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Abstract. In the first part of this paper, using the Banach Grassmann algebra Br given
by Rogers in her paper [10], a new scalar product and a new definition of the orthogonality
are introduced on the (m,n)-dimensional total supereuclidean space Br™1". Using the GH®
functions given by Rogers in [10], the new definitions of the supercurve, of the supersmooth
supercurve, of the supersmooth supercurve in general position and of the Frenet frame asso-
ciated t0 a supersmooth supercurve in general position are given.In the second part of this
paper, using the classical results described in [9], the new existence and uniqueness theorem
for some supercurves which admit Frenet frame is proved.
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1 Supersmooth supercurve in general position and
Frenet frame associated to a supersmooth super-
curve in general position

Let us consider only algebras over the reals. For each positive integer L,
By [10] will denote the Grassmann algebra over the reals with generators 1(L)

:'ﬁ](_L)ﬂ - (L)

7 and relations
1M = g™ = g =1, L (1.1)

g8 = -8 8" =1L (1.2)
Bj, is a graded algebra [12| and can be written as a direct sum
Br = (Br)y ® (BL)

where (Bp), and (Br), are the even and odd part of (Br) respectively. Let
Mj, denote (due to Kostant [7]) the set of finite sequences of positive integers
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= (u1,...,u5) with 1 < pg < --- < up < L. My, includes the sequence with
no elements, denoted ¢. As it follows in [10] for each u in My,

B =B - B, (1.3)
and .
g =10 (1.4)
a typical element b of By, may be expressed as
b— Y baM, (1.5)
peEMp,

where the coefficient ¥ are real numbers. We consider the body map (in De-
Witt’s terminology [4])

(L) . Br, —+ R
given by
(L) () = #?. (1.6)
With the norm on Bj, defined by
il = 3 |6, (.7)
HEMy

By, is a Banach algebra [11]. Considering L' also a positive integer, with L > L',
then there is a natural injection 77,1 : By, — Bp [10], which is the unique
algebra homomorphism satisfying

i (B =8 i=1,. L, iy (1) =10, (1.8)
By, naturally has a Bz, module structure [10] with, given ¢ € Bz, and b € By,
ab 1= ’E:LIJL(II)E). (19)

We define the (m, n)—dimensional total supereuclidean space Br™ ™ [1] as
the space which i1s the cartesian product of m + n copies of By and has the
graduation

BL?TI—I—‘H — (BL?TI—I—‘H)D GB (BL‘?TL—I—‘H)I

A typical element of By, is written (z',...,z™.6%,...,6") or simply (z, 6),

an element of (By™"™), is called c—type or even element and is written in
the form (z'%,...,z"™,6",...,6™) with z'%,..., 2™ € (Br), and 6%,...,6™ €
(Br); and an element of (B ™), is called a—type or odd element and is
written in the form (z"',...,z"™, 6" ,...,6"™) with z"*,... 2" € (BL), and
61 ...,6™ c ( Br,),- An even element has the parity 0 and an odd element has
the parity 1.
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1 Definition. [4] W is called the supervector space over the space By, if
and only if W is the supervector space given by the 1) — 5) conditions from the
DeWitt’s definition (see DeWitt’s book pages 14-15) where instead of A, we

put BL.
2 Example. The (m,n)—dimensional total supereuclidean space B ™%
with the above graduation

BL‘H’I—l—‘n _ (BLm+-n)D 2 (BLm+ﬂ)l

is a supervector space of dimension (m, n).

3 Remark. Let us consider the (m, n)—dimensional supereuclidean space
B;"" given by Rogers in [10]. We note that the space B; " is not a supervector
space over By as in Definition 1.

A useful map is [10]

E-E?i?n : (BLm+ﬂ)D — R™

with
(D (2, ™ 6,6 i (B (@), ., ) (zm)) (1.10)

and another useful map is

with
E;gf%(.‘:ﬂ"l, o ;ﬂ.'?”m, 6"1: o jﬁ”ﬂ) . (EI:L) (6”1)1 e E(L) (ﬁﬂ'ﬂ,)- (111)

4 Remark. Let us consider the (1,1)—dimensional total supereuclidean
space Br,%, (2,0)-dimensional total supereuclidean space By,? and (0, 2)-dimen-
sional total supereuclidean space Br? and the element (1,0) which belongs to
these three spaces. We note that the element (1,0) is c-type for the first two
spaces and is a-type for the last space. We may write the supervector (1,0) in
a standard basis [4] in the form:

for the (1,1)—dimensional total supereuclidean space Br* and (0, 2)-dimen-
sional total supcrcuclidcan space B2 where a standard basis 4] in these spacces
is {(1,0), (0, 81)} with (1,0) c—type supervector and (0, 3') a—type supervector
and the supervector (1,0) can be written in a standard basis [4] in the form:
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for the (2,0)-dimensional total supereuclidean space Br?, where a standard
basis [4] in this space is {(1,0), (0,1)} with (1,0) c-type supervector and (0, 1)
a-type supervector

5 Definition. [10] Suppose U C R™ is open and L’ is a positive integer
with L' < L. Let C°°(U, By+) denote the By, module of C°° functions of U into
By (recall that By, is a Banach algebra, and hence g fortior: a Banach space).

Then the map
By
Zi1,: C°(U, Bry) — [eC4(U)]

is defined by [10]

L

Zun(f)ah.. e = Y ———

gl-o-q, !
31=0.. 4y, =0 1 m

ip (@Y LA P (@Y, e B @™) x (@) - s(@™) (1.12)

where |10 | | |
s(x*) = a* — E(I‘)(wi)l, t=1,...,m. (1.13)

6 Definition. [10] Suppose V is open in B;"" (with respect to its usual

finite-dimensional vector space topology) and U = E%}L(V), suppose L > 2n
and L' = [£L], the last integer not less than ;L. GH*(V) denotes the set of

functions f : V — By, for which there exist [10] f,, € C°°(U, B/} such that

f(z,6) = > Zp p(f.)(z)6" (1.14)
pEMy
where
6F — 61 - .- gk (1.15)
and
67 = 117 (1.16)

7 Definition. [10] With the notation of Definition 5, let f be an element
of GH®(V), with expansion (1.12). Then, forz =1,... . m

