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THE RANK 3 GEOMETRIES OF THE SIMPLE SUZUKI GROUPS Sz(g)
DIMITRI LEEMANS

Abstract. We determine all possible rank three geometries on which a Suzuki simple group
Sz(q), with g an odd power of two, acts residually weakly primitively (RWPR1). We observe
that if we impose the (2T )| property, there is no RWPRI geometry of rank > 4 on which Sz(q)
acts.

1 Introduction

In 1954, Jacques Tits gave a geometric interpretation of the exceptional complex Lie groups
(see [24] and [27]). Francis Buekenhout generalized in [2] and [3] certain aspects of this
theory in order to achieve a combinatorial understanding of all finite simple groups. Since
then, two main traces have been developed in diagram geometry. One is to try to classify ge-
ometries over a given diagram, mainly over diagrams extending buildings (see e. g. [6] chap.
22, for a survey and [26] for the theory of buildings). Another trace is to classify coset ge-
ometries for a given group under certain conditions. Rules for such classifications have been
stated by Buekenhout in [4] and [5]. These guidelines led Michel Dehon to present in [14] a
set of CAYLEY programs in order to classify all firm, residually connected and flag-transitive
geometries of a given group G with an additional restriction on the subgroups forming the
geometries: each stabilizer of some element is a maximal subgroup of G. Several groups
were investigated as for example Us(2) [14], M, [9] and a collection of projective groups
G such that PSL(2,q) < G < Aut(PSL(2,q)) with 5 < g < 19 [8]. This experimental work
led to new rules for such classifications. In 1993, Francis Buekenhout and Michel Dehon
changed the restriction of the subgroups forming the geometries, taking a residually weakly
primitive condition (RWPRI). Again, experimental work was accomplished in that way. In
1994, an atlas of residually weakly primitive geometries for small groups was achieved by
Buekenhout, Dehon and Leemans [10]. In 1995, Harald Gottschalk determined all geome-
tries of the group PSL(3,4) is his Diplomarbeit [16]. In 1996, Dehon and Miller determined
in [15] all geometries of M ; satisfying these new conditions, Gottschalk and Leemans classi-
fied the geometries of J [17] and Leemans determined all those geometries for Sz(8) in [21].
During that period, several theoretical works on the subject were also made: Buekenhout,
Dehon and Leemans showed in [11] that the Mathieu group M, does not have RWPRI and
(IP)> geometries of rank > 6. Buekenhout, Cara and Dehon described in [7] a class of induc-
tively minimal geometries which satisfy the RWPRI condition, and Buekenhout and Leemans
showed in [12] that the O’Nan sporadic simple group does not have RWPRI geometries of
rank > 5 (resp. six) with one of the subgroups forming the geometry isomorphic to J; (resp.
M1). All these results tended to show that the residually weakly primitive condition on the
subgroups was a “good one”.

The expenience that we acquired led us to be more ambitious. We wanted to look at an
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infinite class of groups and classify all geometries satisfying some conditions for all groups
of this class. We choosed to study the Suzuki simple groups. This choice was motivated
by the fact that the structure of these groups is particularly easy compared to other simple
groups. We started the classification by determining, up to isomorphism, all rank two firm,
residually connected, flag-transitive geometries on which a Suzuki simple group Sz(g), with
g an odd power of two, acts residually weakly primitively [18]. This purely theoretical work
pointed out some very surprising results, as for example the fact that a Suzuki simple group
which does not have proper subgroups of Suzuki type (i.e. subgroups which are also Suzuki
simple groups) gives rise to much more geometries than the others. We also showed in [18§]
that by adding just one condition, namely the (27}, condition, we reduced the number of
geometries arising to one for every Suzuki group except for the smallest one, i.e. Sz(8) which
has three such geometries. The next step was the classification of all rank three residually
weakly primitive geometries of the Suzuki simple groups. To do this, we first needed to
know all the RWPRI geometries of the dihedral groups since some of the maximal subgroups
of a Suzuki group are dihedral groups, so we classified in [20] all RWPRI geometries of the
dihedral groups.

In the present paper, we determine all RWPRI geometries of rank three, on which a Suzuki
simple group Sz(q), with g an odd power of 2, acts residually weakly primitively. The reader
is warned that the RWPRI property as it is defined in the present paper is shightly different
from the original one that was first given in [10]. The reason of this change is that in [10], the
authors define the RWPRI property for flag-transitive geometries. Here we plan to determine
geometries that satisfy the RwpRr1 condition, be them flag-transitive or not. The main reason
of this choice is that RWPRI is a property much easier to test than flag-transitivity. Also, it
seems much more restrictive, so it is natural to test it first. Moreover, we see that even without
imposing the flag-transitivity condition, it is possible to get a very good control on the results.

Our main results are theorems 5.3, 5.4 and 5.5 which give all possible residually weakly
primitive geometries of rank three for any Suzuki simple group Sz(q), with ¢ = 2**! and e
a positive integer. As in the rank two classification [18], we subdivide the results into three
cases, namely the case ¢ — 1 prime (and hence 2¢ + 1 prime), the case ¢ — 1 not prime and
2e + 1 prime, and the case 2e + 1 not prime (and hence g — 1 not prime).

As a corollary to the classification theorems for the rank three residually weakly primitive
geometries of the Suzuki groups, we show in theorem 6.1 that there is no pre-geometry (and
hence no geometry) of rank > 4, satisfying the residually weakly primitive condition and
the (27'); condition. Moreover, we show that the only rank three geometries satisfying that
property are thin, and that they arise only for Suzuki groups 5z(g) with ¢ — 1 a prime number.
Thus, as in the rank two case, the (27°); property seems to be a good candidate to enter our
set of axioms. Anyway, we show in [19] that it is possible to classify all residually weakly
primitive pre-geometries of rank > 4 for any Suzuki group Sz(g).

The results obtained in this paper strenghten our belief that the residually weakly prim-
itive condition is an efficient one to impose on the subgroups forming the geometries since
control is obtained even without asking the flag-transitivity condition. Moreover, the nice
classification obtained in theorem 6.1 makes us believe that the locally two-transitive prop-
erty should enter our set of axioms.

The paper is organised as follows. In section 2, we recall some basic definitions and
we fix notation. In section 3, we state some preliminary lemmas used in the next sections
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for the classification process. In section 4, we give some lemmas that tend to restrict the
possible maximal parabolic subgroups of the geometries we want to classify. In section 3,
we classify all rank three, RWPRI geometries of a Suzuki group Sz(q). In section 6, we show
that for most of the geometries obtained, we can say whether the group from which they anse
acts flag-transitively or not and we prove that there is no RWPRI and (27T ) pre-geometry of
rank strictly greater than 3 for any Suzuki simple group Sz(q) and that rank three geometries
appear only when g — 1 1s prime.

