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THE MAXIMALITY OF THE GROUP OF EUCLIDEAN SIMILARITIES WITHIN
THE AFFINE GROUP

ADOLF SCHLEIERMACHER

Abstract. The purpose of this note is to show by elementary means that over the field of real
numbers, or more generally over any Euclidean field K with Archimedean order, the group
of n-dimensional Euclidean similarities is maximal within the group of all affine mappings
having a determinant of the form £\" # 0. As a corollary it turns out that the orthogonal
group O,(K) is maximal within the group SL,(K)* of all matrices of determinant 1.

1 Introduction

The maximality of certain classical groups within certain other ones is a subject that has
been dealt with by many authors (c¢f. Dynkin [3] or the survey of Seitz [7]). In this note
we shall consider a relatively easy particular instance of this type of question in an entirely
elementary setting: the maximality of the group of Euclidean similarities within the group of
affine transformations.

Let K be a field and n > 2. let us denote by GL,(K) the group of all invertible n x n
matrices, by SL,(K) the group of all matrices having determinant one, by @,(K) the group
of all orthogonal matrices, i.e. M such that MM+ = I, (where I, denotes the n x n identity
matrix), by O; (K} the group of all orthogonal matrices of determinant one, and finally by A,
the group of all matrices which have an element A # 0 along the main diagonal and zeroes
everywhere else.

[n a vector space V of dimension n over K an arbitrary affine transformation may then
be written as X - XM + B, where X,Be€ V,and M € GL,(K). A mapping X — XM + B,
where M € A,0,(K) on the other hand, by analogy to the classical case may be called a
Euclidean similarity. The maximality of the group of Euclidean similarities within the group
of affine transformations is immediately seen to be equivalent to the maximality of A,0,(K)
within GL,(K). In general it is not reasonable to expect that A,O,(K) should be maximal in
GL,(K) since the first group contains only matrices with determinants of the form A", In an
arbitrary field however, the numbers of this form need not exhaust the multiplicative group.
We are therefore lead to consider the subgroup GL,(K)* of GL,(K) which consists only of
matrices with determinant +1 times a non-zero n-th power.

The purpose of this note is to show by an elementary argument using essentially only
matrix multiplication that under suitable restrictions on K the group A,0,(K) is maximal
within the group GL,(K)*. As to the restrictions, we require that K is a Euclidean field which
means that K is ordered and every positive element is a square. Moreover it is required that
the order in K be Archimedean. In most of our arguments however, it i1s enough to assume
that K is Pythagorean (cf. Bachmann [1], page 216 or Weyl [8], page 13) which amounts to
the following two properties: 1) the element —1 is a non-square and ii) the sum of two squares
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1s a square. It is well-known that a Pythagorean field K can be ordered, but generally in more
than one way. That is, if we set @ < b if and only if b — a 1s a square we may get only a partial
ordering.

Theorem 1 For any Euclidean field K with Archimedean order the group A,0,(K) is a max-
imal subgroup of GL,(K)".

In the field R of real numbers the set of n-th powers contains all positive numbers. There-
fore GL,(R)* = GL,(R) and the group of Euclidean similarities is maximal within the affine
group. It should be noted however, that for the field of real numbers theorem 1 can be de-
duced from two well-known facts on Lie groups. Namely, that O;f (R) is a maximal compact
subgroup of SL,(R) (cfr. [6], page 335) and that a maximal compact subgroup of a simple
Lie group is maximal in the group theoretic sense (cf. [5], Chap. VI, Ex. A3 (iv) page 276).

The proof of theorem | will be given in section 2 below. As an easy corollary we shall
show that 0,(K) is maximal within the group SL,(K)* of matrices with determinant %1.
In section 3 we shall give a counterexample showing that for the field of rational numbers
the assertion of theorem 1 is not true. Of course, between this counterexample for rational
numbers and the Euclidean fields in the hypothesis of theorem 1 there is still a wide gap.

2 The Maximality of A,0,(K) in GL,(K)*

In this section we assume throughout that K is a Pythagorean field. When 1t is necessary to
assume that K 1s Euclidean we shall state it explicitely. We shall proceed by induction on the
dimension n and therefore we look at the case n = 2 first. We have to show that A,O0>(K)
is maximal in GL>{(K)*. We shall proceed by several small steps in which we assume that
H>(K) is a group such that A2O02(K) < H2(K) < GL2(K)*.

+ 0
2.1 In H>(K) there exists a matrix of the form ( 3 a-le ) where € = | and at least one

of the inequalities q # 0 or a* # 1 is satisfied.

