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1 Introduction

To axioinatize a geomnetry one needs a language in which to write the axiomns,
and a logic by means of which to deduce consequences from those axioms. Based
on the work of Skolem, Hilbert and Ackermann, Godel, and Tarski, a consensus
had been reached by the end of the first halt of the 20th century that, as Skolem
had cmphasized since 1923, “4f we arc intercsted in producing an axiomatic
system, we can only use first-order logic” ( |3, p. 472]).

This had not been the case in 1899, as evidenced by Hilbert’s axiomatization
of Euclidean geometry in [6], in which the underlying logic is left unspecified,
but where the strength of the theory axiomatized, Euclidean geometry over the
field of real numbers, renders the use of a higher-order logic unavoidable. For,
by the Lowenheim-Skolem theorem, no axiom system in first-order logic can
admit a unigue infinite model.

The language of first-order logic (also referred to as predicate logic) consists
of the logical symbols A {(and), V (or), — (implies), = (not), <+ (if and only if),
a denumerable list of symbols called sndwidual variables, as well as denumerable
lists of n-ary predicate (relation) and function {(operation) symbols for all natural
numbers 7, as well as individual constants (which may be thought of as 0-ary
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function symbols), together with two quantifiers, ¥V and 3 which can bind only
individual variables, but nof sets of individual variables nor predicate or function
symbols. Its axioms and rules of deduction are those of classical logic. A theory
T is a set of sentences closed under deduction, i. e. containing with any set of
sentences their consequences.

First-order logic with several sorts of individual variables, is called mult:-
sorted. In this paper we shall deal with one-sorted and two-sorted languages
only. At the cost of cluttering the sentences of a two-sorted theory, we can
express them in a one-sorted language by adding two new unary predicates P
and P, to its language, and by changing any sentence of the form (3X*) o(X?)
into (Jz) B(z) A p(z) and (VX?) o(X?) into (Vz) P;(z) — @(z) (here the X*
stand for variables of sort 4. For morc on multi-sorted logic sce [11]. We shall
refer to an axiomatization as non-elementary if it is not expressed in first-order
logic.

Dimension-free projective and affine geometry (of unspecified dimension
> 3) were first axiomatized by H. Lenz [9], the former in a first-order (ele-
mentary) language with two sorts of individuals, standing for points and lines,
and a binary relation I of incidence whose first argument is a point- and whose
second argument is a line-variable, the latter in a language containing, beside
the notions listed above, a binary relation || of parallelism between lines.

Three-dimensional projective geometry had been axiomatized much earlier
in a hrst-order language with lines as the only individual variables and the bi-
nary relation of line-intersection as single non-logical notion first by M. Pieri [13],
next by E. R. Hedrick and L. Ingold [5], who simplified Pieri’s system, then,
more than fifty years later by S. Trott [18 , to be followed twenty years later
by E. Kozniewski [7], both of whom were apparently unaware of their predeces-
sors, and finally by H.-J. Stof§ [15, Chap. 7]. That this is possible for all finite
dimensions > 3 is implicit in W.-L.. Chow |2]. An axiomatization for dimension-
free projective geometry for dimensions > 4 (i. e. there is no upper-dimension
axiom, so any projective space of dimension > 4 is a model of that axiom
system) has been provided by E. Kozniewski [8]. We shall show that such a
line-intersection based axiomatization is possible for dimension-free projective
geometry by means of a simple translation procedure.

In 1981 G. Tallini [17| gave a non-elementary characterization of the Grass-
mann space representing the lines of a projective space, i. e. the incidence struc-
ture consisting of lines and pencils of lines passing through a given point (all
lines in a given plane passing through a given point), the incidence being the
inclusion of a line in a pencil. '1'he characterization is non-elementary as 1t uses
families of maximal subspaces and cannot be retformulated without the use of set-
theoretical (higher-order) notions. It was followed by another non-elementary
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characterization of the same structure by N. Melone and D. Olanda [10] and
more recently by a first elementary axiomatization by E. Ferrara Dentice and N.
Melone [4]. A non-elementary axiomatization of the Grassmann space represent-
ing the lines of an affine space had been provided right atter Tallini’s original
paper by A. Bichara and F. Mazzocca [1].

The purpose of this note is to show that all of these theories are equivalent,
in a sense we shall make precise, and that any axiom system for one of them,
say the point-line projective geometry, can be translated in a straightforward
— 1f somewhat cumbersome — way into an axiom system for another one, say
for the Grassmann space representing the lines of a projective space.

2 Equivalence of theories with variables to be inter-
preted differently

When we say that two theories 77 and 75, in languages L; and L, which
we shall, for simplicity’s sake, assume to be at most two-sorted (they each have
at most two sorts of individual variables, which we may differentiate with su-
perscripts, such as X! and X?, X! denoting a variable of the first sort (say a
point), and X? a variable of the second sort (say a line) with possibly different
intended interpretations in the two theories, €. g. points and lines and ltnes and
pencils), axiomatize the ‘same geometry’, what we mean is the following:
There are natural numbers &/ for 4,7 = 1,2 such that (addition in the indices
is mod 2): |
(i) with & = &/, one can identify the individuals X7 of L; with any k-tuple
(1,...,2z¢) of individuals from L;; which satisfies a certain formula with %
free variables ¢ (z1,...,2k) of Liy1;

(i1) there is a definition for the equivalence of two k-tuples, in terms of an L; 4
formula ;11 with 2k free variables, such that (z1,...,2) = (y1,.--, %) if and
only if 1;_1(x1, ..., Tk, Y1, - - - y&) holds;

(iii) for every n-ary relation symbol 7 of L;, there is an L; -formula 6, with kn

free variables, such that w(Xfl, .o, X7') holds if and only if (61,1, 21,4y - - -5
Tn,l;- - -, Znk) holds, where (z;,1,...,2;%) is a k-tuple associated via (i) to Xf‘i;

(iv) For every formula 9, if 7; - ¥ then 7;,1 - ¥, where ¥ is the L;, {-formula
obtained from ¢ by replacing all of its individual variables with &-tuples sat-
istying (,ag, all equality symbols with the =-relation, and all occurring relation
symbols with the L;, ;-formulas that correspond to them by (iii).