Acknowledgements: We would like to thank Francis Buekenhout for many interesting
discussions and useful comments on a preliminary version of this paper. We also thank Hen-
drik Van Maldeghem and Wieb Bosma for interesting discussion about two of the preliminary
lemmas given in this paper. Finally, we thank Michel Dehon for his fruitful comments about
this paper.

2 Definitions and notation

The basic concepts about geometries constructed from a group and some of its subgroups are
due to Tits [25] (see also [6], chapter 3).

Let I be a finite set and let G be a group together with a family of subgroups (G;)icy. We
define the pre-geometry I’ = I'(G,(G;);cr) as follows. The set X of elements of I consists of
all cosets gG;, g € G, i € 1. We define an incidence relation * on X by :

£1G; * g2G iff g1G;MNgaGj1s non-empty 1n G.

The tvpe function t on I is defined by t{gG;) = i. The type of a subset ¥ of X is the set t(Y);
its rank is the cardinality of 7(¥) and we call | (X ) | the rank of T".

A flag 15 a set of pairwise incident elements of X and a chamber of T" 1s a flag of type I.
An element of type i is also called an i-element.
The group G acts on I" as an automorphism group, by left translation, preserving the type of
each element.
Asin [14], we call I a geomerry provided that every flag of I" is contained in some chamber
and we call " flag-transitive (FT) provided that G acts transitively on all chambers of T,
hence also on all flags of any type J, where J is a subset of /. It is obvious that any rank two
pre-geometry I'(G; Gg, G ) is a flag-transitive geometry.

Lemma 2.1 Let ['(G;Gy,Gy,Gz) be a rank 3 pre-geometry. Then 1 is a geometry (not nec-
essarily flag-transitive ).

This lemma permits us to talk about geometries instead of pre-geometries in the rank three
case.

Let I'(G; Gg,...,Gp_1) be a rank n pre-geometry. We call C = {Gy,...,G,-;} the maximal
parabolic chamber associated to I'. Assuming that F is a subset of C, the residue of F is the
pre-geometry

Tr =T (N7 G (G (Njer(7)G ) ientr))

If F={G;} forsomeie€l={0,...,n— 1} then I'¢ is also called the G;-residue of I" and
denoted I';. If I is flag-transitive and F is any flag of T, of type #(F), then the residue 'y of
I" is isomorphic to the residue of the flag {G;,i € t{F)} CC.
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Assume I' is a pre-geometry. We call I" firm (F) (resp. rhick, thin) provided that every
flag of rank | 7 | —1 is contained in at least two (resp. three, exactly two) chambers. We call
[ residually connected (RC) provided that the incidence graph of each residue of rank > 2 1s
connected.

Let I'(G; Gy, ...,G,—1) be a pre-geometry and denote / = {0,...,n— 1}. Asin [17], for any
0 CJCI weset Gy =();c;Gj, and Gp = G. The subgroup G; is the Borel subgroup of
. We call L(I') = {Gy : J C I} the sublattice (of the subgroup lattice of G) spanned by
the collection (G;);e;. The elements of the lattice are called the parabolic subgroups and the
subgroups G;’s are the maximal parabolic subgroups. When the context 1s clear, we write
“sublattice” instead of "sublattice spanned by ...".

We call I residually weakly primitive (RWPRI) provided that for any @ C J C [ there exists at
least one element i € J\J such that Gjuqiy 18 maximal in G;. This definition of RWPRI differs
slightly from the one given in [10]. If the pre-geometry I" is a flag-transitive geometry, then
the present definition is equivalent to the one given in [10].

The RWPRI condition implies that all subgroups of the sublattice are pairwise distincts and
that M je;G ; 1s a maximal subgroup of Mjep (1 G foralli € 1. Arranging the indices in suitable
manner, we may also assume that N;eo ;3G 18 a maximal subgroup of Njcyo ;- 11G; for
alli=1,...,n—1.

If I is a geometry of rank 2 with 7/ = {0, 1} such that each of its O-elements is incident
with each of its 1-elements, then we call I" a generalized digon.

We call the pre-geometry I" locally 2-transitive and we write (2T ); for this, provided that the
stabilizer G- of any flag F C C of rank | / | —1 acts 2-transitively on the residue I'f.

Again here, if I is a flag-transitive geometry, then the (27'); property is the same as the one
given in [10].

Following [2] and [3], the diagram of a firm, residually connected, flag-transitive geom-
etry I' is a graph on the elements of / together with the following structure: to each vertex
i € I, we attach the order s; which is | T'r | —1, where F is any flag of type I\ {i}, the number
n; of varieties of type i, which is the index of G; in G, and the subgroup G;. Elements i, j of
I are not joined by an edge provided that a residue I'r of type {i,j} is a generalized digon.
Otherwise, i and j are joined by an edge endowed with three positive integers d;;, gi;, dji,
where g;; (the gonality) 1s equal to half the girth of the incidence graph of a residue I'r of
type {i,j} and d;; (resp. dj;), the i-diameter (resp. j-diameter) is the greatest distance from
some fixed i-element (resp. j-element) to any other element in the incidence graph of I'r.
On a picture of the diagram, this structure will often be depicted as follows.

dij 8ij dji
O O
5 5
n; n;
G G,

If gij =d;j = dj; = n, then I'p is called a generalized n-gon and we do not write d;; and d;
on the picture.

As to notation for groups, we follow the conventions of the Atlas [13] up to slight vani-
ations. The symbol ;" stands for split extensions, the "hat” symbol ":"stands for non split
extensions and the symbol x stands for direct products. We write E, for an elementary
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Structure Order Index Description

(EgEy):(g-1) g--(g—1) g~ + 1 Normalizer of a 2-Sylow,
stabilizer of a point of
Q.

Dsig-1y 2-(g-1 w Stabilizer of a pair of
points of €.

. “(g—1) :
o4 0,4 i Normalizer of a

cyclic group of order o,
B,:4 B4 ¢9-1) | Normalizer of a

cyclic group of order 3,

Sz(2-7+1) (s°+1)-57-(s—1)
with 2f + 1 |3 2e+ 1

Table 1: The maximal subgroups of Sz(q)

abelian group of order g. A group is called of Suzuki rype if it is a simple group isomorphic to
5z(g) with g an odd power of two. Observe that in the present paper, we prefer not to consider
the group Sz(2) = AGL(1,5) as a group of Suzuki type. Its geometries can be found in [10].

When an integer n divides an integer m and = is a prime number, we write n |3y m. When
an integer n divides an integer m and n # m, we write n |p m.

3 Preliminary lemmas

For a good introduction on the Suzuki groups, we refer to [23] (see also [18]). We remind the
reader that the group Sz(g) has order g*(¢> + 1)(g — 1).