Gi;f 1V — By

is defined by [10]
Cif @ 6) = Y. Zui(6ifu) (@) (1.17)

pEMp

Algo, for s =1,...,n.
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is defined by [10]

Gimf(z:6) = Y Zp r(fu)(@)647 x (1)), (1.18)

e My

where |fu(z)| is the Grassmann parity of f,(z), and
ﬁﬂ/j — 6#1 . G.Ur-:‘—l G.Uri+1 o 6,{#;3 (_l)i—l:|

if j = u; for some 7, 1 <7 <&, 64/ otherwise.
For the first time, I have introduced on Br™ ™ with n = 2r, the scalar
product

(w,wy =zy' +--+ ™y + 616"+ + 6761 —6"T161T — - — 67617
(V) v = (', ..., 2™, 6',...,6"),w = (y', ...,y 6:',...,6:") € B™™ which
has these properties:

a) (v,w) = (—1)UIwl@w, v) (supersymmetry)

b) {(u+wv,w) = {(u,w) + (v, w) (V) u,v,w € B (linearity)

¢c) {v,-} =0 if and only if v = 0.

8 Praoposition (Number of scalar products on By™™). On B,™"
with n = 2r, we may give r! different scalar products with r > 1.

PrROOF. There are r! one-to-one functions f: {1,...,r} = {r+1,...,2r}

For each function f we have the following scalar product between v = (2!, ..., z™,

611---56ﬂ) andw: (ylu"':ymuﬁllu"':ﬁlﬂ)

(v, w)f _ kayk ¥ Z Gjlﬁlf(ﬂ) 6f[j1)61j1)_

J1=1

One can easily verify the a),b) and c relations of a scalar product. Let us prove
a) in the case when v and w are odd elements of B;™ ", that is, v and w
belong to (B;™™),. Then, we shall have v = (z",..., 2", 6", ...,6") and
w= (y", ...y, 6"1 ..., 67™). When we compute the scalar product between
v and w, we shall get

(v, w) ; = Zﬂ:uk 1 Z 6"36Hf j1) 6Hf(j1)6.¥j1) _

— Zy”k LS Z (ﬁTf(jl)ﬁnjl B ﬁrlfjl ﬁnf(.?'l))
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Now, the scalar product between v and w becomes

(v, w)f _ _(i yuk .k 1 i (6.;1'_;51 6nf(j1) - 6.;:_!'(_}*'1)6”_}*'1))
k=1

J1=1
Thus, we get
(v, w); = —(w,v) -
This ends the proof. [QED]

9 Definition (Orthogonality on B;™ ). We say that the supervec-

tor v of BL™'™ is orthogonal to the supervector w of Br™ ™™ if and only if
e ((w, w)) = 0.

The column supervectors 1 = (1,...,0), ..., B, = (0,...,1,0,...,0),
where 1 is written on the m' place, E,,.1 = (0,...,0,—1,0,...,0), where
—1 is written on the (m + r + 1)*” place, ..., Epir =(0,...,0,—1), where —1
is written on the (m + n)*" place, Epori1 = (0,...,0,1,0,...,0), where 1 is
written on the (m + l)th place, ..., Ity — (0,...,0,1,0,...,0), where 1 is

written on the (m + r)*" place, form the standard basis on B.™ ™ 4] where the
first m supervectors are c—type and the last 7 supervectors are a—type.

10 Definition (Supersmooth supercurve). [10| Let suppose L. > 2n
and let By, be an (m, n)—dimensional total supereuclidean space, let V be

an open set in B}jl lete: V C B}jl — By™1" be a function, and for every
bcVn (BL)l let define

ﬂﬁj[} VN (BL)D — (Bbm+n)n
given by

cs,0(t) = (c(, 6)),

where (c(¢,6)), is the even part of the supervector c(¢,6) and
€6, : VN (BL)D — R™

given by
ce,B(t) = £, © c6,0(2)

for all £ € V N (BL),. The function ¢ will be said to be supercurve if and only
if ¢g,B|yngp Will be a curve. The function c is called supersmooth if and only if
¢ CcGH®V)Y W ic{l,...,m}and T c GH>®{V) (V) 5 € {1,...,n} where
¢d=gtoc(V)i1ec{l.....m}and T =6/0c (V) j €{1,...,n}.
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11 Definition (Supercurve in general position). Let suppose L > 2n
and let Br,™ ™ be an (m,n)—dimensional total supereuclidean space, let V be
an open set in B_lL’l andletc:V C B_lL’l — B;™1" be a supersmooth supercurve.
We say that the supercurve c is in general position it and only if

(G1c(t, 6),...,G ™ De(t, 6), Gaclt, 6), G1Gac(t, 6), . .
LG Y Goe(t, 6))

are linear independent (YY) (£,6) € V C E’}jl and where by G1c(#, 6) we under-
stand the supervector

(G1c'(¢,6)....,G1c™(4,6), Gic™ T (t,6),...,Gic™ (¢, 6))

(V) (¢,6) €V C By’
by Gse(t,6) we understand the supervector

(Goc'(t,6), ...,Gac™(t,6), Gec™ ' (£,6), ..., Gac™ (2, 6))
1,1
(V) (£,6) € V C By

with G{*¢c(t,6) = G1---Gic(t, 6), where GV¢c(t,6) = c(t,6) and G{Mc(t,6) =
G1c(t,6) and “---” means that 1 is applied by s times.

