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GROUPS WHOSE INFINITE PROPER SUBGROUPS ARE T-GROUPS
MARIA ROSARIA CELENTANI, ULDERICO DARDANO

1. INTRODUCTION AND MAIN RESULT

A group i1s said to be a T-group if its subnormal subgroups are normal. Classes of «genera-
lized» T-groups have been the object of much attention and have been studied intensively.
In [10] D.J.S. Robinson studied the class of non-T" groups all of whose proper subgroups are
T-groups. In the usual terminology for group classes these are minimal-non-T" groups. It is
a well established pattern to study group classes by studying minimal (in the above sense)
classes. This kind of investigations began with a paper by G.A. Miller and H.C. Moreno [6].

Under (weak) hypotheses of generalized solubility or finiteness minimal-non-T" groups
turn out to be finite, whence soluble. In the case of p-groups they coincide with minimal-
non-abelian groups if we substitute for the quaternion group Qg of order 8 that of order 16
(type I). In the non-primary cases they also have a restricted structure as their order is divisible
only by two primes p, ¢. In fact they have the form F' = {z) x P where z has order ¢™ and
P 1s a Sylow p-subgroup of F' which is either isomorphic to Q¢ (type II) or non-cyclic
elementary abelian, the only G-subgroups of P are the characteristic ones (type II and IV),
unless p = 1 (mod ¢) and P has order p? (type III) (see [10]).

This paper, inspired by the above-quoted of Robinson, tries to show to which extent similar
ideas work in infinite groups. We study the class of non-T" groups whose proper infinite
subgroups are T-groups. If we call T—groups the groups whose all infinite subgroups are
T-groups, we can say that we are interested in minimal-non-T" groups (see [1]). We are able
to give a description of these groups under solubility assumption. Observe that any direct
product of a Tarski p-group by a dihedral group of order 8 is a minimal-non-T" group, as in
any Hall extension of a Priifer group by a minimal-non-T" group. We will see that, in fact,
with the exception of type II, all minimal-non-T" groups are subgroups of minimal-non-T°
groups also 1n less trivial ways. This enables us (o recall some more detailed information on
minimal-non-T" groups while stating Theorem A , our main result. In the last section of the
paper we will describe non-abelian (infinite) soluble groups whose proper infinite subgroups
are abelian (see Theorem B), a result of independent interest.

Notation and terminology are mostly standard. We refer to [2] and [5]. In particular:

— letters p, ¢, r denote only prime numbers,

— n|m means that n divide m,

~ Z(p) isthering Z /pZ ,

— Z (p™) is aPriifer p-group containing Z {(p),

- Zp 1S the ring of p-adic integers, i.¢. the endomorphism ring of Z (p*),
— QP 1S the field of fractions of ZP,
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— |z| is the order of the element x,
— Soc G 15 the subgroup generated by all elements with prime order of the abelian group

G,
— w(@G) is the set of prime numbers p for which the group G has an element of order p,

— if N is a normal subgroup a group G such that n( N) Nw(G/N) = @ then we say that
N 1is a Hall subgroup of G or that GG is a Hall extensionof N,
— a power automorphism of a group 1s an automorphism mapping every subgroup onto

itself.

Let us state now our main result:

Theorem A. An infinite soluble group is a non-T' group whose infinite proper subgroups are
T-groups if and only if it is of one of the following four types. Such groups are all Chernikov

groups.

1. Non-(Priifer-by-finite) groups. Groups with the form G = {z) R, where R is a radica-
ble abelian p-group with finite rank n > 1 and 1s normal in G, z has order ¢™ and acts on

R by means of the matrix:

0 1 0 0 \
0 0 1 0
O =
0 0 0 1
—Q; —Q; —Qj —Qy,

with entries in Zp* which is the companion matrix of the minimal polynomial u(t) = t* +
+a,t" ! +...+a ofa ¢/ -th primitive root of 1 where f < m is the greatest positive integer

such that ¢/=! divides p — 1 (see section 2 for details). .