Observe that ¢* + 1 = (¢ + /2¢ + 1)(g — /2g + 1). We write o, (resp. B,) for g +/2q + |
(resp. ¢ — /2q + 1). Let Q be a set of g> + 1 points on which Sz(g) acts doubly transitively.
Table 1 1s taken from [22]. It gives the list of maximal subgroups of Sz(g). These subgroups
are studied more deeply in [18].

Lemma 3.1 [/8] Let G = Sz(q) with g an odd power of 2.
(1) The maximal subgroups of a (E.E,) : (q — 1)-subgroup of G have one of the following

Structures.
¢ (EpEy) :nwhere nis a maximal divisor of g — 1;
o E,:(g—1).

(2) The maximal subgroups of a n : 4-subgroup of G with n = 0, or B, have the following
struciures:

o m: 4 where mis a maximal divisor of n;

o n:2.
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(3) The maximal subgroups of a Dy(,_y-subgroup of G have the following structure:
e the cyclic group of order g — 1;

o [, where n is a maximal divisor of g — 1. If ¢ — 1 is a prime, D, denotes the cyclic
group of order 2.

Lemma 3.2 [18] Let g = 2***! with e a positive integer. The numbers q - 1, 0., and B, are
pairwise coprime.

Observe that if H, I and J are subgroups of Sz(g) with H = Dy, ), I =0, 4 and J =[3,: 4,
lemma 3.2 yields | HNI|<2, | HNJ |<2, and | INJ |< 4. This fact is used very often in
section 3.

Lemma 3.3 The group Sz(q) has a unigue class of maximal subgroups isomorphic to a
Suzuki group if and only if g = 2°*', 2e + 1 = p" with p a prime number, and n > 1 an
integer.

Proof. The claim immediately follows from the classification of maximal subgroups of Sz(g)
given in [22]. ]

Lemma 3.4 Let Sz(s) be a maximal subgroup of Sz(q). Then s — 1 |y g — 1 implies s = 27"
and g = sP, with p a prime and n a positive integer.

Proof. Suppose that there is no prime p and positive integer n such that g = 27". Then, by
lemma 3.3, there are at least two different classes of maximal subgroups of Suzuki type in
Sz(q). say Sz(s) and Sz(t). Thus g = s =17 with p # p’ two primes. Then both s — 1 and
t—1divideg—1,and (s—1)-(r—1) < (g—1). This implies that ff{—; cannot be a prime,

becauseg—-1=(s—1)- {5_"[:‘_[} -n with n > 1 an integer. O

Lemma 3.5 Let Sz(s) be a maximal subgroup of Sz(q). If Sz(q) has at least two different
classes of maximal subgroups of Suzuki type, then s — 1 is not a prime divisor of g — 1.

Proof. Obvious thanks to lemmas 3.3 and 3.4. o

Lemma 3.6 Let s > 8 be a divisor of ¢ = 2°¢*! with e a positive integer. Then
(1) 5 divides ¢* + 1;

(2) either o5 | Oy and B | B, or o5 | By and Bs | 0;

(3)5| o, (resp. B,) if and only if 2e + 1 =0 or 3 (resp. 1 or 2) modulo 4.

Lemma 3.7 Let m and n be odd positive integers. Then (2% +1,2%" + 1) = 22ma) 4 1.

Lemma 3.8 Let I'(G; Gy, G, G») be a rank 3 geometry. If the diagram of T is linear, then T’
is a flag-transitive geometry.

Observe that this lemma is a corollary of the main theorem proved in [1].
The next three lemmas summarize arguments that are used several times in section 5 to
determine the rank three residually weakly primitive geometries of Sz(g).
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Lemma 3.9 Let g = 2% with e a positive integer and let G = Sz(q).

(i) Let H be a n : 2-subgroup of G with | # n| g*> + 1. There is a unigue n : 4-subgroup of G
containing H.

(ii) Let H be a n : 4-subgroup of G with 1 # n | ¢* + 1. For every prime p | 5'*”—"'[, there is a
unique (np) : 4-subgroup of G containing H.

Proof. (ii) Every x : 4-subgroup of G with 1 # x a divisor of ¢* + | is self-normalizing in

G. Moreover, all x : 4-subgroups are conjugate in G. There are 1{% x : 4-subgroups in G.

A (np) : 4-subgroup contains p n : 4-subgroups. Hence the number of (np) : 4-subgroups
L .. |G G| _

containing H is ]H—p:ﬂ‘qp/ = 1.

(i) Since H is a subgroup of o: 4 or B,: 4, it must be contained in a n : 4-subgroup. Thus

Its normalizer must contain a » : 4-subgroup. It cannot be a subgroup of Suzuki type since
these are simple groups. Hence, looking at table 1, we see that Ng(H) = n : 4. The number

of n : 4-subgroups in G is % Each n : 4-subgroup contains exactely one n : 2-subgroup.
Hence there is only one n : 4-subgroup containing H. o

Lemma 3.10 The only subgroups of G = Sz(q) containing Go; = g — 1 are Ng(Gp) =

Dy(,—1), the two Sylow 2-normalizers containing Goy and their E; : (g — 1)-subgroups.

Proof. Obvious thanks to the structures of the maximal subgroups of G (see table 1) and
lemma 3.2. 0

Lemma 3.11 Let G = 5z(q) and Go = Sz(s) be a maximal subgroup of G. Let Go) = Dy,
be a maximal subgroup of Gy. The only subgroups of G containing Ggy are Gg and D»,-
subgroups withs—1 | n|qg— 1.

Proof. Let H be a subgroup of Sz(q) containing Gg;. Then 2(s — 1) divides the order of H.
Table I and lemma 3.2 imply that H must be of Suzuki type or H is (a subgroup of) a Dy, -
subgroup. Suppose H 1s of Suzuki type. Then, H = Gp. Since Gy, is self-normalizing in G,
and since there is only one conjugacy class of Sz(s)-subgroups in G, Go = H. Suppose H is
(a subgroup of) a Dy, )-subgroup. Since it contains Gy, it must be a Dj,-subgroup with
s=1|n|g—1. O

4 Restricting the maximal parabolic subgroups

In this section, we prove lemmas that restrict the possible maximal parabolic subgroups to
construct RWPRI pre-geometries of rank > 3. By lemma 2.1, we know that every rank 3 pre-
geometry is indeed a geometry, so we can use these lemmas for the classification of rank 3
RWPRI geometries of Sz(q). We prefer to talk about pre-geometries here because the results
obtained in this section are used also in [19] to construct all RWPRI pre-geometries of rank
>4,

Since we want to construct RWPRI pre-geometries, we know that at least one of the maximal
parabolic subgroups of the pre-geometry must be a maximal subgroup of Sz(g). Not every
maximal subgroup of 5z(g) can give rise to RWPRI pre-geometries of rank > 3. We give here
lemmas that discard some of them.
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Lemma 4.1 [/8] There is no RWPRI pre-geometry of rank > 2 with some G; isomorphic to
(EgeEq):(q-1).

