A COMBINATORIAL LEMMA ON THE CARTESIAN PRODUCT
OF FINITE SETS

U. BARTOCCI, A. GIRARDI

Summary. A sufficient condition for the cartesian product of a finite family of equipotent
finite sets to have elements without repetitions is given, and some application is discussed.

As it is well known, graph theory furnishes a necessary and sufficient condition for the
cartesian product of any finite family of finite sets to have elements without repetitions (this
is Hall's Theorem; see for instance Graph Theory with Applications, J.A. Bondy & U.S.R.
Murty, MacMillan, 1977, p. 72). In this paper we give a different simple sufficient condition
in the case of a family of sets with the same number of elements. The proof, obtained by
means of an easy combinatorial argument, has the advantage of not requiring graph theory.

Lemma. Let \(A \) be a finite set of \(n \) elements \((n \geq 1)\), and \(F \) a family of \(r \) subsets \(A_1, \ldots, A_r \)
of \(A \), all with the same cardinal number \(k (1 \leq k \leq n) \), such that, when \(r \geq k + 1 \), the
intersection of any \((k+1)\)-tuple of them is empty. Then, in the cartesian product \(A_1 \times \ldots \times A_r \)
there exists at least one element \((x_1, \ldots, x_r)\) without repetitions, i.e., such that \(x_i \neq x_j \) for
all \(i, j = 1, \ldots, r, i \neq j \). In particular, it necessarily follows \(r \leq n \).

Proof. The statement is obviously true when \(r \leq k \), and in this case one can even find a
matrix \(M \) of type \(k \times r \) with elements in \(A \), let us call it:

\[
\begin{pmatrix}
a_{11} & \cdots & a_{1r} \\
a_{21} & \cdots & a_{2r} \\
a_{k1} & \cdots & a_{kr}
\end{pmatrix},
\]

such that, all rows of \(M \) are elements without repetitions in the cartesian product of the family
\(F \), and all columns of \(M \) are permutations of the subsets \(A_1, \ldots, A_r \) respectively.

Let us then proceed by induction with respect to \(r \geq k \), starting from such a matrix \(M \),
and building a similar one of type \(k \times (r + 1) \).

Let the elements of \(A_{r+1} \) be \(y_1, \ldots, y_k \), then add the first element \(y_1 \) at the end of all \(k \)
rows of \(M \). It is obvious that, in the actual condition, at least one of the following \(k \) \((r+1)\)-
tuples:

\[
(a_{11} \ldots a_{1r}, y_1), \ldots, \\
(a_{k1} \ldots a_{kr}, y_1),
\]

will have no repetitions. As a matter of fact, \(y_1 \) cannot coincide in distinct \((r+1)\)-tuples with
elements \(a_{ij} \) which belong to the same column; moreover, \(y_1 \) cannot appear in all columns
since the subset \(A_1 \cap \ldots \cap A_r \cap A_{r+1} \) is empty.
Let us suppose the first row to be one of these particular \((r + 1)\)-tuples, and to have added in a similar way the first \(t\) elements \(y_1, \ldots, y_t\) of \(A_{r+1}\), for some \(t, 1 \leq t \leq k\), respectively to the 1st, the 2nd, and the \(t\)-th row of \(M\). We can proceed again by induction, but now with respect to \(t\): we shall prove that one can add, if \(t < k\), the element \(y_{t+1}\) to one of the remaining \((k - t)\) rows of \(M\), whence the conclusion.

If all \((k - t)\) \((r + 1)\)-tuples

\[
(a_{t+1,1} \cdots a_{t+1,r} y_{t+1}), \ldots, \\
(a_{k+1} \cdots a_{k,r} y_{t+1})
\]

have repetitions, then - for the same reasons as before - at least one of the analogous \((r + 1)\)-tuples relative to an index between 1 and \(t\) does not have repetitions. Without any loss of generality, we can suppose that it is again the first \((r + 1)\)-tuple \((a_{11} \cdots a_{1,r} y_{t+1})\) one of those which have no repetitions, as \((a_{11} \cdots a_{1,r} y_1)\). Let us further suppose that, for instance, \(a_{t+1,1} = y_{t+1}\).