We recall that the degree n of u(t) is equal to the multiplicative order of p mod ¢/ if
q# p and to p — 1 otherwise. Moreover, soluble minimal-non-7" groups of type IV, have
all the form F' = (z)P where P = Soc R and G = (z)R is above. We have Robinson’s
subtypes IVa and IVb according to f = 1 or f > 1. Observe that G cannot be a 2-group,

since p=g¢g =2 implies n=1.
2. Priifer-by-finite non-primary groups. Groups of one of the following subtypes where
R is a Priifer p-group:

(a) Hall extensions of £ by a minimal-non-1" group;
(b) G = F x R where F' is a non-primary minimal-non-7" group such that p € w( F')

and which is of type IVa if the Sylow p-subgroup P of F' 1s normal,
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© G = (z)x({a) X R),aP = 1,a% = a%,c®* = ", forany ¢ € R,{ and 7 are
p-adic integers such that ¢ is a primitive ¢/-throot of 1 with 0 < f < m,n = (*k”
and 0 < k < ¢;

(d G = ({z)R) xP, where (z)R is a non-abelian 2-group with property T' and
F = (z) x P is a minimal-non-T" group (of type III or IVb).

Moreover soluble minimal-non-T" groups of type III are all of type F' = {z) x({a) x
Soc R) where G = {z) x({a) x R) is of type 2c. About case (d) we recall that (z)R is a
non-abelian 7T-group if and only if z induces the inversion map on R and |z| < 4. About
case (a) see Lemma 7.

3. Priifer-by-finite primary groups which are central-by-finite. Groups of the form
G = FR where F is a finite minimal-non-abelian p-group, R is a Priifer p-group and
[F,R]=1.

4. Priifer-by-finite 2 -groups which are not central-by-finite. See groups of types (1) —( x)
in the statement of Proposition 13 below.

2. PROOF OF THEOREM A

In this section we will give the proof of our main result. As shorthand notation we shall say
that &' 1s an X-group whenever GG is an infinite non-T" group all of whose infinite proper
subgroup are T'-groups. We start by noting that it 1s a trivial fact that a minimal non-T" group
1s a 3, -group, 1.€. a group in which subnormal subgroup have defect at most 2, and that the
same can be said for X-groups.

Proposition 1. An X-group is a B,-group.

Proof. Let G be an X-group and S be a non-normal subnormal subgroup of G. Thus S¢
is a proper subgroup of G'; if it is infinite then it is a T-group and S « S¢. If S¢ is fi-
nite, then the normalizer N,(S) of S has finite index in G and is contained in a maximal

subgroup M . Then applying Lemma 7.3.16 of (5] to the finite group G/M, one gets SC <

M and so N;(S)S® < M. Thus N(S)S€ isa T-group and S 4 S¢, what we wanted. o

In hypothesis of solubility, X-groups have a strong finiteness condition; in fact they are
Chemikov groups, as we are going to show in Proposition 3. We note that since by [10] a
soluble minimal-non-T" group is finite we may state: if G is a soluble X -group, then there is
a finite subgroup F of G which is a minimal-non-T" group. This fact will play a major rble
in our arguments and will be stated later in greater details (see Lemma 6).

We need a result from (1] (see Theorem 3.2). Recall that a group all of whose subgroups
are T-groups is said tobe a T —group.

Proposition 2. Let G be an infinite soluble group. Then G has property T and not T if and
onlyif G=(8 x E x B) xA, where:



298 M.R. Celentani, U. Dardano

(i) A and B are finite abelian groups with coprime odd orders;

(ii) E is an elementary abelian 2-group;

(iit) every subgroup of A is normalin G,

(iv) either S = {2, R), with R« S,or S = Q xR, where R is a Priifer 2-group, z has
order 2 or 4, Q is isomorphic to the quaternion group of order 8 and [ S, R]# 1.

Proposition 3. Let G be a soluble X-group. Then G is a Chernikov group whose finite
residual has no proper infinite G-subgroups.