Lemma 4.2 There is no RWPRI pre-geometry of rank > 3 with some G; isomorphic to 044
or By:4.

Proof. Suitably arranging the ordering of the indices, we may assume that G = n : 4 where n
= @4 or B, and that Gy is maximal in Go. Then Gy, is isomorphic to Dy, or (n/p) : 4 where
p is a prime divisor of n.

It Gg) = Dy, then G| must be a subgroup of » : 4 but this does not happen, as there 1s a
unique subgroup of G containing Gy 1somorphic to n : 4 by lemma 3.9.

The case Gg; = (n/p) : 4 requires a little bit longer argument. By lemma 3.9, G| cannot be
n : 4. Since the order of Gg) must divide the order of &1, we know by lemma 3.2 and table 1
that G must be a Sz(s)-subgroup for some s. Also, by lemma 3.6(2) and the fact that p is a
prime, G| must be maximal in 5z(g). Since Gy, is of prime index in Gy, it must be maximal
in G, and (n/p) = o, or P,.

Because the case Gy = n : 2 has been already considered, we may assume that Gy = (n/r) : 4
with r, a prime divisor of n and r # p (for otherwise Ggy < Ggp), which implies G = Sz{r).
This already means that n cannot be a prime number and that ¢ — 1 must have at least two
prime divisors. We also know that Ggo = !% : 4 because it 1s a subgroup of Gy which is
maximal in Gg;.

Suppose g = 22! s =2%*1 and t = 2%*!, Since G; and G, are maximal subgroups of
Sz(q), we have g = sP* = P with p and p, two distinct primes. Thus, 2e+1=(2f+1)-ps =
(2g+1)- p, and (py, p;) = 1. This allows us to write 2e+ 1 = (2h+1) - p; - p; for some positive
integer 1. We know that n is either ¢, or §, and that n/p is either ¢ or B,. Then, p = H”E >

o, > [;. But p must divide o, or B;. So we have a contradiction. O
We show that if Gy is a Dy(,_ ), then the pre-geometry has rank at most 3.

Lemma 4.3 In every RWPRI pre-geometry of rank n > 3 with Go = Dy at least two Gy,

are dihedral groups.

g—1}

Proof. We rely on the classification of the RWPRI geometries for the dihedral groups given in
[20], since all RWPRI pre-geometries are flag-transitive RWPRI geometries for these groups.
The proof becomes then obvious thanks to that classification. U

Lemma 4.4 Suppose g — 1 is not a prime. In a RWPRI pre-geometry of rank n > 2 with
Go = Dy 1y, there is at most one Go; isomorphic to a dihedral group.

Proof. Since Gy is a dihedral group, its residue is given in [20]. Moreover, this residue has
the property that every of its maximal parabolic subgroups must be maximal in Gg. Assume,
without loss of generality, that Gy, and Gy are dihedral groups and that Gy; is maximal in
Go. Then Gp) = Dy, with x |3 g — 1. This implies Gpa = D, with y [;r g — 1. Hence G;
and G, cannot be subgroups of a,:4 or B,:4 by lemma 3.2. Moreover, since Gy and Gg
are self-normalizing 1n G, G; and G2 cannot be subgroups of Dy, either. Then Gy (resp.
(2) must be a Sz(s) (resp. Sz(r)). These two subgroups have to be maximal in Sz(g) and Gy,
(resp. Ggz) has to be maximal in Sz(s) (resp. Sz(r)). We have g = 22¢T1pspe | 5 = 2(2e+1)p
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and t = 22¢+1)Ps for some primes p, and p,. We also have H = p a prime, which must be a
divisor of  — 1. But
2(2e+l)pspr _ 1

P
_ ¥ p(Zet1)ps(i=1) , p(2e+1)ps _
TS T =32 Tl pleet e

i=1

p:

So p cannot divide ¢ — 1, a contradiction. O
Lemma 4.5 The maximal rank of a RWPRI pre-geometry with Go = Dy, ) is three.

Proof. Trivial by lemmas 4.3 and 4.4. O
This is a fairly strong result. It permits us to concentrate only on the rank three when we
construct RWPRI pre-geometries with Gg = Dy, .

Lemma 4.6 If T is a RWPRI pre-geometry of rank > 4 of a Suzuki group Sz(q), then each
of the maximal parabolic subgroups that is maximal in Sz7(q) must be isomorphic to a Suzuki
group Sz(s) for some s.

Proof. Apply lemmas 4.1, 4.2 and 4.5. O

S The rank 3 geometries

We determine now all possible rank three RWPRI geometries of a Suzuki group Sz(g) with
g = 2%*! and e a positive integer. We subdivide our discussion in three cases:

e ¢g— 115 aprime.
e g— 11snotaprime and 2¢ + | is prime.
e 2¢+ 1 is not a prime.

Since we want to construct rank three RWPR1 geometries, we have to find triples of subgroups
of Sz(g) whose sublattice satisfies the RWPRI condition. Some of these subgroups must be
maximal in Sz(g). By lemmas 4.1 and 4.2, the only maximal subgroups of Sz(qg) that can
be used to construct a RWPRI geometry of rank three are Dy,_)-subgroups and groups of
Suzuki type. The following two theorems give all firm, residually connected, flag-transitive
and residually weakly primitive rank two geometries of a D,-group and of a group of Suzuki
type. Some of these geometries appear as rank two residues of rank three geometries for

Sz(q).

Theorem 5.1 [20] Let G = 2%, Up to isomorphism, G has only one rank 2 geometry satis-
fying F, RC, FT, and RWPRI. It has two maximal parabolic subgroups isomorphic to cyclic
groups of order 2 and it is a generalized digon.

Let G = D,,, with n > 3 an integer, be a dihedral group and suppose n = p' ...pr. Up to
isomorphism, the group G has 2m + ﬂ”’;—_‘l geometries of rank 2 satisfying F, RC, FT, and
RWPRIL. They are given below.

o m geometries with the following diagram (i=1,...,m):
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O O
!
2

Pi— ] £?==‘2hpj
Pi
Zn Dy, i
e m geometries with the following diagram (i =1,... ,m):
Pi
O O
1 I B = Znﬁ_
Pi Pi
D 2np, Dznm

o 2N oeometries with the following diagram:

({i,j} C{1,....m} and i # j)
O O

Pi— I Pj— l B = Dznm,j
Pi Pj
DEHF!. Dinﬂj

Theorem 5.2 [18] Let e > 0 be a positive integer. Let s = 227! and let Sz(s) be the Suzuki
simple group over GF{(s).
If2f+ 1 and s — 1 are primes, the F, RC, FT, RWPRI rank two geometries of Sz(s) are
isomorphic to one of the geometries appearing in table 2.