Proof. Let U be a matrix in A>(K’) which is not contained in A;0>(K). By multiplying with a
suitable matrix X of O2(K) we can achieve that UX maps the vector (1,0) to a scalar multiple
of itself and thus AUX must have the form above for a suitable A. The inequalities simply
express the fact thet AUX does not belong to 01 (K).

To find the matrix X assume (1,0)U = (uyy,u;2). The matrices in O5 (K) have the general

form X = (

c —5
5 C
satisfying ¢ + 5% = 1. if u;; =0 take s = 1, ¢ = 0. If uy; # 0 we have s = uj

-2.2 1
\/' +”r|1"%2
0

c? + 5% = 1 gives the condition (1 +uj;ui,)c? = 1,ie. c=
: a . . . .
In the following let us assume that ( ale ) 1s a fixed matrix as in (2.1) contained

) where ¢ + s = 1. We wish to solve —uyy5+ ujpc = 0 for ¢ and s

]Hm{?. Now

O

)
in H>(K). Of course it is not contained in A, O1(K).
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2.2 The following matrices ( ¢ 91 ), ( ¢ 0_1 ), ( ¢ [_]1 ), and
g a g -—a —g a

( Zailq ? ) are also contained in H>(K).

I 0 a 0 1 0
Proof. ( 0 —1 )belnngstn 0,(K) and hence ( g a'e ) ( 0 —1 )—

( ; _ ﬂﬂ—lE ) belongs to H>(K) which proves that the first two of the matrices in lemma

(2.2) are in H,(K).
Now ( L0 ) ( a {31 ) = ( . 0_1 ) is in H>(K) and hence so is the matrix
0 -1 q a —q —a

( 4 - )

-1 -1
Finally the inverse of ( . 91 ) is ( ¢ 0 ) and hence ( a0 ) is in H2(K).
:? —4 4 q 4

a
Thus [ © {3] . 0) = ll 0 also is an element of H(K). O
q a qg a 2a7'qg 1
2 -1 2 -1 2
. [ ac"—qg-s:ct+a'e-s= (a—a'e)-s.c—q-s . Y
2.3Themﬂfr1x( (a—a-'e)-s-c+q- a-sP+q-c-sta-le-c? )iscﬂnmmedeg(K)

for any admissible pair ¢* + s* = 1. Here the value of € may be freely chosen to be 1 or —1.

C

Proof. The matrix ( {; _; ) and its inverse ( LZ ) both belong to O;(K) and the

. ) c -5 a 0 c 5
matnx1n(2‘3}1sequalm(s c )(q H_IE)(—S c)‘ ]

2.4 When g =0in (2.1) then
_ ((a® +a~2)/22 0
(@ —a"?/(2(a+a™2)? —(2/(a*+a"?)?

) € Hy)(K).

a+a'1 a—a

Proof. From (2.3) withc =5 = %\/i we obtain that % ( a—a' a+a

):M. 15 1n

. a+a a—a- - 1
H>(K). Now M> = l( a-a-' —(at+a) ) where A = T belong to A2 (K)

and M M> belong to H2(K) and is equal to M. O
By (2.4) it is possible to assume g # 0 in (2.1) since we have a* —a~? # 0 when a® # 1.

1 0

2 2 __ ;
2.5 For some q # 0 and for ¢* + s —lfhemarru( 2q(g-cs—c2+s2) 1

in Hy(K).

) is contained

Proof. From (2.2) we know that ( ; ? ) belongs to Hz(K) for some g # 0. Now
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(5 ¢ )(@' 1>_(s+q-c c )_M‘bﬂ""g““%(ma“d%—ﬂ

EZTI - qus belongs to A202(K) where p=1/(1 —=2g-c-s+¢° -32)% . Note that
the expression | —2¢g-c-s+g° - s° is positive and has a square root for all admissible pairs ¢, s

since it is the sum of the two squares (¢ —g-5)* and s> which cannot vanish simultaneously.

-1
Thus M| M> = ( Fq(q*c*i}—-cl—%sz]p E ) The inverse of MM is equal to
P 0 From (2.2) we obtain that l 0 S
glg-c-s=c*+s2)p p~' ) ' 2g(q-c-s—c?+s5%) 1
H>(K).

2.6 If K is a Euclidean and Archimedean field it follows from (2.5) that all matrices of the
form ( l ? ) belong to Hy(K).