Proof. We first show that & is periodic. For suppose that a is an element of G with infinite
order. If G were not finitely generated then for any pair of non-commuting elements z and
y of G the subgroup (a, z,y) would be an infinite non-abelian T-group, a contradiction
(see [8], Theorem 3.3.1). Thus G must be a finitely generated soluble B,-group and hence,
by Theorem A of [9], it is finite-by-nilpotent. Then by a well-known property of nilpotent
groups there is a normal subgroup N of G such that G/N is infinite cyclic, say G = (z, N).
Futhermore for any positive integer s the group {(z*, N) is finitely generated and so abelian;
this implies that G itself is abelian, again a contradiction. Therefore G 18 periodic.

Assume now that G is not a Chernikov group. Since & is soluble it does not satisfy
the minimal condition on abelian subnormal subgroups (see [11]) and so it has a subnormal
subgroup A which is the direct product of an infinite family of subgroups with prime order.
Since A€ is different from G, it is a T-group generated by subnormal subgroups with prime
order and therefore it has the same form as A. Hence we may assume that A is normal in &G
Let now F' be a finite non-T"-subgroup of . There exists a subgroup B with finite index in
Asuchthat |[F|< |A: Bland FNB=1.1f FA#G then FA isa T-groupand B FA.
It follows that F' ~ F'B/B is a T-group, which is absurd. Then FA = G and B has finite
index in G'; moreover |FB, : Bp| = |F| < |A: B| < |G: Bg| shows that F ~ FB.,/B,
is a T-group, which is impossible. Thus G is a Chernikov group.

Let finally R be the finite residual of G and F' as before. To obtain a contradiction we
suppose that there is an infinite proper p-subgroup H of R which is normal in G. Of course
we may suppose that H is radicable. Then FH is a T-group with a non-T" subgroup and
so its finite residual H is a 2-group by Proposition 2. It follows that R is a 2-group. Let z
be an element of R\ H with order 8, Then by the same result we get the contradiction that

(z, FH) is not a T-group and conclude that R has no infinite proper G -subgroups. o
We observe that since both soluble 7T-groups and soluble minimal-non-I" groups have
bounded derived length by the previous proposition the same holds for soluble X-groups.
Because of Proposition 3 from now on we will be concerned with Chernikov groups; the
proof of Theorem A will be split into cases according to the introduction. Before continuing
it we recall a useful result due to Robinson which gives a necessary condition for a group to
have property T (see [8], Lemma 5.2.2).
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Lemma 4. Let the periodic group G have a Hall normal subgroup N such that every sub-
normal subgroup of N is normalin G and G /N is a T-group, then G itself is a T-group.

Case 1 - Non-(Priifer-by-finite) groups.

We shall show that a soluble (Chernikov) X-group which is not Priifer-by-finite is a group
of type 1. We state first a proposition giving a group-theoretical characterization of the groups
we consider in this case.

Proposition 5. Let the group G be not Priifer-by-finite and R be its finite residual. Then G
is an Xgroup if and only if G = {x, R) and the following hold:

(i) x hasorder ¢, where m > 0 and q is a prime,

(ii) no infinite proper subgroup of R is normalized by x;

(itt) every subgroup of R is normalized by x9,

(iv) G is nota 2-group.

Proof. To see the sufficicncy of the condition note that if A is an infinite subgroup of G not
contained in M = (29 R) then G = HR and H N R<G. It follows that R < H and

H = G. Thus it suffices to observe that M is a T-group. If p = ¢ then M is clearly abelian,
for there are no power automorphisms of R with order p as p is odd. If p# ¢ then M isa
T-group by Lemma 4.