If2f +1is a prime and s — 1 is not a prime, the F, RC, FT, RWPRI rank two geometries of
Sz(s) are isomorphic to one of the geometries appearing in table 3.

If2f + 1 is not a prime, the F, RC, FT, RWPRI rank two geometries of Sz(q) are isomorphic
to one of the geometries appearing in table 4.

5.1 First case: g — | is a prime

If g — 1 is a prime, Sz(g) cannot have subgroups isomorphic to Sz(s). Observe that by lemma
4.6, Sz(q) does not have RWPRI pre-geometries of rank > 4 in that case. The only candidate
for Gg is Dy(,—1) by lemmas 4.1 and 4.2. Thanks to theorem 5.1, we know that there are two
possible residues for Gg.

In the first case, we have Gg) = g — 1, Gpz = 2 and Gy = 1. Since Gop2 = 1, G2 must
be a cyclic simple group. Here there are two possibilities for G;. They are ¢ — 1 and 2. By
lemma 3.10 and lemma 4.1 we may assume G} = E; : (¢—1).

Suppose first that Gj; = g — 1. Then G, must be isomorphic to either E; : (g — 1) or Dyy,_y;-
Let Q be a set of g> + | points on which 5z(g) acts doubly transitively. By lemma 3.10 and
lemma 4.1, G| = E; : (g — 1) in both cases.
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No. | Hy H, Ho, (2T )
1 Dj(s-1) Dy(s-1) 2 NO
2 D», where n is a prime divisor of ¢¢; or B | 2 NO
3 22 2 NO
4 4 2 NO
5 E;:(s—1) s—1 | YES
Ol a prime
6 o4 o : 4 4 NO
7 n:4 where n is a prime divisor of 3, 4 NO
8 4x2 4 NO
Bs a prime
9 Bs:4 Bs:4 4 YES 1iff s=8
10 n:4 where n is a prime divisor of o 4 NO
11 4x2 4 YES iff q=8
Table 2: The case when 2f + 1 1s a prime and s — 1 is a prime
No. | Hp H Hy, | (27);
) Dz{j_” Ej' . (.5‘ — 1) s-1 YES
Ol a prime
6 |o5:4 0 4 4 | NO
7 n:4 where n is a prime divisor of B, | 4 NO
8 4x2 4 NO
Bs a prime
9 Bs:4 Bs: 4 4 NO
10 n:4 where n is a prime divisor of ¢; | 4 NO
11 4dx?2 4 NO
Table 3: The case when 2f + 1 is a prime and s — 1 is not
No. H(] HI Hp; (ZT:}]
12 Dg.[ﬁ_” E;: (.5-‘ - l) s-1 YES
13 Sz(t) if t-1 is a maximal divisor of s-1 Dy -1 NO
14 | o.:4 Sz(1) if o, or B, is a maximal divisor of o oy :4 or B, :4 NO
15 | Bs:4 | Sz(1)if o, or B, is a maximal divisor of B, 0,4 or B, :4 NO
16 | Sz(t) (ExE;) 2 (1 —1) (Ei-E;):(t—1) | NO
17 Sz(t’) when it is a maximal subgroup and t” #t | Sz(u) NO
18 D5, where t-1 [y n |p s-1 Dy, 1) NO
19 n:4 where o |y n |p o or B; o, :4 NO
20 n:4 where ; |y n |p o or By B;:4 NO

Table 4: The case when 2f + 1 is not a prime (and thus s — 1 is not a prime)




54 D. Leemans

Let Go = E,: (¢g—1). Then G, (resp. G2) has one fixed point o € Q (resp. P € ) and one
orbit A (resp. B) of g points of € such that (AU {o})N({BU{B}) = {o,B}. Now, Gy is the
stabilizer of a pair of points {a,y} where ¥ € A\B. Since the involution of Gy, fixes [3, it must
exchange o and y. So vy € B, a contradiction.

Let G2 = Dy(,1). Then G; is the stabilizer of a pair of points {o, B} C Q and G, is the
stabilizer of one of these two points, say .. Also, Gy fixes o and another point, say y € .
Then Gy is the stabilizer of the pair {o,y}. The involution in Ggz exchanges o and 3, but also
o and v. So B = vy and hence Gy = G», a contradiction.

Suppose then that G; = 2. Then G contains two cyclic groups of order 2, one of which is
maximal in G,. Thus G2 = D,, with p a prime dividing ¢, or 3, or ¢g— 1. The case p =2
1s not possible because Ggr and G2 do not have the same fixed point.

In the second case, we have Gq and Gy 1somorphic to cyclic groups of order 2. There,
either Gy is one of p: 2 (with p | 0y, By, 2 0r g — 1) and G; is one of p’ : 2 (with p' | 0. By
or g— 1), where p and p’ are primes, or G| = E; : (¢—1) and G» = E, : (g— 1). Observe that
there are no two maximal parabolic subgroups isomorphic to 2°. Indeed, this should mean
that all the G;;’s have a common fixed point, and thus the group generated by Gy, G; and G»
cannot be 5z(qg).

We summarize the preceding discussion in the following theorem.

Theorem 5.3 Let G = Sz(q) with ¢ = 2*¢*! and suppose 2e + 1 and g — | are primes. Then
every rank 3 RWPRI geometry of Sz(q) has a sublattice isomorphic to one of the following.

Gy G G
Dyg-1y | Eq:(g—1) | Eq:(g—1)
. Go G2 G2
2 2 g—1
Goiz
1
Go G €
Dyg_1y | Eg:(g—1) | Dy
. qG_[” | G;E Gzlz with p a prime dividing o, B, or g— 1.
Gor
i

. with p, p’ two primes dividing o, B,, or q— 1, including

the possibility p = 2.

Observe that for the smallest Suzuki simple group, i.e. Sz(8), whose geometries are avail-
able in [21], every possibility mentioned by theorem 5.3 gives at least one firm, residually
connected, flag-transitive and residually weakly primitive geometry.
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5.2 Second case: g — | is not a prime and 2¢ + 1 is a prime

In this case again, we have Gg = Dy(,_y. Every possible rank two residue for Gy has a
dihedral subgroup as one of its maximal parabolic subgroups. Thus we may assume that
Goy = D»,, where n [y g— 1. Since 2e + 1 is a prime, Sz(¢) does not have proper subgroups
of Suzuki type. Then, by lemma 3.11, the only proper subgroup of §z(¢) containing Gy is
(. Thus we cannot find a subgroup G, to complete the geometry. Observe that in that case
as in the preceding one, lemma 4.5 tells us that Sz(¢) does not have a RWPRI pre-geometry
of rank > 4. Thus we can now state the following theorem.