12 Definition (Frenet Frame associated to a supersmooth super-
curve). Let suppose I, > 2n and let B™™ he an (m,n)—dimensional total
supereuclidean space, let V be an open set in B}:lj1 andletc:V C B}l_rjl — Bpmtn
be a supersmooth supercurve. By a Frenet frame associated to a supersmooth
supercurve c : V C Bl L B; ™" we shall mean a system of m + n super-
vector fields {eq,.. em+ﬂ,} along to the supersmooth supercurve ¢ such that
(V) (£,6) € V C B ' we have the following properties:

(Ek(t: 6):Eh(tu )) _5kh (V) kﬁhe {luum}
(Em—l-‘r—ﬁ (¢,6), Cm+j2 (£, 6)) jlj? (V) 51,792 € {1: . ﬂ“}
(Em+j1 (t: 6): Cm+r+j2 ('ﬁ, )> J172 (V) J1,92 € {1: SO T}
)
)
)

R e
= O

b
b

0

(Em—jl (t: 6): Cm+72 (t: ) 0, (V) J1, 72 € {1: - :T}

(em—l—?"—l-jl (t: 6)1 Cm—+tr+ijo (-"’-1 ﬁ) U:! (v) jl:jZ C {11 - - :T}
(E‘i (t: 6): Cm+j (ta ) (Bm-l-j( :I 6): €4 (t: 6)) — 0:

(V) i€ {l,...,m}and j € {1,...,n}

R e T e S enie P NP NP
ettt el
| | | | | | | | | |

y b
-
e e e e

1.24)

span(Gic(t, 6), ..., GF c(t, 6)) = 5pa.n(61( 6),...,en(t,6)) (1.25)
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where Ggl)ﬂ(t, 6) — Gic(t,6) and

span(Gac(t, 6), G1Gaclt, 6), ..., GV V) Gaclt, 6)) =
— Sp&ﬂ(ﬂm_|_1( 3 ﬁ): - 3Gty (t: 6)) (V) .? < {11 - 'Jﬂ’} (126)

where GV Gac(t,6) = Gac(t,6) and GV Gac(t, 6) = G1Gac(t, 6) and we shall
mean by span(e; (£, 6), . ek(t 6)) the supervector space [4], spanned by e; (%, 6),
er(t,6) (V) (,6) V C B 1. The systems of supervectors

(Gic(t,6),...,GFc(t,6)} and {ei(t,6),...,ex(t,6)} (1.27)

are directed in the same way (V) (¢,6) € V C BL and (V) k€ {l,...,m— 1},
that is, ) (det M1) > 0 where M7 is the matrix when we change from the frame

{Gic(t, 6),...,G¥ c(t,6)} to the frame {e1(,6),...,ex(£,6)} and the systems
of supervectors

{Gsc(t, 6), G1Gac(t,6), . .., GY D Gaclt, 6))
and {en1(t,6),...,em (1, 6)} (1.28)

are directed in the same way (V) (4,6) € V C B L(v) j e {1,...,n},that is,
(L) (det Ms) > 0 where M> is the matrix when we c:hange from the frame

{Gac(t, 6), G1Gaclt, 6), .. . ,GY VGae(t, 6))

to the frame
{Em_|_1 (t, 6): -3 Cm+j (t, 6)}

The system of supervectors

{El (tﬂ 6)1 "t Em+n (t, ﬁ)} (129)

1s positive directed (V) (£,6) € V C B}jl, that is, E(L)(sdet(eg(t, 6))) > 0 where
by sdet(e:(t,6)) we understand det(A — C - B~ - D) - (det B (2, (8], [4], [1],
5] where

A C
(€q(:6)) 1< g<min = ( D B ) ’

where A, B, ( and D are m Xm, n Xn, m Xn and n X m matrices with elements
in Bj, respectively.
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2 Existence and Uniqueness Theorem for
Frenet Frame Supercurves

13 Theorem (Existence and Uniqueness Theorem for Frenet Frame
Supercurves). Let suppose L > 2n and let By be an (m,n)—dimensional
total supereuclidean space, let V be an open set of Bé’l and letc:V C Bi’l >
B1™™ be a supersmooth supercurve in general position which satisfy the fol-
lowing relation:

(I)((Gac(t,6), G Gac(t, 6))) > 0 (2.1)
D) ((GVVGac(t, 6)), GV Gac(t, 6))) > 0 (2.2)

V) 1 €{1,...,r—1}, and (V) (¢,6) € V C B},

e B ((Gac(t,6), GV Gac(t, 6))) = O, (2.3)

(V) 5€{0,....,n—1}, with j #r and (¥) (,6) € V C By,

e MGV Gaclt, 6)), G Gaclt, 6))) =0 (2.4)

V) s/ c{1,...,.n 1}, (M) s C{l,....n 1} withj # 5 | r and §7 < j and
(V) (£,6) € V C B}jl. Then there exists a unigue Frenet frame {ei,...,enint
assoctated to the supercurve ¢ and we have the following formulas (V) (£,6) €

V C le_:’l:

Giep(t,6) — Y apa(t,6) -en(t,6) (V) ke {l,...,m}, (2.5)
h=1
where
arplt, 6) + app(t,6) = 0 (V) &,h € {1, - ,m} (2.6)
and

ﬂkh(t,ﬁ)zo of h>k+1, (V) k.h € {1,...,??’1} (2.7)

T
Giem4(t,06) = Z Um+g m+i(T, 6) - emy(T, 6) (V) jedl,...,nj,
=1
(2.8)
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where

Am-+41 m+jo (t, 6) + Um-tr+j2 m-tr-+ (t: 6) =0 (v) jl:jz C {:l - .- ,T}, (29)
Emtr+j1 mja(t 6) — Gmtr—js m4j,(£,6) =0 V) igz €L, ...,y (2.10)
Gm+41 m+r+je (t: 6) — U+ 42 mtr+71 (t: 6) =0 (V) I, 92 € {:~: - .- ,‘T‘}, (2-11)

" G mii(66) =0, ani;it,6)=0 (Wic{l,..,m},  (212)
V) 5 €{L,...,n},

Om+i m+i(t,6) = 0 of [ #7+1 (V) 5,1 € {L,...,n}, (2.13)
where

Cm—+j1 m+3j2 (t: 6) — (Glem+j1 (tnﬁ): Cm-+r+4o (t: 6)): (2-14)
Amtdi mrtia(t, 6) = —(Gremy, (8, 6), €mq 4, (2,6)), (2-15)
(t: 6) — {Glem+f+j1 (t: 6): Cmtr-+ijo (t: GD: (2-16)
(£,6) = _(G15m+r+j1 (,6), Cm+ 72 (2.6)), (2.17)