Proof. Consider the function f(¢) = g-c-s—c® +s°. Since ( l_ ? ) ( ; ? ) =
( Il . ? ) it suffices to show that the set of values y = f(c) assumed by the function
f mntéins some interval, e.g. f(—1)=—1<y <1 = f(0). Thus for given y in the interval
—1 < 0 we have to solve the equation g - ¢ s — ¢* + s* = y for ¢ and 5. Note that s = v/1 — ¢2
so that we get the biquadratic equation

4+ ¢ ) — (44 ¢° —4y)* +1 -2y +* = 0.

This equation is of the form Ac* —Bc? +C =0 where A,B > 0, C > 0. We see at once that a
solution exists in K if, and only if, the discriminant B2 — 4AC is non-negative. Evaluating the
discriminant we find B> — 4AC = ¢* + ¢* — 4¢°y* > 0 in view of —1 < y < 0. The solution
for ¢* is

1
2 = —_(B+ /B2 —4AC).
C EA( \/ C)

We must be sure that 0 < ¢? < 1 since otherwise v/ 1 — ¢2 = s would not exist in K. As long
as we take the positive root in the formula above there 1s no problem with the lower bound.
S0 we need only look at the upper bound. Now

B 4+4q*—4y .|
24 2(444¢% —2
and | |
— /B2 —4AC = +4g? — 4%y < —,
Hence we may take the positive root in the formula for ¢ and all our requirements to find a
solution for ¢ and s are fulfilled. ]

From (2.6) it may be concluded that if K is Euclidean and Archimedean then H3(K)
contains all unimodular matrices and hence H>(K) = GLy(K)*.
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Let us now assume by induction that if H,_;(K) forn— 1> 2 is a subgroup of GL,,_ (K)*
which properly contains A, 0, (K) then H,_;(K) = GL,_{(K)*. We wish to show that
the analogous statement with n — 1 replaced by »n is also true.

Let K" denote the vector space of all n-tuples in K. Consider a sequence of subspaces
O=UpC...CU,—y CU,=K" wheredimU; =1i,i=0,1, ...,n. Such a sequence is usually
called a flag. We can choose an orthonormal basis by,b,....b, such that b; € U;\U;-, and
this implies that the group O,(K) acts transitively on flags. Denote by F the special flag
0CcU, =K(1,0,...,0) CU>, =U; +K(0,1,0,....0) C...C U, =U,-1 +K(0,...,0,1). Tts
stabilizer GL,(K)r within the full matrix group GL,(K) consists of all triangular matrices

[ agn O ... O \
ay a» ... 0
T = _ where det T = aja22...amm # 0.

k\"-'IM] dp2 ... ﬂnn)

As 0,(K) and hence a fortiori A,0,(K) act transitively on flags it follows from the as-
sumption A, 0,(K) C H,(K) that there exists a triangular matrix M € H,(K) which is not
contained in A, 0,(K). A triangular matrix is contained in A, O, (K) if, and only if, all ele-
ments off the diagonal are zero and the elements in the diagonal differ at most by a factor
£ = 1. Hence the matrix M above has non-zero elements off the diagonal or distinct ele-
ments on the diagonal which are not equal up to a factor £1.

Let us now consider the stabilizer of the subspace U, = {(x1,...,x,-1.0)|x; € K}. It
( ary ... Alp-l 0 \
consists of matrices of the form : : : which we shall
dp—-1.1 - Uy—1n-1 0
P1 oo Pn—1 X /

symbolically denote by (A, P, o).

Multiplication of two such matrices (A, P,o) and (B, Q.[) follows the rule (A, P.o) (B,Q,B) =
(AB, PB + aQ,of3). We wish to prove:

2.7 For each (n—1) x (n— 1) matrix A such that detA = £AX"~' £ 0 the group H,,(K) contains
at least one matrix of the form (A, P, o).

Proof. Note first that H,(K) contains all matrices of the form (B,0,£A) where B € A,_
On-1(K) and detB = +A""!. Therefore, if in the matrix M above a deviation that causes it
not to belong to A, 0, (K) takes place above the n-th row we can use the induction hypothesis.
It follows that H,, (K') contains matrices (A, P, o) with arbitrarily prescribed A such that detA =

+A1 £ Q).
( e 0 0 \
0 ag; ... 0
Otherwise the matrix M has the form . . Here g; = £1
0 ce. AER— 0
\ 21 P2 - Pul o )

and at least one of the p; is not zero or o # +a. We can get rid of any factors € = —1 in the
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(E] 0 ... U\

main diagonal by multiplying from the left with the matrix

0 En—-1
\ 0 0 1)
[ 1 0 0 0)
0 1
If all the p; are zero we conjugate by | - ] -+ | and obtain
0 0 1
\ 0 1 0 )
a 0 0 0
(0 a \
0 a
0 o 0
\ 0 0 a)
If on the other hand the vector (py, ..., pp—1) is not zero we may assume that M = (al,_, P, )

and (2.7) follows by the same reasoning from the assertion below.