Theorem 5.4 Let G =2 Sz(q) with g = 2°7! and suppose 2e + 1 is a prime but g — 1 is not.
Then G does not possess any RWPRI pre-geometry of rank > 3.

5.3 Third case: 2¢ + 1 is not a prime

This case is the most tricky one because the candidates for Gy are Dy,_;, and Sz(s) where
s = 22/*1 and 3?—111 is a prime.

The case Gy = Dy,

In this case, the maximal rank 1s 3 by lemma 4.5. Also, lemma 4.4 and theorem 5.1 imply
that one of Gy, or Ggp must be a cyclic group. We may assume that Gy 1s maximal in Gy,
and hence Gy = (g — 1). The sublattice is then partially given as follows, with n |3y ¢ — 1.
Go = Dy, 1y, Goi = g— 1, Goa = Ds, and Ggj2 = n. The only subgroups that can contain
G are then Gg and subgroups isomorphic to a Suzuki group. Then G, is a Suzuki group and
its residue 1s determined by theorem 5.2: we have G» = Sz(s) with ¢ = s” and p a prime, and
n =s5— 1. This means %]] is a prime. Lemma 3.4 yields then 2e + 1 = p“. Now, examining
the rank two geometries of Sz(g) in theorem 5.2, we can determine the remaining parabolic
subgroups : indeed. Gi; mustbe a E : (s — 1)-subgroup and by lemma 3.10, G, = E, : (¢ —1).

Lemma 5.1 Let G = Sz(q) with g = 2°**' and suppose 2e + 1 is not a prime number. If
2e+ 1 = p” and p is a prime, every RWPRI geometry of rank 3 with Gy = Dy, ) has a
sublattice isomorphic to the following one.

Gy G G2
Dyg-1y | E4:(g—1) Sz(s)
Goy Go2 G2
qg—1 Dy Eg:(s—1)
Goi2
s— 1

If2e+ 1 # p“ for some prime p, then there is no RWPRI geometry of rank 3 with Go == Dy, ).

The case Gy = Sz(s)

In order to have Sz(s) maximal in Sz(g), we must impose that g = s” with p a prime. Then
2e+1 = p(2f + 1) for some positive integer f.
The rank two residue of Gy is given by theorem 5.2. If 2f 4 1 is a prime, table 2 gives the
possible residues for Gg. When s — | is not a prime, table 3 gives the possible residues for
Go. These residues appear also for the case when s — 1 is a prime. Indeed, they do not depend
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on the primality of s — 1. Thus, we treat the case s — | prime and the case s — 1 not pnme
stmultaneoulsy.
If 2f + 1 is not a prime, table 4 gives the possible residues for Gy.

(1)2f+1is aprime :

In this case, the residue of Gy i1s one of those appearing in table 2.

For each of these 11 possible residues, we examine whether or not it can be extended to a
rank three residually weakly primitive geometry. We may assume without loss of generality
that G 1s maximal in Gg. We recall that for residues 1 to 4, s — 1 must be a prime.

Residue 1: In this case, we have Go = Sz(s), Go1 = Dy(s_1), Go2 = Dyi5— 1y and Goya = 2.
By lemma 3.11, G| must be a subgroup of D,,_1). Its residue is then given by theorem 5.1.

This yields Gy = Dy, where x | H— is a prime. The same argument shows that Gy =

Dy 1)y Where X' | H is also a prime. Again by theorem 5.1, the subgroup G2 = D», and
x = x'. Since Dy, is self-normalizing in §z(g), we have G| = G, a contradiction.

Residue 2: In this case, we have Go = Sz(s), Go1 = D51y, Goz = D2, with n a prime
divisor of s* + 1 and Ggy2 = 2. Lemma 3.11 yields again Gy < Dy(,_) and the residue of G,
is given by theorem 5.1. This implies G| = Dy, With x | ¢ — 1 a prime and G2 = Dy,.
Thus Gz =< Gya, G2 > is a Sz(t)-subgroup with £ — | a prime. Because of Gy, we must
have ¢ # s. This means ¢ = s? = t” and because s — | (resp. ¢ — 1) is a prime, we know that
s = 2P1 (resp. t = 2P2) with p| (resp. p3) a prime. Thus g = 27172 with p,, p> two different
odd primes. By lemma 3.7, we getn = 5.

Residue 3: In this case, we have Gg = Sz(s), Go1 = Dy(5-1), Gz = 2% and Gpjp = 2.
Again, by lemma 3.11, G| must be a subgroup of Dy(,_yy. Thus G| = Dy 1y, and G2 = Dy,
with x | ¢ — 1 a prime as in the preceding case, and G; =< 22, D>, > must be a subgroup of
Suzuki type. So G2 = Sz(r) witht #sandx =1 — 1. Also, g =2P1P2 5 = 2P and ¢t = 272,
Moreover, s — 1 and f — 1 must be primes.

Residue 4: Almost the same discussion as in the preceding case leads to Gy = Sz(s),
G = Dys—1)i—1)» G2 = 82(t), Gor = Dys_1), Goz =4, G2 = Doy and Goiz = 2.

Residue 5: In this case, we have Gy = Sz(s), Go1 = D), Go = Es : (s— 1) and
Go12 = s— 1. Again, by lemma 3.11, G| must be a subgroup of Dy(,_ ). Thus, by theorem 3.1,
G| = Dy(s_ 1), where x | g — 1 is a prime. This implies that (12 may be isomorphic to either
(s = 1)xor Dy ). Suppose G2 = Dy(,_1y. This yields Gy = Sz(s). Then, Gor = E;: (s— 1)
must be contained in two distinct S§z(s), a contradiction. So G2 = (s — 1)x. Then Gy =<
E;:(s—1),(s—1)x > is a subgroup of E, : (g —1). In order to have a residually weakly
primitive geometry, we must impose G, = E, : ({s — 1)x). A priori, the number x can be any
prime divisor of 5:—]1 So we get more than one geometry most of the time. Observe that when

X = f—:—} we get the geometry given in lemma 5.1.

Residue 6: In this case, we have Gy = Sz(s), Goy =0.,: 4, Go =0,: 4 and Gy = 4. Since
(;1 (resp. (G2) must contain a subgroup isomorphic to o: 4, it must either be a subgroup
of Suzuki type or a n : 4-subgroup by lemma 3.9. Assume first that G = Sz(¢) for some 1.
Then two cases appear. The first one is with Gy; maximal in ;. This implies s = ¢ and
thus Gy = G, a contradiction. The second case i1s with () not maximal in ;. Hence the
residue of G is of the form 7 or 10 in table 2 and G2 must be maximal in ). Moreover,
by lemma 3.6 (2), one of Gy or Gj2 must be a subgroup of a o,: 4 and the other must
be a subgroup of a qu 4. Also, Gy = Gy, s0 G2 =< Gy, G2 > must be a subgroup of
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Suzuki type. Since we are in the case 2¢e+ 1 = (2f + |)p where p and 2f + 1 are primes, it
implies that either Gg = G> or G| = (> and hence G must be equal to either Gy or Gy, a
contradiction. So, the subgroup G, must be a subgroup of o,: 4 or §,: 4 depending whether
o, divides o, or B, . This means G| = (0,x) : 4 and G2 = x : 4 with x a prime such that xo
divides either ot or B, as o, does, and x # 0. Thus Gy =<0 4,x : 4 > is isomorphic to
(. Then by lemma 3.9, we have G; = G, a contradiction.