Cmtr4j1 mtge
Om+r+j1 m+r+jz

(V) jl:.’f? C {l: . 'JT}'J

arnlt, 6) = (Giex(t, 6), en(t, 6)), (V) k&, h € {1,...,m}, (2.18)
Gk m+j (tﬂ 6) — (Glek(tﬂ 6): Cm+ 5 (tu 6))1 (v) k€ {1: - - - :m} (219)

and (V) j € {L,...,n},
Um+j k(ta ﬁ) — (Glem—l—j (tﬁ ﬁ): Ek(ta ﬁ))ﬂ (V) kc {]-:! - 1m} (2'2[])

and (V) € {1,...,n}.
ProOOF. We use the proof of the existence and uniqueness theorem for Frenet
frame curves from (9] in our proof. From the (2.1) and (2.2) relations we have:

e ((Gac(t, 6), GY" Gac(t, 6))) # 0

and
e B (GIVGac(t, 6)), GY T Gac(t,6))) # 0

V71 €{l....,r— 1}. Let us consider

A1(t, 6) = (Gac(t, 6), G\ Gac(t, 6))

and

M (2,6) = (G Y Gae(t, 6), GV Gac(t, 6))
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(V) 51 € {2,..., 7} and (V) (¢,6) € V C By'. Because of s () (), (¢, 6)) #£ 0 (V) 41
c{l,...,r} and (V) (¢,6) € V C B}jl it results that there exist (A, (2, 6)) .
Let us consider

em+1(t,6) = (A1(2)) ™' - Gac(t, 6)

and .
em 41 (t,6) = (N, () - G NGac(t, 6)

(V) 51 C{2,...,r} and (V) (£,6) CV C Bi’l and lct us consider
em ri2(t,6) = GY T VGoc(t, 6)

(V) j2 € {1,...,r} and (V) (¢,6) € V C By’

The supervectors {e,, +1(%,6), ... .emin(f, 6)} are linear independent because
the supersmooth supercurve c is general position. From the definition of these
supervectors, we have:

span(G1c(t, 6),. ... G{c(t,6)) = span(e1 (4, 6), - . , ex(t, 6))
(V) ke {l,...,m — 1}

span(Gac(t, 6), G1Gac(t, 6), - .. ,ng_l)Gzc(tj 6)) =

— sPan(em+1 (tﬂ 6): - - Emtj (t: 6))
V) je{lL,...,n}

and (V) (£,6) €V C By

From the (2.1) and (2.2) relation we have £%((\;, (¢,6))) > 0 (V) j1 €
{1,...,r}and (V) (£,6) € V C Bé’l. The “body” of the determinants of the ma-
trices when we change from the system {Gsc(t,6), G1Gac(t,6), - .., ng_l)ch(t, 6)}
to the system {e;,11(%,6)....,em4+(%,6)} (V) 7 €{L,...,n}and (V) (£,6) € V C

BE’I 18
0 (Aj(t,6)"" 0 0 0
(L) 0 0 L0 i
0 0 0 1 0
= B (A(2,6) - - (A(2,6)) ) =
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We have (V) j1 € {1,...,r} and (V) t € I that

(Em+j1 (t): Cm+r+71 (t» —
— (A, (£,6) 7L - GV VG,e(2, 6)), GU T D@ c(t, 6)) =
— ()‘.:h (t))_l j ’\j1 (t) = L.

Thus, we get the (1.21) formula from the first part of this paper. The (1.20)
formula, from the first part of this paper, results from the supersymmetry prop-
erty of the scalar product {,) and the (1.23) and (1.22) formulas, from the first
part of this paper, result from the (2.3) and (2.1) relations. We shall gspecity if
a relation belongs to the first part of this paper and we shall not specify if a
relation belongs to the second part of this paper.

Because the supersmooth supercurve c is in general position, it results that
the supervector f1(¢,6) = Gic(Z, 6) is nonzera (V) (£,6) € V C Bé’l- Let us
consider

o]l = \/e@ (v, )) 2.21)

(V) v € By ™,
We put
e1(t,6) = f1(t,6) - (||f1(£,6)|) " (2.22)

(V) (t,6) €V C By
Let the supervector f2(#,6) be

GPc(t, 6) + (e (A2, 6)) + s(A(,6))) - ex(t, 6) (2.23)

We shall get the functions £(X) (A(¢,6)) and s(A(%, 6)) such that the super-
vectors f9(%,6) and e1(¢,6) to be orthogonal, that is.

e (L) ((f2(2,6),e1(2,6))) =0 (2.24)

(t,6) € V C By'. From (2.23) and (2.24), we have

0= (GPc(t,6), e1(t,6)) + (L (A(2,6)) + s(A(2, 6))) - (ex (£, 6), e1 (2, 6))

from which we obtain

0 = DGV e(t, 6),e1(t,6))) + s((GPe(t, 6), e1 (£, 6)))+
+eM(A(,6)) - e ({e1 (8, 6),e1(2,6)) + P (A(£,6)) - s((e1 (2), ex (1)) +
+5(A(t,6)) - s((e1(t,6), e1(2,6))) + s(A(t,6)) - e P ((ex (¢, 6), ex (£, 6))).
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Thus we have
eI (GPc(t, 6), e1(t,6))) + e D (A[t,6)) - e ((e1(£,6), e1(¢,6))) = O
and

s((GPelt, 6),c1(t,6))) | e (Ap(2,6)) - s({c1 (i, 6), c1(2,6))) |
| s(A(t, 6)) - s({c1(2, 6),c1(2,6))) | s(A(¢,6)) - €L ({e1(¢,6), c1(2,6))) = 0.
Therefore
cD(A(t,6)) = —D (G c(t, 6),e1 (1, 6))) (2.25)

and

s(A(t,6)) = (—s((CPc(t, 6), e1(t,6))) — e D (GP (2, 6), e1 (£, 6)))-
s{{ex(t), e1(®)))) - (1 + s({er (), e1(8)))) L. (2.26)

From (2.23), (2.25) and (2.26) we get
f2(t,6) = GPc(t, 6)+ (—eD ((CPe(t, 6), e1(t, 6))) + s(A(t, 6)))- €1 (£, 6). (2.27)

Because the supervectors Gic(t,6) and G Ezjc:(t, 6) are linearly independent
(V) (£,6) € V C By' from (2.27) we have L) ((fo(2,6), f2(t, 6)) #£ 0 (V)(£,6) €
V C B;’'. Therefore || f2(2,6)|' # 0(Y) (¢,6) € V C B}