28 Let P=(p1,p2,... pn-1) and d* = pf +p% +... +pﬁ_1. Then any matrices of the form

( a 0 ... 0 \
0 a
(aly—1,P,0) and ‘ - a | are conjugate within H,(K).
0 a 0
0 d o
\ 0 a )
Proof. We choose vectors (g;.1,...,91.0-1)s -+ (@n—1.15--+qn—1n—1) such that (g,—11,..-,

Gn-1n-1) = (P1y.oeyPn-1) @0 (Gitsee s Gin-1) (@j1sr+qjn-1) = 8;jd* where d* = p? + p3
.o P

q1.1 cer =1
The matrix Q = ; : belongs to A,—10,-1(K) and so (Q,0,d) €

dn—1,1 -+ Gun—1.n—1
AnOn(K).

Also (0,0,d)™! = (d~207,0,d7 ") € A,0,(K) and by an easy computation it follows that
(,0,d) (al,—1,P,at) (d72Q",0,d7") = (al,-1,(0,...,0,d),).
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10 ... 0\
0 1
Now conjugationg successively by * | 1 | and by
0 0 1
0 1 0O
\ 0 .. 1)
/1 0 ... 0 0 (ﬂ(}.., 0\
0 1 0 a
I | yields o
0 1 0 a 0
0 0 1 0 d o
\ 0 1 0 ) \ 0 a |

O

It is now possible to go a little beyond (2.7). 1If as above we find a matrix M € H,(K)
\A»O,(K) that has the shape M = (M’,0,u) and M’ does not belong to A,_; Op_(K) then
for each A € GL,_1(K)* we can find a matrix (A,0,a) in H,(K). This follows because we
can use the induction hypothesis on the subgroup of H,(K) formed by its matrices of the form

(B,0,B).

We are now going to show that the stronger assertion with P = 0 in (2.7) must be true
anyway:

211 For each (n— 1) x (n — 1) matrix A such that detA = £3"' # 0 the group H,(K)
contains at least one matrix of the form (A,0,q).

Proof. If for some matrix A the group H,(K) contains two matrices (A, P,o) and (A, P, )
with P # P’ we may form the product (A, P,ct) (A, P,0)~! = (I,_1,0,q). Since Q cannot be
zero by (2.8) we are 1n a situation which implies the assertion.

We may therefore assume that for given A and « there exists at most one matrix (A, P, o)
in H,(K). In other words, the vector P = P(A, ) is a function of A and o.. Now multiplying
(A,P(A,0),0) from the left by (/,-;,0,—1) we obtain (A, —P(A,a), —o) hence P(A, —q) =
—P(A,0). Multiplying from the right by the same matrix we obtain (A, P(A,q), —o) and
hence P(A, —a) = P(A, ). It follows that if P is a function of A and o it must be identically
Zero. ]

A commutator of two arbitrary matrices (4,0, ) and (B, 0, ) takes the form (ABA~!B~!,
0,1). Hence it follows that H,(K) contains all matrices of the form (C,0, 1) where det C = 1.
By (2.8) we may conclude that all matrices (I,_,P, 1) are contained in H,(K). These are
matrices of transvections with respect to the hyperplane U, introduced above. Since H,(K)
is transitive on hyperplanes it follows that H,(K) contains all matrices of transvections. It is
well-known that the matrices of transvections generate the subgroup SL,(K’} of matrices of
determinant 1 (see e.g. Dieudonné [2], page 37).

Thus SL,(K) C H,(K) and hence H,(K) = GL,(K)*. Theorem 1 is proved.
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It is now easy to prove the following corollary where SL,(K)* denotes the group of all
matrices of determinant +1.

Corollary If K is a Euclidean and Archimedean field then O,(K) is maximal in SL,(K)=.

Proof. Assume that 0,(K) < X < SL,(K)*. Then A,0,(K) < A,X < GL,(K)*. By theorem
1 it follows that A,X = GL,(K)* and this implies that X = SL,(K)*. O

For odd n it follows easily from the corollary that O, (K) is also maximal in SL,(K). For
even n this is still an open question.

In the proof of theorem 1 there was only one step, namely 2.6, where we actually did
require the field K to be Euclidean and Archimedean. -Therefore it may be concluded that if
K 1s Pythagorean then theorem 1 remains true for K provided it is true forn = 2.