Conversely, if G 1s an X-group then every subgroup of R is normal in each maximal
subgroup of G, so that, by Proposition 3, G has only one maximal subgroup and G/R is
cyclic with prime-power order. So G = (z, R) and (i)-(iii) clearly hold. Moreover if G is
a 2-group then z? induces by conjugation on R a power automorphism, which is clearly
either the identity or the inversion map. In the latter case {:::2, R) would not be a T-group, by
Proposition 2. In the former case, if R, is a Priifer subgroup of R then R** = {aa%|a € R, }
1s a normal subgroup of &, a contradiction. 0

We want now to give an explicit description of the action by conjugation of z on R and get
iInformation on the rank n of R. Let 4 be the automorphism which z induces by conjugation
on R and R* = Homp» (Z(p™),R); regard V = Q, ®1P R® as aright Q (¥)-module

In the natural way. It is well-known that V' has no proper non-trivial Q_ (9)-submodules

if and only if § may be represented by a matrix © as in the introduction where u(t) =
t" + a, t™! + ...+ «, I$an irreducible polynomial with coefficients in Z, (on this matter
see [3] and also [7]).

Since 97 is a power automorphism of R, while 9 is not and has order ¢/ where f < m,
we have that p(t) is an irreducible non-linear factor of ¢9 — X, where ) is the p-adic unit
with order ¢/=! such that ¢” = o* forany a € R. Furthermore ¢/~!|p — 1 if p is odd and
qf”1|2 fp=2,

If A =1 (and this is the casc if ¢ = p# 2 or, more generally, we force GG to have all proper
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infinite subgroups abelian) then f = 1 and p(t) is the minimal polynomial of a primitive
g-th root of 1, whose degree n is equal to p — 1 if ¢ = p and to the multiplicative order of p
mod q otherwise. In the former case clearly p(t) = tP~! +tP~2 + ...+ 1 and © has entries
in Z .If A\#1 and X isa g-throotin Z,, or equivalently g/ divises p— 1, then t9 — ) splits

over Zp into linear factors, contradicting to n > 1. Thus f is the greatest positive integer

such that ¢/~ |p — 1 and u(t) = t7 — X is irreducible.

Let us observe that the argument 1n the last lines of the proof of Proposition 5 1s actually an
application of the facts we have just stated. In fact, if ¢ = p= 2 and z? centralizes R, then
in the above notation ¢ has order 2 and )\ = 1. Therefore u(t) divides t2 — 1 and its degree
n 1S 1, a contradiction. By the way we also note that the consideration of the automorphism
actingon Z (2°°) ¢ £ (2°°) by means of the matrix

0 1
-1 0

shows that conditon (iv) in the statement of the above proposition may not be relaxed.
We have proved that non-(Priifer-by-finite) X-groups are of type 1 in the introduction.

Case 2 - Priifer-by-finite non-primary groups.
In this case we are concerned with Chemikov groups whose finite residual R 1s a Priifer
r-group (where r is a prime). The next lemma completes an observation we have made before.

Lemma6. Let G asoluble X-group whose finite residual R is a Priifer group. Then (G has a
(finite) minimal-non-T' subgroup F'. Furthermore G = F'R,unless G isa 2-group and R is
non-central. Moreover if R is a Hall subgroup of G we can choose F suchthat G = F x R.

Proof. Suppose first that R is a Hall subgroup and let F' be a complement of R. Hence
F ~ G/R isnota T group by Lemma 4 and so is a minimal-non-T" group. Thus we may
assume that R is not a Hall subgroup.

The first part of the statement about the existence of a (finite) non-T" subgroup F' of &
has already been settled. Assume G'# FFR. Then F'R has property T but not T and so,
by Proposition 2, R is a Priifer 2-group not contained in the centre of . Let D be the set
of all elements of G with odd order. If D is not a subgroup then G = (D, R), because in
a torsion T-group the elements of odd order fill a subgroup. Furthermore, since R has no
non-trivial automorphism of odd order, R in central in G = (D, R) . a contradiction. Thus
D is a subgroup of G and G = S x D, where S is a Sylow 2-subgroup of &G. Since R i1s
not a Hall subgroup of G, i.e. R < S, we have D ~, DR/R < G/R; it follows that D
is a T-group. Moreover G/ D also is a T-group as it is isomorphic to S. If by contradiction
GG/ R were a T-group then by the above G-isomorphism every (sub)normal subgroup of D
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would be normal in G and, in view of Lemma 4, G would be a T-group, a contradiction.
So G/ R is a non-primary minimal-non-T" group, 7(G/R) = {p,2}, D = P is the Sylow
p-subgroup of G and S = (z, R) for some element z. Thus G = S P, F} = (z) x P isa
minimal-non-T" group and of course every infinite subgroup of S is a T-group. 0