We set

es(t,6) = f2(t,6) - (||f2(2,6)[) (2.28)

We note that [|le1(£,6)|]" = |lea(¢,6)||" = 1 but {e1(%,6),e1(t,6)) = 1+

+s({e1(¢,6),e1(f,6))) where s({e1(¢,6),e1(¢,6))) has not importance and we

have the same for {es2(%,6), e2(¢,6)). From the formulas (2.22), (2.27) and (2.28)
formulas we have:

()G1c(t, 6) = [|G1c(z, 6)[[ - e1(t, 6) (2.29)

and

¢ Pe(t,6) = eB (G e(t,6), e1(2,6))) — s(A(2, 6)) - 1 (, 6)+
+ || f2(t, 6)|| - e2(,6). (2.30)

The relations (2.29) and (2.23) show us that

span(Gic(t, 6), G17 c(t, 6)) = span(e: (¢, 6), e2(t, 6)).
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Because of

(L) |G1¢(t, 6)]|f 0
E ( D (GPe(t,6), 1 (1,6))) — s(A1,6) IR0 [) 7"

(1,6) € V C B}jl it results that the systems of supervectors {G1c(Z, 6), G?) c(t,6)}
and {e1(%,6),e2(¢,6)} are directed in the same way (V) (¢,6) € V C Bi’l.

We assume that we have constructed the unit, orthogonal two by two su-
pervectors e1(%,6),...,e,_1(¢,6)(h < m) with the properties that:

span(Gic(t, 6), GV c(4,6),...,G" Ve(t, 6)) = span(e1 (£,6), .., en1 (%, 6))

and the systems of supervectors {G;c(t, 6),(}‘52)15(1&, ﬁ),...,Ggh_l)c:(t, 6)} and
{e1(t,6),...,en_1(£,6)} are directed in the same way (V)(£,6) € V C B}l_jl.
Thus we construct the supervector f; (%, 6):

—1
fa(t,6) = GMc(t, 6) + > (6B (Ag(t, 6)) + s(Ax(t,6))) - ex(t,6), h < m (2.31)
1

o o

25
|l

where (¢,6) — Ag(%,6) are supersmooth functions (V) £ € {1,...,h — 1} which
will be determined by the conditions:

(fh(ta 6):Ei(t1 6)) — 0: h<m: L € {laah_l} (232)

By (31) and (32) we get

(G eft, 6), es(t, 6))+
h—1

+ ) (e (AL(2,6)) + s(Ax(1,6))) - (ex(t,6),€i(2,6)) =0 (2.33)
k—1

(V) i € {1,...,h — 1} or equivalent to

(GMe(t, 6), e:(t, 6))+
+ (B (As(8, 6)) + s(Ai(t, 6))) - (1 + s({eit,6),e5(2,6)))) =0 (2.34)

(V) ¢ € {1,...,h — 1}. From (2.34) we have:

cB (G c(t,6), e:(t, 6))) + e (A(¢,6)) = 0 (2.35)
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and

S(<Ggh)ﬂ(t1 6)1 =2 (ta 6))) + E(L) (A‘-E (ta ﬁ)) ) S(<Ei (t: 6)1 €3 (ta ﬁ)))_l_
(V) h <m, 2€{l,...,h —1}.

Because the supervectors Gic(t, ﬁ)ngz)c(t, 6),.. .,Ggh)r:(tj 6) (A < m) are
linear independent it results that f; (%, 6) #£ 0.
We put

Eh(t: 6) — .fh. (tﬂﬁ) ) (Hfh(t: 6)HI)_lﬁ h <m. (237)

Thus, we have constructed the unit and orthogonal two by two supervectors
e1(t,6), ..., ep_1(%,6). On the other hand, from (2.31) and (2.37) we get the
following relations for all 2 < m:

GVe(t, 6) = () ((G{Vc(t, 6), e1(t,6))) — s(A(,6))) - €1 (2, 6) + -
o (B (G Met, 6), en_1(£))) — s(Ap_1(2,6))) - ep_y (t,6)+

From {2.29), (2.30) and (2.38) we obtain:
span(G1c(t, 6), ng)r:(t, 6),..., Ggh’)c(t, 6)}) = span(e1(t,6),...,ex(2,6)).

Taking account of (2.29), (2.30), and (2.38) we get that the ” body ” of the deter-
minant of the matrix of the linear transformation when we change from the basis
fei(t,6),...,en(t,6)} to the basis {Gic(t, 6), G{Pc(t, 6), ...,GMe(t,6)} (B < m)
e(L)(A(t, 6)) is given by:

cB(A,6)) = |11 6)] - - |Ifa6) >0 (V) (t,6) €V C B

Therefore e X (A(t,6)) > 0 (V) (¢,6) € V C B}jl and the systems of supervec-
tors {e1(t,6),...,en(t,6)} and {Gic(t,6),GPc(t,6),...,G{Mc(t,6)} (B < m)
are directed in the same way (V) (£,6) € V C Bi’l.

By our construction, the functions (¢,6) — ex(£,6)(V) & € {1,...,m — 1}
and (,6) — e;,14(%,6) (V) j €{1,...,n} are supersmooth.

We shall get e, (#,6) from the relations

(em(t,6),ex(¢,6)) =0 (V) ke {l,...,m—1; (2.39)

and
(em(?,6), em+4(8,6)) =0 (V) j€{l,...,n} (2.40)
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Thus, we have:

el (t,6) - €1 (2,6) + - + €n (2, 6) - €' (£,6) + € (£,6) - €7 (¢, 6) + - - -
4 €M (,6) -T2, 6) — e T2 6) - e (2, 6) — . ..
L EmR(E,6) (4, 6) = O

E’}n(tﬂﬁ) ' e’}n—kn(tﬂ 6) +---+ Eﬁ(t, 6) - e$+n(t: 6) + 6E+1(t, 6) - Eﬁi;+l(t; 6) 1 ---
e T (6,6) - enpin(t6) —en T (6) e n(t,6) — ...

e 6) . eI (4,6) = O

M+
(2.41)
where e}c(t, 6),...,e?+ﬂ(t,ﬁ) are the components of the supervector e;(%,6)
(V) £ € {1,...,m} and e,}nJrj(t, 6),... ,eﬁi_’?’(t, 6) are the components of the

supervector e, ;(¢,6)(V) j € {1,...,n}.

