A COMBINATORIAL LEMMA ON THE CARTESIAN PRODUCT OF FINITE SETS

U. BARTOCCI, A. GIRARDI

Summary. A sufficient condition for the cartesian product of a finite family of equipotent finite sets to have elements without repetitions is given, and some application is discussed.

As it is well known, graph theory furnishes a necessary and sufficient condition for the cartesian product of any finite family of finite sets to have elements without repetitions (this is Hall's Theorem; see for instance Graph Theory with Applications, J.A. Bondy & U.S.R. Murty, MacMillan, 1977, p. 72). In this paper we give a different simple sufficient condition in the case of a family of sets with the same number of elements. The proof, obtained by means of an easy combinatorial argument, has the advantage of not requiring graph theory.

Lemma. Let A be a finite set of n elements $(n \ge 1)$, and F a family of r subsets A_1, \ldots, A_r of A, all with the same cardinal number $k(1 \le k \le n)$, such that, when $r \ge k + 1$, the intersection of any (k+1)-tuple of them is empty. Then, in the cartesian product $A_1 \times \ldots \times A_r$ there exists at least one element (x_1, \ldots, x_r) without repetitions, i.e., such that $x_i \ne x_j$ for all $i, j = 1, \ldots, r, i \ne j$. In particular, it necessarily follows $r \le n$.

Proof. The statement is obviously true when $r \leq k$, and in this case one can even find a matrix M of type k x r with elements in A, let us call it:

$$\begin{pmatrix} a_{11} & \cdots & a_{1r} \\ a_{21} & \cdots & a_{2r} \\ a_{k1} & \cdots & a_{kr} \end{pmatrix},$$

such that, all rows of M are elements without repetitions in the cartesian product of the family F, and all columns of M are permutations of the subsets A_1, \ldots, A_r respectively.

Let us then proceed by induction with respect to $r \ge k$, starting from such a matrix M, and building a similar one of type k x(r+1).

Let the elements of A_{r+1} be y_1, \ldots, y_k , then add the first element y_1 at the end of all k rows of M. It is obvious that, in the actual condition, at least one of the following k (r+1)-tuples:

$$(a_{11} \dots a_{1r} y_1), \dots,$$

 $(a_{k1} \dots a_{kr} y_1),$

will have no repetitions. As a matter of fact, y_1 cannot coincide in distinct (r+1)-tuples with elements a_{ij} which belong to the same column; moreover, y_1 cannot appear in all columns since the subset $A_1 \cap \ldots \cap A_r \cap A_{r+1}$ is empty.

U. Bartocci, A. Girardi

Let us suppose the first row to be one of these particular (r+1)-tuples, and to have added in a similar way the first t elements y_1, \ldots, y_t of A_{r+1} , for some $t, 1 \le t \le k$, respectively to the 1st, the 2nd, and the t-th row of M. We can proceed again by induction, but now with respect to t: we shall prove that one can add, if t < k, the element y_{t+1} to one of the remaining (k-t) rows of M, whence the conclusion.

If all (k-t) (r+1)-tuples

$$(a_{t+1,1} \dots a_{t+1,r} y_{t+1}), \dots,$$

 $(a_{k1} \dots a_{kr} y_{t+1})$

have repetitions, then - for the same reasons as before - at least one of the analogous (r+1)-tuples relative to an index between 1 and t does not have repetitions. Without any loss of generality, we can suppose that it is again the first (r+1)-tuple $(a_{11} \ldots a_{1r} y_{t+1})$ one of those which have no repetitions, as $(a_{11} \ldots a_{1r} y_1)$. Let us further suppose that, for instance, $a_{t+1,1} = y_{t+1}$.

Let us now look at the corresponding element a_{11} in the first row, and remark that if one could exchange in M the two elements a_{11} and $a_{t+1,1}$, then everything would be all right: because the (t+1)-th row so obtained would be «good» for y_{t+1} , while the first would still be good for y_1 . If this exchange would not be possible, it would mean that a_{11} appears somewhere in the (t+1)-th row, say for instance $a_{t+1,r_1}=a_{11}$. Observe that r_1 is of course different from 1.

Let us now look at the pair

$$(a_{t+1,1},a_{t+1,\tau_1}=a_{11})$$

and to its corresponding pair in the first row:

$$(a_{11}, a_{1r_1}).$$

If one could exchange these two pairs, in a similar way to the one just discussed for single elements, then everything would again be all right: because the new (t+1)-th row would be good for y_{t+1} , while the first would be still good for y_1 .

If this exchange would not be possible too, it would mean that even the element a_{1r_1} appears in the (t+1)-th row. Moreover, it certainly does not coincide neither with $a_{t+1,1}$, nor with a_{t+1,r_1} . In this case we can go on with the same construction, considering two corresponding triplets, one in the first, the other in the (t+1)-th row, and check again the possibility of the desired exchange. It's obvious that one can go on until the exchange can

be done - in the extreme case, one will exchange the entire first row of M with the entire (t+1)-th row.

In conclusion, one can define a new matrix M', of the same type k x r as M, such that y_1 can be added to the first row, y_2 to the second, ..., y_{t+1} to the (t+1)-th, q.e.d..

First of all, as a consequence of the previous proof one obtains that in the cartesian product of the family F there exist indeed at least k different elements without repetitions; furthermore, for each element $a_i \in A_i (1 \le i \le r)$ there exists at least one such element with a_i as its i - th component.

Combining Hall's Theorem and the previous Lemma, one gets immediately:

Corollary 1. In the same hypotheses as before, the union of any t sets of the family F, $1 \le t \le r$, has cardinality greater or equal to t.

As direct applications of the Lemma, one has the following:

Corollary 2. Let A, B be two finite sets with the same number of elements $n \ge 1$, and $\Phi: A \to P(B)$, the set of all subsets of B, any k-regular multifunction, i.e. Φ is such that, for any $a \in A$, the set $\Phi(a)$ has cardinal number equal to k. If for any $b \in B$ one has $\Phi^{-1}(b) \le k$ (and then, as one sees immediately, $\Phi^{-1}(b) = k$), then there exists a bijection $f: A \to B$ which is a restriction of Φ , i.e. f is such that $f(a) \in \Phi(a)$ for all $a \in A$. (This is the so called «Marriage Theorem»; Bondy & Murty, loc. cit., p. 73).

Corollary 3. Let G be any finite bipartite k-regular graph, i.e. a finite graph such that each of its vertices is incident with exactly k edges, and whose set of vertices V admits a partition $V = V' \cup V''$ such that each edge of G has one end in V' and the other in V''. It is possible to extend (restrict, if $k \ge 1$) G to a bipartite (k+1)-regular graph ((k-1)-regular), which has the same vertex set V and the same partition $V = V' \cup V''$, just by adding (subtracting) enough edges to the set of edges of G.

Corollary 4. Let V be any finite dimensional vector space over a field K ($dim(V) = n \ge 1$), $B = (v_1, \ldots, v_n)$ one basis of V, and T the exterior product $T_1 \wedge T_2 \wedge \ldots \wedge T_r$ of any family T_i of coordinated k-dimensional subspaces of V ($1 \le k \le n$), i.e., subspaces such that any of them is generated by a subset of k elements of B. T is certainly a non-zero space when the subspaces of the given family are at (k+1) at (k+1) disjoint in $V = \{0\}$ (this condition is required, of course, only in the case $r \ge (k+1)$).

Received July 2, 1993 U. Bartocci, A. Girardi Dipartimento di Matematica Università degli studi 06100 Perugia Italy