As a consequence of this lemma we see that if G is an X-group then n(G) = {p,q,r}
has at most 3 elements. Let us exploit the action of a non-primary minimal-non-7" group on
a Priifer group.

Lemma 7. Let G be a group such that G = FR, where R ia a Priifer r-group and F =
() X P is a non-primary minimal-non-T' group (notation as in the introduction). If G is an
X-group then.

(i) [z, R]# 1 implies that either gt r — 1 0org=r=2;

(ii) [P,R]# 1 implies that F is of type Ill (therefore qlp — 1 and P = (a) x (b)) and:
a® = o, where ( isa q—th primitive root of 1 in ZP, b* =b,[a,R] = 1.

Proof. Clearly (i) is trivial. If [ P, R]# 1 then P/Cp(R) is a non-trivial cyclic group, hence
it has order p. On the one hand, since Cp( R) <« F' we get that P 1s neither minimal normal
in F' nor isomorphic with the quaternion group of order 8; in other words F' is of type Il
and P = (a) x (b), where (a) and (b) are normal in F'. On the other hand under these
circumstances we have (e) = [z, (a)] < F' < Cp(R), as the automorphism group of R is

abelian. Thus Cp(R) = (a) and b='** = [b,z] € Cp(R) N (b) = 1. The statement now
follows. 0
We can now scttle this case by the following Proposition.

Proposition 8. Let the non-primary soluble group G have a Priifer r-subgroup R with finite
index. Then G is an X-group if and only if GG is of type 2 in the introduction (where p = r ).

Proof. We first show the necessity of the condition, which is trivially verified if R 1s a Hall
subgroup of G (type 2a). Solet » € n(G/R). From Lemma 6 we get the existence of a
minimal-non-T" group F such that G = F'R. Then F 1s not a primary group and has the
form F' = (z) x P, where z is a g-elcment and P 1s a p-group either isomorphic to the
quatcrnion group of order 8 (type II) or elementary abelian. Recall that in the latter case P 1s
minimal normal in F' if F' is of type IV, otherwise F' 1s of type III. Obviously either p = r
or g=r.

Ifg=7r#2 then[z,R] =1 and (z)NR=FNR,as (z) is a Sylow g-subgroup of F'.
Assume by contradiction that [ P, R]# 1. Then p|r — 1 = ¢ — 1 and by Lemma 7 we get the
contradiction F isof type Il and g|p—1. Letnow {z, R) = {y)x R and F, = (y) x P. Since
y acts on P the same way as z docs, then F) 1s a minimal-non-T-groupand G = F; x R
is of type 2b. On the other hand if ¢ = r = 2 and still [z, R] = 1 arguing as before we get
that G again is of typc 2b; finally if [z, R] # 1, 1.e. z induces the inversion map on R, then
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(z must be of type 2d. Let us move now to the case p = r.