Let us consider (2.41) as a linear and homogeneous system of m + n — 1
equations with the m + n unknowns e}, (¢,6),...,e"T"(¢,6). Because the su-
pervectors e1(t,6), . .., em_1(%,6), emi1(t6), ..., emin(t, 6)(¥) (£,6) €V C By
are linear independent, it follows that the rank of the matrix M (¢,6):

S AT o L
1 m m+r+1 m-+n m—1 m--r
Cm—1 77 Em—-1 CGp_1 T Ep 1 T Cp —Cm—1
61 o e em—l—r—|—1 o em—l—ﬂ _em—l _Bm—|—r
m-+1 m-1 m-+1 m-1 m—1 m-1
1 m m+r+1 m-tn m—+1 m-r
Crn+nn "7 G+ Cman " Cpan T CSnan T T Cman
is m+mn—1, where e, means e;(¢,6) withs € {1....,m+n}andg € {1,...,m—

I,m+1,...,m—+ n}. Let A,(#,6) be the minor of order m + n — 1 obtained
by omitting the ¢ column from the matrix M (£,6)(V) ¢ € {1,...,m + n} and
(V) (£,6) € V C BE’I. Then from (2.41), we get:

e, (t,6) = (1)1 -0(t,6) - Ag(£,6), (M age{l,...,m+n}, (2.42)
where v(f,6) has to fulfil the condition:
lem(t,6)|I' = 1. (2.43)

Because of rank(M (2,6)) = m + n — 1 we have:

cEA®6)) = € P(A1(46)) +--- + (P (Am(t,6)) >0.  (244)
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From (2.42) and (2.43) we get:

v(t,6) = - (V(AGE 6)) (2.45)

where n = 1 or n = —1; this resulting from the condition that the frame
{e1(t,6),...,em+n(t,6)} to be positively directed.
By (2.42) and (2.45) we get:

ef(£,6) = (-1)7 1 -7 Ay(1,6) - (V(AR6) (V) g€ {L,...,m+n}, (246)

where 7 verifies the conditions || = 1 and

el (sdet (c5(¢,6)) > 0.

15$:&'£m+ﬂr)

By (2.46) and (2.43) it follows that the functions (¢,6) — €2,(¢,6), 1 < s < m+n
are supersinooth and the function (¢, 6) — €, (¢, 6) is supersmooth.

From our construction results (2.19) and (1.24) from the first part of this
paper.

The uniqueness of the Frenet frame results by our construction.

We fix an index & C {1,...,m}. We cxpress Gici (¢, 6) in the frame {¢; (2, 6),
vy Eman(t, 6]} and we have:

Greg(t,6) = Y agn(t,6) - en(t,6) + )  ag;(,6) - emi (2, 6). (2.47)
h=1 4=1

Computing the scalar product between the (2.47) relations and e;(%,6) (V) 7 €
{1,...,m} we get:
Ufq (tu ﬁ') — <G1 Ck (tu ﬁ'): €4 (ta ﬁ)) (248)

because {(em;(t,6), et 6)) = 0(Y) 5 € {1,...,n} and (V) (,6) € V C By'.
Thle we proved the (2.18) relation (V) &,2 € {1,...,m} and (V) (¢,6) € V C
B;.

Computing the scalar product between the (2.47) relations and e, (%, 6)
(V) I € {1,...,n} we get:

G mi (t: 6) — (Glek (t: 6)1 Cm+i (t: 6)) (249)

because (ep(t,6),e,11(2,6)) = 0(V) A € {1,...,m} and (V) (£.6) € V C B}jl.
Thus we proved the (2.19) relation (V) A € {1,...,m}, | € {1,...,n} and
(V) (¢,6) € V C B},

Derivating the following relation by G4

(er(t,6),en(t,6)) = &n (V) b hE {L,...,m}, (V)(t,6) €V C By
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we get:
(Glek (t: ﬁ): Eh(t: 6)> + (Ek (taﬁ): Gleh(t)) =0 (V) k: hc {1: - - - :m}:

(V) (t,6) € V C B
By the (2.48) relation we have:

ﬂkh(t: ﬁ') T ﬂhk(t: 6) =0

that means we proved the (2.6) relation (V) &,k € {1,...,m} and (V) (¢,6) €
vV C By
Because {e1{t,6),...,em,1,(%,6}} is a Frenet frame we have:

G\"c(t, 6) € span(ei(t,6),...,ex(t,6)), (V) ke {l,...,m—1}  (2.50)
and (V) (t,6) € V C By’ and
ex(t,6) € span(Gic(t,6),...,G\e(t,6)) (V) ke {l,...,m—1}  (2.51)

and (V) (¢,6) € V C By,
By (2.50) and (2.51) we get:

G1ex(t,6) € span(Gic(t,6), ..., G Fc(t, 6), GFc(t, 6)) (2.52)

1,
(VY ke {l,...,m—1} and (V) (1,6) € V C B, .
By (2.50) and (2.52) we have:

Grex(t) € span(er (t,6), ..., ex1(6,6)) (V) k€ {l,...,m—1}  (2.53)
and (V) (¢,6) € V C By,
By (2.53), we note that in the writing

(i i
Giep(t,6) = Y agn(t,6) - en(t;6) + D ag mij(t, 6) - emis(t,6)
h—1 4=1

V) ke {l,...,m)

and (V) (£,6) € V C Bé’l the coefficients azp(f,6) are zero if A > &£+ 1 and
ak m+;(t,6) =0 (V) k€ {1,...,m}, j € {1,...,n} and (¥) (£,6) € V C By
Thus, we get the (2.5) formula (V) (¢,6) € V € By

Glek(tﬂ 6) — Za‘kh(t: 6) ) eh(t: 6)(v) oS {l: - - :m}
h=1
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and the (2.7) formula a;;(¢,6) = 0if h > &4+ 1, (V) k,h € {1,...,m} and
(V) (¢,6) € V C B}
Because of our construction of the frame {e;(%,6),. .., en. (%, 6)}, we have:

GY D Gaelt, 6) € span(emy (%, 6)), (2.54)

and .
emt; (1, 6) € span(GY " Gaclt, 6)) (2.55)

(V) j€{l,...,n}and (V) (£,6) € V C B}
From now, we have:

G1em4(t,6) € span(GY)Gaclt, 6)) (2.56)

V) j€{1,...,n} and (V) (¢,6) € V C B}
By the (2.54) and (2.56) relations we get

G1emj(t,6) € span(emj11(2, 6)) (2.57)

(V) j€{1,...,n} and (V) (£,6) € V C B},
By (2.57) we note that in writing

Gle’fﬂ—j (tﬂ 6) — Z Ui+ k(tﬁ 6) " Bk (tu 6) + Z Um-+3 m-+i (tﬂ 6) " Cm+-j (ta 6)

(V) (¢£,6) € V C B}l_rjl, the coefficients a,,4; myi(?,6) are zero if { # 5+ 1 and
am+j £(5,6) =0 (V) k€ {1,...,m}, j €{1,...,n} (V) (t,6) €V C By".
Thus we proved the (2.8), (2.12) and (2.13) relations.

We fix an index j; € {1,...,r}. We express Gien+j (¢,6) in the frame
{e1(t,6), ..., emin(t,6)}. We have:

T ¥i
Giem i, (t:6) = D tm gy a(t,6)-€n(t,6)+ D tmijy miji(t)-emi;(t,6) (2.58)
h—1 j=1

(V) (¢,6) € V C By
Computing the scalar product between the (2.58) relation and ex(#,6) (V) & €
{1,...,m} and (V) (£,6) € V C Bé’l we get:

Um—+4, k(t) — <G1€m+j1 (t, 6), CL ('ﬁ, 6)) (\7’) k - {1, - ,m} (2.59)

and (V) (¢,6) € V C Bi’l because (em4(2,6),ex(£,6)) = 0(V) & € {1....,m},
(V) 7€{l,...,n}and (V) (¢,6) € V C Bé’l- Thus, we proved the (2.20) relation
(V) j1€{1,...,r} and (Y¥) (£,6) € V C By
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Computing the scalar product between the (2.58) relation and e, (2, 6)
(V) 2 € {1,...,7} and (V) (t,6) € V C By"'. We get:

Gm+41 m+r+go (t-. 6) — _<G1 Cm—+1 (t, 6): Cm—+ 42 (t: 6)) (V) 72 € {1._, SO T} (2-60)

and (V) (¢,6) € V C B}jl. Thus we proved the (2.15) relation (V) (£,6) € V C
By
Computing the scalar product between the (2.58) relation and e, 144, (%, 6)

(V) 42 € {1,...,7} and (V) (t,6) € V C By’ we get:

Gmt-51 m+io (t: 6) — <G16m+j1 (t: 6): Cm+r—+ 9o (t: 6)) (V) J2 € {1: - - 1T} (2'61)

and (V) (t,6) € V C By’'. Thus, we proved the (2.14) relation (V) (¢,6) € V C

1,1
B!
We fix an index j; C {1,...,7}. We cxpress Gcpyryqy (2,6) in the frame
{e1(2,6),...,emin(t,6)}. We have:

7
Glem+r+j1 (£,6) = Z"Im—kf—kﬁ nit) - enlt, 6)+
h=1

Ti
+ D Gmirig mi(,6) - em;(6) (2.62)
=1

(V) (£,6) € V C By

Computing the scalar product between the (2.62) relation and e (%, 6) (V) & €
{1,...,m} and (Y) (t,6) € V C B;" we get:

Cm+tr+i1 k(t: 6) — <G1 Cm+r-+41 (t: 6)5 Ck (tu 6)) (v) k € {1! =t m} (263)

and (V) (¢,6) € V C By' because (e, (t,6),e(2,6)) = 0(V) & € {1,...,m},
(V) 5 € {1,...,n} and (V) (£,6) € V C By'. Thus, by (2.59) and (2.63), we
proved the (2.20) relation (V) (¢,6) € V C By,

Computing the scalar product between the (2.62) relation and e, ;, (%, 6)
(V) 72 € {1,...,7} and (V) (t,6) € V C B}’ we get:

Gm—r+91 m—r-+i2 (t, 6) — _(Glem—l—?"—l—jl (t, 6)1 Cm+ o (t: 6)) (\?‘) 72 € {11 -t T}
(2.64)

and (V) (£,6) € V C B}jl. Thus we proved the (2.17) relation (V) (¢,6) € V C
Bt
L
Computing the scalar product between the (2.62) relation and e, 4 4, (£, 6)
(V) o€ {1,...,7} and (¥) (,6) € V C B} we get:

Gm+r+j1 m+j2 (t: 6) — (Glem+-r+j1 (t: 6): Cm+r—j2 (t: 6)} (V) J2 € {11 -- - ,r}
(2.65)
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and (V) (£,6) € V C B}E’l- Thus, we proved the (2.16) relation (V) (¢,6) € V C
B
Derivating the following relation by G1

(€mriy (£,6), €miriis(t,6)) = &, 4 (V) j1,50 € {1,...,1}
we get
(Giem+4, (t,6), emirijy (£,6)) + (€mt4y (2,6), Gremirijy(E,6)) =0
(V) 41.90 € {1,...,r} and (V) (£,6) € V C B}jl which is equivalent to
(G1emtj, (£, 6), emtrty (8,6)) — (Gremirya (2, 6),€mqy, (£,6)) =0

(V) 71,52 € {1,...,r} and (V) (£.6) € V C Bi’land using the (2.14) and (2.17)
relations we get:

II:1“‘.i'“1r1a—|-_j.51 m-+j2 (t:l 6) + a‘m—l—?"—l—jg m-+r+51 (t:l 6) =0 (v) jl:jz = {11 - - - ,T}

and (V) (£,6) €V C Bi’l which is the (2.9) relation.
Derivating the following relation by G4

(Em—|—j1 ('l'?, 6): Cm+g0 (t: ﬁ')) =0 (V) jlaj:Z = {1: - ,?‘}
we get
(G1em+4, (£, 6), em+45(2,6)) + (em+4,(2,6), G1em4,(%,6)) = 0