If K is Pythagorean but non-Archimedean, the corollary and hence theorem 1 are not
true. For in such a field the set S of all numbers u which have absolute value less than
some natural number n form a proper subring which contains all solutions ¢, s of ¢ + 5> = 1.

Therefore the 2 x 2 matrices with entries in S and determinant &1 form a subgroup X such
that 0,(K) < X < SL,(K)*.

3 Real Number Fields

In this section we give a simple counterexample showing that the results of section 2 do not
remain true for fields which are not Pythagorean. Let K denote a subfield of R the field of
real numbers. Let Ag denote the set of angles o such that cos o and sin o are both in XK. It is
an immediate consequence of the addition theorems of cos and sin that Ag is a subgroup of
all real angles under addition of angles. Therefore the group 05 (K) may be parameterized in

the usual form
iy cosO —sind
OE(K)_{( sing.  cosQ )i {IEAK}'

The only difference to the usual parameterization for the field of real numbers is that the
angles now are restricted to the subgroup Ag.

Let [cosAg] denote the subring of K generated by all values cos o where o runs through
Ag. Note that since sino. = cos (5 —a) and T € Ak the subring [cosAg] contains also all
values sino, where o € Ag. It contains 1 since 0 € Ay.

Proposition 2 If [cosAk] is a proper subring of K then there exist subgroups properly con-
tained between each of the pairs of groups 05 (K) and SLy(K), O2(K) and SLy(K)*, and
A202(K) and GL3(K)*.

Proof. Consider the set U of all 2 x 2 matrices with entries in [cosAg| and determinant 1.
Then because of the above parametrization of 05 (K) we see that U is a subgroup containing
05 (K). Moreover U lies properly in between O; (K) and SL(K) since a matrix of the form

( Jlr {1} ) is in U if, and only if, x € [cosAk]. In a similar way let U; be the set of all 2 x 2

matrices with entries in [cosAg] and determinant 1. Then U, is a subgroup between Oz(K)
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and SL,(K)*. This follows since the elements of O»(K) which are not in 05 (K) can be
—COsSO.  sSInQ
sin0.  cosO )
Finally it follows that AU, = U is a subgroup properly contained between A;02(K) and
GL2(K)*.

If K is a Pythagorean field then it is easy to see that every entry a; of an orthogonal
matrix is also an element of the set cosAg since it satisfies an equation a2 + ... + a3 +
.”aﬁ, = 1. Hence for Pythagorean subfields of R the above construction of subgroups be-
tween O; (K) and SL,(K) etc. works for all n provided [cosAk] is a proper subring. Whether
such Pythagorean fields exist must remain an open question since the following is only a

much weaker example.

written as (

Proposition 3 [cosAg] is a proper subring of the field Q of rational numbers.

Proof. To find all values coso where o € Ag it is necessary to look at pairs of rational num-
bers ¢ and s such that ¢* + s> = 1. Let ¢ = n/m and s = n, /m, then we get a Pythagorean triple
of integers x = n-my, y = ny -m, z =m-my, and x* +y* = z*. Conversely each Pythagorean
triple of integers gives us a pair of rationals x/z, y/z such that (x/z)* + (v/z)* = 1. We may
assume that (x,y) = 1 in such a triple since multiplying with a common factor n will not
change the pair of rationals obtained in the way above. But the assumption (x,y) = 1 implies
that x and y do not have the same parity and hence, z is odd (cf. Hardy and Wright [4], page
190).

To determine the subring [cosAg] it would be necessary to use the precise knowledge on
the set of solutions of x* + y* = z2 (cf. [4], loc. cit.). Here it suffices to know that z is odd.
This means that each possible pair of values ¢ = x/z, s = y/z is a pair contained in the set
Odd(Q) of rationals that can be written with odd nominator. That is to say, we have proved
that cosAp C 0dd(Q). If p,q are in Odd(Q) then so are p+ g, p — g, and pq. It follows
that the subring generated by any subset of Odd(Q) is contained in Odd(Q) which is itself a
proper subring of Q since it does not contain e.g. %— Therefore [cosAg] is a proper subring of

Q. O

4 Aknowledgements

Theorem 1 had originally been worked out only for real matrices within the context of some
other problem. The author is indebted to Karl Strambach for having pointed out to him that
in the case of the real numbers theorem 1 follows easily from known results of Lie theory and

for suggesting to consider the theorem within the more appropriate setting of matrices over
Euclidean fields.
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