If p = ritfollows [P,R] = 1. Infactif [P,R]# 1 then by Lemma 7 we get that
F' is of type III and so p# 2, then it is a trivial fact that P centralizes K. Let us examine
all possibilities for F'. We see that F' 1S not of type II, because PR is abelian, If F 1s of
type III then P = (a) x {b) where (a) and (b) are normal in . If, for a contradiction, both
(z,a, R) and (z,b, R) are different from G then they are T'-groups and the (universal) power
automorphisms induced by = on (a, R) and (b, R) respectively have the same exponent, it
would follow that z induceson P = (a,b) a power automorphism and F' is a T-group. Thus
G 1s as in 2c, where relations beetween ¢ and 7 are due to the fact that they hold mod p (see
[10]) and there is only one periodic p-adic integer which lifts a non-zero element of Z (p) ,
since p#2. If Fisof typeIVathen ¢/ p— 1 and [z, R] = 1; on the other hand P is
minimal normalin F and FN R= PN K =1, hence G 1s again of type 2b. Finally, if by
contradiction F is of type IVb and f is the greatest positive integer such that ¢/~! divides
p — 1 then z7 induces on R an automorphism of order ¢/~!, since G# (z9, R). It would
follow that z induces on R an automorphism of order ¢/ and ¢/|p — 1, contradicting the
choice of f. The necessity of the condition 1s now shown.

To show the sufficiency we observe that a group of type 2a is trivially an X-group by
Lemma 4. Then observe that groups of type 2¢ are not T-groups because z induces on the
abelian normal subgroup (a, K) a non-power automorphisml and that all other groups descri-
bed 1n the statement have a finite factor group (namely G/ R) which is not a T-group. Thus,
since subgroup with finite index of soluble T'-groups are still T°-groups (see [4]), we just need
to check whether the maximal subgroups of GG have property T'; let GG; be one of them.

Let G be of type 2b and w(F) = {p,q}; then G, = F|R where F| is a maximal
subgroupof F.If g=rlet P, =G, NP=F, NP,then G,/P, ~ G,P/P is abelian and
Fy (and with it &G ) induces on P, a cyclic group of power automorphisms; by Lemma 4 G,
is a T-group. Similarly if p = r then either G, = (2%, PR) or G, is conjugate to (z)R. In
both cases it is trivial that G, is a T-group.

If G is of type 2¢ then the maximal subgroups of G are conjugate to either (z)R or
(z%,a, R). The former group is a T-group by Lemma 4 and the latter has property 7" as z°
induces on (a, i) a power automorphism of exponent ¢¢ = n?. Finally if G is of type 2d
then G, = 8, x P,, where S| is conjugate to a subgroup of S = (z)R (and therefore a
T-group) and P, = G, N P. Thus G| has property T°, again by Lemma 4. o

Case 3 - Priifer-by-finite primary-groups which are central-by-finite,

In this case we deal with a p-group G whose finite residual R is central. Clearly if p# 2
then every soluble X-group which is a primary group falls in this case.

Recall that if p 1s an odd prime for soluble p-groups property T is equivalent to com-

mutativity. Thus a soluble p-group G (p odd) has property X if and only if it is non-abelian
but all its infinite proper subgroups are. Futhermore the same hold for soluble 2-groups in
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which the largest normal abelian divisible subgroup is central. Case 3 is easily settled by the
following proposition.

Proposition 9. Let G be a Priifer-by-finite p-group whose finite residual R is central. Then
G is an X-group if and only if G = F R, where F' is a minimal-non-abelian group.

Proof. The sufficiency of the condition is self-evident. If G is an X-group then by Lemma 6
we have G = FFR where F' is a minimal-non-T" group. If F' is not minimal-non-abelian, as
we claim, then F' 1s isomorphic to the quaternion group of order 16 and has a subgroup F,
isomorphic to the quaternion group of order 8, which is minimal-non-abelian. The proof is
complete once we observe that G'# F| R yields the contradiction that F, R is a non-abelian
T-group. o

Note that if we consider the direct product G of a finite minimal-non-abehan p-group F
and a Priifer p-group R amalgamating the commutator subgroup of F' and the socle of R we
see that (¢ is an X-group and G/ R is abelian, so G does not split over R.

Case 4 - Priifer-by-finite 2 -groups which are not central-by-finite.

This is the final step of the proof of the main result. We are going to deal only with
2-groups whose finite residual R is non-central. Although in [8] a complete description of
2-groups with property T is to be found we recall from that paper a statement which fits for
our arguments (see Theorem 3.1.1).