(V) jlajﬂ < {l:l - - :T}
and (V) (¢,6) € V C By which is equivalent to

{Glem—l—jl (t: 6)1 Cm+j2 (t, 6)) o (Gle?ﬂ—l'jl (t: 6)1 Cm+71 (t: 6)) =0

(V) 1,52 €{1,...,r}
and (V) (£,6) € V C Bé’l and using the (2.15) relation we get:

—Qmd-41 mtrtio (ta 6) + Um-+42 mt+r+h1 (tab) =0 (v) jl:jz = {l'.l - :T}

and (V) (£,6) €V C B}jl which is the (2.11) relation.
Derivating the following relation by G

(em—l—f—l—jl (t, 6): Cm+r+72 (t: 6)) =0 (v) jl:jz < {l: - .- :T}



164 V. G. Cristea

we get
(G1emtr+4, (2, 6) €miriis(£,6)) + (emirig (3,6), Gremyrtg, (1,6)) =0
(V) 71,90 €{l,...,r}and (V) (£,6) € V C B}J’l which is equivalent to
(G1emr+i (1,6), emirtgs (4, 6)) — (Gremir1j2 (T, 6), emiryg, (2,6)) =0

(V) 71,52 € {1,...,r}and (V) (¢£,6) € V C Bé’l and using the (2.16) relation we
get:

Cmtr+91 m+j2 (£,6) — Cm-tr+j2 m-+71 (2,6) =0 (V) 41,742 € {L - - - :'T'}

and (V) (1,6) € V C Bé’l which is the (2.10) relation. [@ED

14 Corollary. The {2.5) and (2.8) relations extend the Frenet formulas for
the curves.

15 Remark. By (2.6), (2.7), (2.12), (2.13), (2.9), (2.10) and (2.11) we get:

A1 Aj
A — (ﬂsq)1gs,qgm+n o ( Ay Ao ) j
where
0 a12 0 0
—a1z 0 0 0
Ay = ' 5 ’
0 0 | Gm—1 m
O U —yn—1 m U
Um+1 m+1 0 0 X
0 - oa ’ - :
A — m-+r m-+r
9 0 0 —Om+1l m+1 T 0
0 o 0 0 " —Um+tr mtr
and
0 -~ 0
Ag — A4 —
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16 Example. Let B> be the (2, 2)—dimensional total supereuclidean

space, V be an open subset of B}ljl and c: V C B}L"l — B1.27? be a supersmooth
supercurve given by

E(tnﬁ): (tzﬂﬁ'ﬁznﬁ_l_g'ﬁl't:ﬁ'tz)

where V N R be the open sct (0,1).
We note that the supercurve ¢ is supersmooth because the functions

cl(t,6) = 2, c?(t,6) = 6 - 32, 3t 6)=6+2-08 -1, c*(t,6) = 6 -2
are supersmooth. Let us compute Gic(t. 6), Gac(t, 6), and G1Gsc(t, 6) :
Gic(t,6) = (2-¢,0,2-35,2-6- 1)

Gac(t,6) = (0,8%,1,#2)  and  G1Gac(t,6) = (0,0.0,2 - 2).

By
e ((Gac(t, 6), G1Gac(t,6))) =0 -0+ 3%-04+1-2-t—¢t2-0)=2-1t> 0
(V) t € (0,1),
e ((Gac(t,6),Gac(t,6))) =0 -0+ 82 -F2+1-£2—#-1)=0
(V) ¢ € (0,1) and
e ((G1Goc(t, 6), G1CGoc(t,6)) =) (0-040-040-2-4—2-0-2) =0

we conclude that the supercurve ¢ fulfills the (2.1), (2.2), (2.3), (2.4), relations
from the Theorem 13.

Computing G1c(t,6), Gac(t, 6), and G1Gac(t, 6), we get that the supervectors
{G1c(t, 6), Gac(t, 6), G1Gac(t, 6) } are linear independent. Thus we conclude that
the supercurve ¢ is in general position.

Let us get the Frenet frame of the supercurve c, {ei (3, 6),e2(2, 6),es(t, 6),
es(t,6)} and the matrix A = (agq)lgslqg. Let fi(¢,6) be G1c(t,6) = (2-1,0,2 -
31,2-6-t) and

(Glﬂ(t,ﬁ),Glﬂ(t,ﬁ)):2-t-2-t—|—0-0—|—2-ﬁ1-2-6-1‘,—2-6-2-,31-15:
—4-?4+4-81-6-t—4-6-8 -

We have (G1c(2, 6), Gic(t, 6)) = 1-22+8-81-6-¢ and L) ((G1¢c(2,6), G1clt, 6))) =
— 4-12. Thus we get ||G1c(t, 6)||' = Ve ((G1c(t, 6), G1c(t,6))) = V4 - 2 2.1,
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By the above Theorem 13 we compute the Frenet frame of ¢, {e1(Z,6),
ea(t,6), e3(t,6), ea(t,6)} and we get

Cl(t, 6) — (1: 0,2 ﬁl ] (2 ] t)_laﬁ):

63(t:6) — (O: /32 ) (2 ) t)_la (2 ' t)_lag_l ) t)

and
eq(2,6) = (0,0,0,2 - ¢).

Let the matrix M (¢,6) be

1 0 6 —2-81.(2.4)°1
(0 B2 (2-¢)71 271.¢ —(2-¢)" )
0 0 2 -1 0

and computing e2(%,6) we get

ez(t,6) = (—28%- 8- (2-1)71,1,0,—3%).
Now, we may compute ai2(%,6) and as3(t, 6) and we have

a12(t,6) = (Gie1(t,6),e2(t,6)) = 8 - 3% - t72

where
Gie1(t,6) = (0,0,—4" - t72,0)
and
a33(t,6) = (Gies(t,6), ea(t,6)) = —t .
where

Gies(t,6) = (0,—5%2-271.¢72 271 472 971

We conclude that

0 gt-g-t% 0 0\

—pgl.p32 .42 0 0 0

A= (8sg)1<6,0<4 = 0 0 1 0
0 0 0 ¢ )
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