Residue 7: In this case, we have Gy = Sz(s), Go) Zo,: 4, Gy = n: 4 with n a prime
divisor of P, and Gp12 = 4. The same kind of arguments as in the preceding case lead to
G| =0,x: 4 and G2 = x: 4, with x a prime number such that xo., divides either o, or 3, as
o; does and x # o;. Then, by lemma 3.6, G, =< n:4,x:4 >= 5z(q), a contradiction.

Residue 8: In this case, we have Gy == Sz(s), Gor =0, 4, Goo = 4 x 2 and G2 = 4. The
same arguments as in the preceding case lead to G| =ox : 4 and G7 = x : 4, with x a prime
number such that xa, divides o, or B, and x # 0. Then Gy =< 4 x 2,x: 4 >= Sz(¢) with
t # s and we must have x =, or ;. Such a geometry exists, for example, with s = 23 =2
and g = 2P°.

Residues 9 to 11: The discussion for residue 9 (resp. 10, 11) is almost the same as for
residue 6 (resp. 7, 8). We just have to read 3 instead of o in these cases.

We summarize the preceding discussion at the end of this section in theorem 35.5.

(2) 2f + 1 is not a prime :

In this case, s = 2*/*! and 2f 4 1 is not a prime thus s — 1 is not a prime either. The
residue of Gy 1s one of those appearing in table 4.

Residue 12: The same discussion as in the case of residue 5 leads to Gy = Sz(s), G

DII:.T—-l]I with x I H | prime, G, = Eq . ((.5'— 1)_1'], Gﬂl = Dz[s_” G{]z = E_._,- . (5— ]), G]g

(s — 1)x and Gpj2 = 5 — 1. Observe that, when x = ;L:T] we get the geometry given in lemma
5.1

Residue 13: In this case, we have Gy = Sz(s), Go| = Dy(s_ 1y, Gop = Sz(t) with r = 2%8+!
and 2g + 1 a maximal divisor of 2f + 1, and Ggj2 = Dy,_1y. Also, t — 1 must be a maximal

IR

divisor of s — 1. By lemma 3.4, we have t = 2/ and s = t”. By lemma 3.11, G, is a subgroup
of Dy(y-1), thus G| = Dy 1y, and G2 = Dy, with x a prime that divides -'3:—: Then Gy =<
Sz(t),Da, > is a subgroup of Suzuki type. Let G2 =2 Sz(s'). We must have s’ # s, thus
g=27"?) and ¢ = 2(r""'P"), This implies that the residue of G is of type 18, and x | s’ — 1.
Since x can take more than one value, there might be more than one geometry in that case.
Residue 14: In this case, we have Gy = Sz(s), Goy =oy: 4, Gop = Sz(t) with ¢ = 228!
and 2g + 1 a maximal divisor of 2f + 1, and Gyj2 = n : 4 where n is either o, or B,. By lemma
3.6, Sz(f) is a maximal subgroup of Sz(s). This implies that G, = Sz(s") must also contain
Sz(¢) as maximal subgroup and that 5" # 5. Thus its residue is such that Gy; = n’ : 4 where n’

" " - - - ™ J
divides 5”2 + 1 and »n is a maximal divisor of n’. Also, G| = =4,

Residue 15: Let g = 226! = 2(28+1pp’ 5 — 22/+1 — 2(2¢+1)p gpg ¢ = 2028+ 1P [ g
t = 2%8*! and n be either o or B;. Take »’ a divisor of 52 + 1 such that n is a maximal divisor

of n’. Almost the same discussion as in the preceding case leads to G & Sz(s), G} = (M} : 4,

H

Gy = Sz(s'), Gor =2Bs: 4, Goo = 5z(t) with t = 2°6*! and 2¢ + 1 a maximal divisor of 2f + 1,
G2 = n' : 4 and Gy = n: 4 where n is either o, or B,.

Residue 16: In this case, we have Gy =2 Sz(s), Go; = Sz(t) with r = 2%¢*! and 2g + 1
a maximal divisor of 2f + 1, Gy = EE, : (t — 1) and Ggy2 = E-E; : (t — 1). Since Gy is
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self-normalizing in Sz(g), the subgroup G; must be a subgroup of Suzuki type, say Sz(s')
with 5’ # 5. Thus its residue is given by table 4. It implies that G2 = Eg=E, : (t — 1). Then
Gy =< EgE; : (t —1),Eg:E, : (t — 1) > is a subgroup of EE, : (g —1). In order to have a
residually weakly primitive geometry, we must be sure that either Gy or G2 1s a maximal
subgroup of G. This implies G = EE, : (t — 1).

Residue 17: In this case, we have Go 2 Sz(s), Goi = Sz(t) witht =22+ and 2g+ 1 a
maximal divisor of 2f + 1, Gga = Sz(t') with ¢ = 22 *1 and 2¢' + 1 a maximal divisor of
2f 41 and Ggjz = Sz{u) with u = 220+ and 2h + 1 a maximal divisor of 2¢+1and 2g + 1.
It 1s obvious that the only geometry we can obtain here 1s with all subgroups of the sublattice
isomorphic to subgroups of Suzuki type.

Residue 18: In this case, we have Gy = Sz(s), Go; = Sz(t) witht =22+ and 2¢+1 a
maximal divisor of 2f + 1, Go2 = Dy, 1), with x a prime divisor of .:_:Tl and Gg12 = Dy, .
Since Gy, is of Suzuki type, we have G = Sz(s') with s’ # 5. Thus the residue of G is well
known. Then G2 = Dy, where t — 1 |yy m |p s’ — 1. Also, Gy =< Doy, Dy > DE;T%T[. Here
n % m by theorem 5.1.

Residue 19: In this case, we have Gy = Sz(s), Go; = Sz(t) with t = 2°6*! and 2g + 1
a maximal divisor of 2f + 1, Gop =Zn:4 withr—1 |y nips— 1 and G2 = o, : 4. Again,
G, = Sz(s") with 5’ # 5. Thus G2 = m : 4 with o, [y m |p o or By and G, = '&r—"’ . 4,

Residue 20: Almost the same discussion as in the preceding case leads to Gg = Sz(s),
Gop = Sz(t) with t = 2%*1 and 2g + 1 a maximal divisor of 2f + 1, Goo = n: 4 witht — 1 |y
nlps—1,Gon =0, : 4, Gy = Sz(s') with s’ # 5, G2 2 m: 4 with B, |y m |p g or By and
Gy = % 4.