Lemma 10. Letthe group G have an abelian subgroup C withindex 2 and an element x & C
such that c® = ¢!, for all c € C. Then G is a T-group if and only if C* < (z?,C*).

Observe that if G is non-abelian the subgroup C is identified as the Fitting subgroup
Fit G of G. As a direct consequence of this lemma we get:

Lemma 11. Let G = (x, R) be a Priifer-by-cyclic 2-group with finite residual R. Then G
is an X-group if and only if

(i) *=c !, forall c€ R;

(ii) |z| > 8.

The next lemma shows that the remaining groups form a restricted class.

Lemma 12. Let the 2-group G have property X and a non-central Priifer subgroup R such
that G /R is a finite non-cyclic group. Then G = (z,(y) X R) and the following hold:

(i) Y=z =1,[z%,y] =1

(ii) y¥* € {y* y*a,y*x? y*2%a}, where (a) = SocR,k is an odd integer and, if
lyl = 8, k = —1(mod 4).

Proof. Let C = C,(R) and z € G\C (clearly |G : C| = 2). Since R < Z(C) and C
is a T-group, C = C; x R is abelian. Assume by contradiction that for any ¢ € C| the
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subgroup (z, c, R) is proper and so a T-group. Thus G/ R has exponent at most 4, c* = ¢~

and c? = 2% if |c| = 4, by results in [8]. By Lemma 10 we get the contradiction that G is
a T-group. Therefore G = (z,{y) x R), for some y € C, chosen of minimal order, and
C = (z%,y,R).

Since {xz, R) is a proper subgroup of @ it is a non-abelian T-group and z* = 1. By the
same reason also G, = (z, y*, R) is a non-abelian T-group. Thus y** = y~2 and G, /R has
exponent at most 4, hence y® = 1. From C <@ it follows y* = z'y*b, where k is an integer,
i1 =0,2 and b € R. From y*% = y~2 it follows easily > = 1 and the stated condition
on k. Furthermore y* = z'b means y = z'b which in turn implies G = (z, R), a contradic-
tion. Therefore (11) holds. o

Because of the previous lemma we introduce some terminology. Let us say that a group
G isof type X(J,4i,k),where J € {I,II III},i€{1,2,3}, ke {1,—1,3} if and only
if:

G = {z,(y) x R) where z* = 1,|y| = 2}, R ~ Z(2*),{a) = SocR,c* = c”'Vc €
R,J = I,II,III according to: y* = y*, y* = y*a, y* = y*¥z%a® (withe=0,1)[2?,y] =
1 and

(o) y* € (2%, R).

If we omit condition (e ) from the above definition, Lemma 12 may be restated by saying
that a 2-group & with a non-central Priifer subgroup R such that G/ R is a finite non-cyclic
group and property X 1s a group of type X(J,1, k) for some admissible 3-tuple (J,1, k).
Observe that the type X (J, 1, k) does not identify the isomorphism type of the group.

Proposition 13. Let G be a Priifer-by-finite 2-group and R its finite residual. Then G is a
X-group and R is non-central if and only if G is of one of the following types:
(i) {z,R) where c* =c~! forall c€ C and |z| > 8.

(ii) X(1,2,1)

(iii) X(I1,2,-1) and y* & (z?, R)

(iv) X(I1,3,-1)

(v) X(II,1,%)

(vi) X(II,2,x%)

(vit) X(II,3,-1)

(viii) X(III,1,%) and [z,y]# ]

(ix) X(III,2,%) and y*# y~!

(x) X(III, 3, 3).

