r(u) whenever u € K — {t}, hence f(t) € p(r). Consequently,
o(f(1)) € P(p(r)) = g(por). Let s € (P(H))K~{!) be the map given by s(u) =
{o(f(u))} foreach u € K — {t}. Then s = $ o r and thus p( f(t)) € g(s). Hence there
isan h € S such that h(u) € s(u) foreach u € K — {t} and h(t) = fp(?(t)). This

results in g = A which implies g € S. We have shown that ¢ is a strong homomorphism of
(G,R) into (H,S) w.r.t t. Therefore the functor %, : Relg , — Paly_,, is surjective on

morphisms. The proof is complete.

Example 1. We denote by N the set of all non-negative integers and by N7 the set of all
positive integers. Let G beasetand 7 : G — P(GV") a map. The elements of GV are
called sequences and the pair (G, w) is called a sequential space. We say that a sequence
{z;};cy € GV convergesto z € G in (G, n) if {z;}ien+ € m(z). A sequential space
(G, ) is said to be strict if each sequence {z,};cy. € GV fulfils the inequality card {z €
G {z;};en € m(2)} < 1.0 (G, w), (H, p) are sequential spaces, then a homomorphism of
(G, m) into (H,p) isanymap p : G — H fulfilling {z.},.n+ € 7(z) = {p(z;) };cy+ €
o(f(z)) foreach z € G. By a strong homomorphism of (G, n) into {(H,p) we mean a
map p: G — H such that for any sequence {z,};.y» € GV and any element y € H
the condition {p(z;) };cn+ € o(y) is valid iff there is an z € G with {z;},.y. € 7(z)
and ¢(z) = y. Hence each strong homomorphism is a homomorphism. We denote by Seq
the category of sequential spaces as objects and strong homomorphisms as morphisms. The
full subcategory of Seq whose objects are precisely the strict sequential spaces is denoted
by Str. For any object (G, ) € Seq we set F({(Gn)) = (G,R) where R C GV is the
relation defined by R = {f € GV; {f(4) },cn+ € 7(f(0))}. For any morphism y in Seq
we set ¥(p) = p. Then, clearly, ¥ is an isomorphism of Seq onto Rely o . Further, for
any object (#(G),p) € Paly. we set F({P(Q),p)) = (P’(G),o) where the operation
o : P(G) - PUFP(G))N) is defined by {X;}ien+ € o(X) iff X = p(r) whenever
r € (P(G))N isthe map given by (1) = X, foreach + € N* . For each morphism F' in
Paly. weset #(F) = F. Clearly, # is an embedding of Pal,,. into Str. Thus, there is an
embedding & = # 0%, 0¥ of the category Scq into Str. Obviously, for any sequential space
(G, ) the strict sequential space (9(G), o) = E({(G,m)) is given by {X,},cy+ € o(X)
iff X = {z € G';thereisan z; € X; foreach i € I suchthat {z,},.y+ € m(z)}. Of course,
& () = @ for each morphism ¢ in Seq.

Example 2. A relational system (G, R) of type K is said to be reflexive if R contains all
constant maps of K into G'. If (G, R) is areflexive relational system of type K, t € K and
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(P(G),p) = F,({G, R)) , then it can easily be seen that for any subset X C G the constant
map r: K — {t} — Z(G) givenby r(u) = X foreach u € K — {t} fulfils X C p(7r).

In addition to the reflexivity the following important property of relational systems is in-
troduced in [7]: a relational system (G, R) of type K is called diagonal if for any g, h € RX
with g(u) (v) = h(v)(u) forall u,v € K the map f € G¥ given by f(u) = g(u)(u) for
each u € K fulfils f € R. This concept of diagonality is due to V . Novak who introduced it
for n-ary relational systems (n a positive integer) in [2]. Clearly, an n-ary relational system
(G, R) is diagonal iff for each n x n-matrix M consisting of elements of & such that all
rows and all columns of M belong to R it follows that also the diagonal of M belongs to
R. Particularly, a binary relational system (G, R) is diagonal iff R is transitive. We shall
show that for any diagonal relational system (G, R) of type K and any ¢t € K the algebra
(P(G),p) = #,((G, R)) has the following property:

if ¢ € (P(G)) K- xK={t) 5 a map such that for arbitrary u,v € K — {t},u#v,
there is an £ € G with ¢(u,v) = {z} = ¢(v,u), then the map r € (FP(G))X~{* given
by r(u) = p(q,) foreach u € K — {t}, where g, € (P(G)) ¥~} is the map defined by

g,(v) = g(u,v) forevery v € K — {t}, fulfils p(r) C p(s) whenever s € (P(G)) K-t}
is the map given by s(u) = q(u,u) forall u € K — {t}.

To prove this, let y € p(r). Then there is an f € R such that f(u) € r(u) for each
u € K — {t} and f(t) = y. As f(u) € r(u) = p(g,),thereisa g, € R such that

g,(v) € q,(v) foreach v € K — {t} and g,(t) = f(u). Let g € R¥ be the map given
by g(u) = g, foreach u € K — {t} and g(t) = f. Then g(u)(v) € ¢(u,v),g(v)(u) €
g(v,u),and since g(u,v) = g(v, u) is a singleton, we have g(u)(v) = g(v)(u) whenever
u,v € K — {t}. Next, g(u)(t) = f(u) = g(t)(u) forany v € K — {t}. It follows that
g(u)(v) = g(v)(u) for every pair u,v € K. Consequently, the map h € G® given by
h(u) = g(u)(u) foreach u € K fulfils h € R. We have h(t) = g(1)(t) = f(1) = y.
Thus, as h(u) = g(u)(u) € g(u,u) = s(u) foreach u € K — {t}, y € p(s) and the proof
1s complete.

Particularly, let (G, R) be a diagonal ternary relational system (i.e. of type {1,2,3})
and t € {1,2,3}. By the result proved, the groupoid (#(G),-) = %,({G,R)) has the
following property: (X -{y}) - ({v}-2) C X -Z whenever X, Z CGand y € G.
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