Let us now look at the corresponding element \(a_{11}\) in the first row, and remark that if one could exchange in \(M\) the two elements \(a_{11}\) and \(a_{t+1,1}\), then everything would be all right: because the \((t + 1) - th\) row so obtained would be «good» for \(y_{t+1}\), while the first would still be good for \(y_1\). If this exchange would not be possible, it would mean that \(a_{11}\) appears somewhere in the \((t + 1) - th\) row, say for instance \(a_{t+1,r_1} = a_{11}\). Observe that \(r_1\) is of course different from 1.

Let us now look at the pair

\[(a_{t+1,1}, a_{t+1,r_1} = a_{11})\]

and to its corresponding pair in the first row:

\[(a_{11}, a_{1,r_1}).\]

If one could exchange these two pairs, in a similar way to the one just discussed for single elements, then everything would again be all right: because the new \((t + 1) - th\) row would be good for \(y_{t+1}\), while the first would be still good for \(y_1\).

If this exchange would not be possible too, it would mean that even the element \(a_{1,r_1}\) appears in the \((t + 1) - th\) row. Moreover, it certainly does not coincide neither with \(a_{t+1,1}\), nor with \(a_{t+1,r_1}\). In this case we can go on with the same construction, considering two corresponding triplets, one in the first, the other in the \((t + 1) - th\) row, and check again the possibility of the desired exchange. It's obvious that one can go on until the exchange can
be done - in the extreme case, one will exchange the entire first row of M with the entire $(t + 1) - th$ row.

In conclusion, one can define a new matrix M', of the same type $k \times r$ as M, such that y_1 can be added to the first row, y_2 to the second, \ldots, y_{t+1} to the $(t + 1) - th$, q.e.d.

Let us add some more remarks.

First of all, as a consequence of the previous proof one obtains that in the cartesian product of the family F there exist indeed at least k different elements without repetitions; furthermore, for each element $a_i \in A_i$ ($1 \leq i \leq r$) there exists at least one such element with a_i as its $i - th$ component.

Combining Hall's Theorem and the previous Lemma, one gets immediately:

Corollary 1. In the same hypotheses as before, the union of any t sets of the family F, $1 \leq t \leq r$, has cardinality greater or equal to t.

As direct applications of the Lemma, one has the following:

Corollary 2. Let A, B be two finite sets with the same number of elements $n \geq 1$, and $\Phi : A \to P(B)$, the set of all subsets of B, any k-regular multifunction, i.e. Φ is such that, for any $a \in A$, the set $\Phi(a)$ has cardinal number equal to k. If for any $b \in B$ one has $\Phi^{-1}(b) \leq k$ (and then, as one sees immediately, $\Phi^{-1}(b) = k$), then there exists a bijection $f : A \to B$ which is a restriction of Φ, i.e. f is such that $f(a) \in \Phi(a)$ for all $a \in A$. (This is the so called «Marriage Theorem»; Bondy & Murty, loc. cit., p. 73).

Corollary 3. Let G be any finite bipartite k-regular graph, i.e. a finite graph such that each of its vertices is incident with exactly k edges, and whose set of vertices V admits a partition $V = V' \cup V''$ such that each edge of G has one end in V' and the other in V''. It is possible to extend (restrict, if $k \geq 1$) G to a bipartite $(k + 1)$-regular graph $((k - 1)$-regular), which has the same vertex set V and the same partition $V = V' \cup V''$, just by adding (subtracting) enough edges to the set of edges of G.

Corollary 4. Let V be any finite dimensional vector space over a field K ($\dim(V) = n \geq 1$), $B = (v_1, \ldots, v_n)$ one basis of V, and T the exterior product $T_1 \wedge T_2 \wedge \ldots \wedge T_r$ of any family T_i of coordinated k-dimensional subspaces of V ($1 \leq k \leq n$), i.e., subspaces such that any of them is generated by a subset of k elements of B. T is certainly a non-zero space when the subspaces of the given family are at $(k + 1)$ at $(k + 1)$ disjoint in $V - \{0\}$ (this condition is required, of course, only in the case $r \geq (k + 1)$).
Received July 2, 1993
U. Bartocci, A. Girardi
Dipartimento di Matematica
Università degli studi
06100 Perugia
Italy