Proof. By the above all we have to do is to show that in the hypotheses and notation of Lemma
12 condition (e ) holds and to dctermine which groups of type X(J,i,k) are
X-groups. Let G = {z,{y) x R)) be one of them. Then the Frattini subgroup ®(G) of G
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is (z?,y*, R), the (three) maximal subgroups of G are G, = C = (y, P(G)) = (z?,y, R)
(which is abelian by construction), G, = (z,P(G)) = (z,¥*,R), G, = (zy,P(G)) =
(zy,y*,R) and FitG, = FitG, = ®(G). Furthermore C? = ®(Q), C* = ®(G)? =
(v*,R), ®(G)* = R. By Lemma 10, G is a not a T-group if and only if’

(1) v'#y~'  or  y* ¢ (z* v* R)

furthermore G, and G, are T-groups if and only if:

(H y*’* =y and  ¢* € (2%, R) N {(z?¢y°y, R)

(to get (}) we have used the equality (zy)? = 2% y*y). Since we do not have used (o) to get
(1), wecan add (e) to the necessary condition of Lemma 12. Moreover, since in a soluble
T'-group subgroups with finite index are still T-groups (see [4]), a group G as above is an
X-group if and only if (1) and (1) hold. We proceed now by cases (and subcases).

Case X (1,1, k): This is the case y* = y*. If i = 1 then (1) does not hold.

If 1=2 then £k =1 or £k = —1 (mod 4), in the latter eventuality to satisfy (1) we must
have y* ¢ (z%, R). Then we see that both types (ii) and (iii) have X.
If 1=3 then £k = —1 or k = 3 (mod 8). In the former case we have (3) if and only

if y* € (z?, R); once we observe that under these circumstances y? ¢ (z?,y*, R) actually
follows from y? € (2%, R) we include (iv) in the list. Finally the case £ = 3 may not occur
as y* € (z%, R) N (z?y*, R) is incompatible with the choice of y.

Case X (II,1,k): This is the case y* = y¥a. Of course (1) holds and if i = 1,2 there is
nothing Lo say. If 1 = 3 proceed as above.

Case X (III,i,k): If y* = y*2? we again have to consider just the case 1 = 3 and (1).
Since z°y*y = y**! then (1) holds if and only if k = 3 and y* € (2?, R). Thus we get
type (z). The case y* = y*z2a is handled similarly. o

The proof of Theorem A 1s now complete.

3. NON-ABELIAN GROUPS WITH ALL INFINITE PROPER
SUBGROUPS ABELIAN

This last section is a by-product of the previous ones. We note here that using our main result,
Proposiuon 2 and the discussion following Proposition 5, we are able describe non-abelian
infinite soluble groups whose all infinite proper subgroups are abelian.

Theorem B. Let G an infinite soluble non-abelian group. Then all infinite proper subgroups
of G are abelian if and only if G has an abelian divisible normal p-subgroup R and one of
the following hold.:
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(a) G = (x, R),where x has prime power order g™, [ 29, R] = 1 and, if R has rank greater
than 1, then G is of type 1 in the introduction with f = 1;

(b) G = FR, where R has rank 1, F is a minimal-non-abelian group and [ F,R] = 1.
Moreover F' can be chosen such that G = F' x R, provided G is not a p-group.

Proof. The sufficiency of the condition is clear because every infinite proper subgroup of G is
contained in (xz?) R in case (a) or contains R in case (b). To prove the necessity first observe
that if G 1s not a T'-group then it is an X-group and we just have to read through the list in
the introduction looking for groups having the property we are interested in. Let then G be a
T-group. By the same arguments of Proposition 3 we see that ' 1s a Chernikov group whose
finite residual has no proper infinite G-subgroups, hence G is Priifer-by-finite. If G is not
a T-group then by Proposition 2 we get the result (case (a)). If G is a T-group then it has
a finite subgroup F' which is a minimal-non-abclian group and has property T'. Morcover
G = FR. If G/R has prime-power order we have type (a). Otherwise R is central and, if G
is not a p-group, F = (z) x P where P is an elementary abelian non-central primary Sylow
subgroup which 1s minimal normal in /' and z has prime-power order. Therefore PNRE = 1.
Finally, if {z, R) = (y) x R, then the subgroup (y, P) may be chosen for F'. 0
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