This ends the classification of all RWPRI geometries of rank 3 for the Suzuki groups. We
now summarize the preceding discussion in a theorem.

Theorem 5.5 Let G = Sz(q) with q = 2** and suppose 2e +1 = p§' ... p¢ with p; # pj,
Vi # j, and ¥;_,e; > 2. Suppose g = sPi for some i € {1...n}. If s—1 is a prime (which
implies that 3.;_ | e; = 2) then all rank 3 RWPRI geometries of G have a sublattice isomorphic
to one of the following.

po two primes.

Gy ~ G G
Sz(s) | Das-nyu-1y | Sz(#)
l. Gor Goz Gz withs =2P1 1 =2P2 2e+ 1 = py-pa, and py # p2
Dy Do Doy
Goi2
2
two primes.
Gy G G
Sz(s) | Dys—nyp-1y | Szlr)
Go Go? Gz . r
2. with s =201, 5§ =22 2e+ 1 = p| - p2, and py
Dy 22 Dy, _yy prep P17
Goi2
2
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Gg Gy G2
Sz(s) Dy (s—1)(r-1) Sz(t)
Goi Goz G2 :
3. withs=2P1,§ =272 2e+1=py-py, are
Dz{j—]} 4 DE{I—I}I P1-p2, are pj ?EPE
Go12
2
two primes.
Gy G G-
Sz(s) | Da—1p | g:((s=1)p)
Goi Goz G2 . g-1 .
4. Daey | s:(s—1) (s—1)p with p | i= a prime.
Gorz
s—1
Go Gy Ga
Sz(s) | (ap) :4 | Sz(t)
3. fﬂ 45}322 f:li with a = o, or By (resp. p = o, or B,) primes, n = 2,
Go12
4

g =3P =" and p # pa.

If s— 1 is not a prime but Y\ | e; = 2 then all rank 3 RWPRI geometries of G have a sublattice
isomorphic to sublattices number 4 or 5 of the case when s — 1 is a prime.

Finally, if ¥"_, e; > 2 then all rank 3 RWPRI geometries of G have a sublattice isomorphic to

one of the following.
Go G G
SE('F) Dl{s-—]]p q ((S_ l}P)
Go, Go2 G2 : g=1 .
6. Doy | 51 (s—1) (s—1)p with p | i= a prime.
Goi2
s—1
Gy (r Gr
SE(S) Dl{r—l]lpp" SE{:SI)
Gor Goo G2 : _ ' . . . .
! Dy—nyp | Sz2(t) | Dag—1yp with p | $=1, p' | S5 two distinct primes, s = 17
Go12
Dy 1y
and s’ =tPi, with i # |j.
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Gy G G2

Sz(s) | (mpp') :4 | Sz(s')

Goy G G2 L ;

8. mp - 4 S2(1) mp - 4 withm = o, or B, mp | s or By, mp' | 0y or By, and
Goi2
m:4
p, p' two primes.
Go G G
Sz(s) gt (t—1) Sz(s")
Go) Gz G2 L Pi— PP — $PiPi . g
9. st s (1—1) S2(1) sat s (1 — 1) with g = s =P =90 and i # |.
Goi2
tat 2 (1= 1)

Gy G G
Sz(s) | Sz(s") | Sz(s)

Go | Gm Gz 1 on P iy

. . ' : > },_* = 5P = P = 7P = PP =
10 S21) | Sz() | S=(¢”) with ;e 24 n=>3 g=s s i =5 Pl
Goiz
Sz(u)

PPk = "PiPk = yPiPiPk and i, j. k three pairwise distinct numbers.

6 Some concluding remarks

About the flag-transitivity :

Most of the time, we are interested in knowing whether a RWPRI (pre-)geometry is a
flag-transitive geometry or not. We do not intend to solve that problem in the present paper.
We even have doubts about the complete solvability of that problem. Anyway, lemma 3.8
permits us to give the answer for a lot of geometries obtained in the previous section. For
the case when ¢ — 1 is a prime, looking at theorem 5.3, we see that geometries corresponding
to the second type, and geometries corresponding to the third type with p = 2 are indeed
flag-transitive. For the case when 2¢ 4+ | 1s not prime, looking at theorem 3.5, we see that all
geometries, except number 9 and 10, have a linear diagram and are thus surely flag-transitive.

About the (27 ), property :

If we look at the rank 3 RWPRI geometries that satisfy the (27); property, we see quite
easily that in theorem 5.3, the only geometries that survive this test are the thin geometnes,
and 1n theorem 3.5, no geometry satisfies this test. This means that, if we want to construct
a rank 4 RWPRI pre-geometry satisfying (27'), for a Suzuki group Sz(g), we have to choose

g = 2P with p, p’ two primes. Then Gy is a subgroup of Suzuki type because of lemma 4.6.
[t means that Gy = Sz(s) must have a rank 3 RWPRI geometry satisfying (27 ). This implies
that s — I is a prime and we may assume that Go; = Dy(,_y. Thus G, is either a group of
Suzuki type or a dihedral group. It cannot be a dihedral group D>, with # an odd number,
because no such dihedral group has RWPRI pre-geometries of rank 3 or higher satisfying
(27'); thanks to the classification of the RWPRI geometries for these groups given in [20]
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(we remind again here that all RWPRI pre-geometries of a dihedral group are flag-transitive
geometries). So it must be a Sz(r) with ¢ #£ s. Butthens— 1 =¢ — | and s # ¢, a contradiction.
This permits to state the following theorem.

Theorem 6.1 Let G = Sz(q) with g = 2%,

If g — 1 is not a prime, Sz(q) has only one RWPRI1 and (2T ), pre-geometry up to isomorphism.
Itis a rank 2 F, RC, FT geometry with Go = Dy(,_1), Gy = q: (g~ 1) and Go; = q— 1.

If g —1# 7 is a prime, the RWPRI1 and (2T ), pre-geometries of G are of rank < 3, one of
them only being of rank 2, the others being thin rank 3 geometries.

Finally, if g = 8, the RWPRI and (2T ), pre-geometries of G are of rank < 3, three of them
only being of rank 2, the others being thin rank 3 geometries.

We would like to conclude this paper by pointing out that the results obtained in theo-
rems 5.3, 5.4 and 5.5 give only the possible rank three RWPRI sublattices for a Suzuki simple
group Sz(g). We did not prove that for all these sublattices it is possible to find three sub-
groups of Sz(g) meeting as wanted. We already observed that the group Sz(8) has at least one
geometry for every sublattice mentioned by theorem 5.3.
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