The definition provided here for the equivalence of theories is similar to those
given by Previale [14] and Szczerba [16)|. The notion of equivalence of theories
is also called mutual interpretability in [16]. It should be noted however that
there is no purely logical definition of a faithful mutual interpretability, which
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would be the fruit of a translation that not only can translate to and fro in an
automatic way and turn true statements from one language into true statements
in the other langnage, but would also preserve the intention of the statements.
IF'or example, as emphasized in [16|, Fuclidean and hyperbolic geometry are
equivalent or mutually interpretable under our definition.

To make this paper self-contained we shall first present the axiom systems
of Lenz [9] for dimension-free projective spaces, the axiom systems from |5
and [18] for the three-dimensional projective geometry of line-intersection and
make some observations regarding the complexity of their axioms, as well as
the axiom system for [4, Th. 3| both in the language of line-pencil incidence
and its translation in the language of line-intersection, by which we obtain
our hrst axiom system expressed in terms of line-intersection for projective
spaces for dimensions > 4. We then translate Lenz’s axiom system both into an
axiom system for line-intersection projective geometry and line-pencil incidence
Grassmann space, thus obtaining an elementary axiom system for Grassinann
spaces associated with projective spaces of dimension > 4. By translating the
line-intersection axiom system for 3-dimensional projective geometry from [5]
into the language of line-pencil incidence, we eventually obtain an alternate
axiom system for the theory axiomatized in [4, Th. 3).

3 Lenz’s axiom system for higher-dimensional pro-
jective geometry

Lenz’s axiom system is expressed in the two sorted language L, with vari-
ables for points and lsnes to be denoted by upper- and lowercase letters, and a
binary relation I between points and lines, with A1/ to be read as ‘A 1s incident

with ’. We shall use the following convenient abbreviations: (A1, ..., A, 1) for
At TN ONARTL AT, . i, for ATIpAN...NATL, , and # (A1... A) for
Nizi Ai # A;." Tts axioms are:

1 L. (VABYAO)(VIYA#B — (A, BIDA[(A,BIlI 1" =)

2 L. (VABCDFElmnp)(AP) # (ABCDYN(A,B,E1) A (C,D, E 1m)
ANACIn)yA(B,DIp) — (Pln,p)

3 L. (VI)(3ABC) # (ABC) A (A, B,C11)
4 L. (Qm)(VP) ~(P1l,m)

Here L1 states that there is a unique line incident with two distinct points,
L2 is Veblen’s axiom (cf. also [12]), L3 states that on every line there are three

Tdentical abbreviations will be used in Le without further mention.
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points, and L4 that there are two skew lines. We shall refter to the theory ax-
iomatized by this axiom system as L.

4 Axiom systems for three-dimensional projective
geometry

The axiom systems in |5| and [18 for three-dimensional projective geometry
can be expressed in a one-sorted language L., with individual variables to be
interpreted as lines, with a single binary relation ~, with @ ~ b to beread as ‘line
a intersects line ' (@ and b being different lines; in [18| equality of ‘intersecting’
lines is allowed, but we reformulate that axiom system here in terms of this
strict intersection predicate).

We use the abbreviations (a1,...,a, ~ b1,...,b,,) for Algign,lgjgm a; ~ by,
and a = bfora~bVa — b (so that a £ b stands for a X bAa £ b).

The axiom system in [5] consists of the following 7 axioms (we omit the
universal quantifiers in universal axioms throughout this paper):

1 HI. a £ a

2HIL. a~b—b~a

3 HI. (dab)a ~ b

4 HI. (Vab)(ded)a ~b— (c.d ~a,b) AcE d

5 HI. u ~OA (U e~ a,0) AL ZE T A o4 N £ (L)
=S (({~mAlAR)VI~nAlLm))

6 HI. (Vab)(dc)a~b—>a AL cAbic

7T HI. (Vabe)(I)(Vm)a~b—> (({ ~a,b)VIi=aVI=0Al~c
A((m ~ a,b) — [ =~ m)

The one in [18] consists of HI1 and HI2, as well as of the following 6 axioms
(the addition in the indices is (here and throughout the paper), whenever the
sum exceeds the upper bound of the index-range, mod 3)

1 T. (ab)a # b

2 T. (Vab)(Imn)m £ n A (m,n~ a,b)

3 T. (Vabed )Y Ad)cEdANa~bA(a,b~c,c) — (d~a, b c )
4 T. (a1 ~ a2) AN N\j<i<a1<j<al@ ~ b)) — V_?:lbj ~ bj+1

5 T. (Vabed)(Jef) (b~a,c) Ac~dANatcANb#td
— (ﬁafmﬂ:b:ﬂ:d)ﬁ'ﬁ;éf

6 T. (b~a,c) Ac~dAa#kcAbtdAN_, (e~ a,b,c d)
— V?:I €; = €i+1
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The first axiom systemm has the remarkable property of having each ax-
iom formulated as a prenex statement by means of no more than 6 variables
(although we don’t know whether this is the minimum number required to ax-
iomatize three dimensional projective geometry in L., ), whereas in the second
axiom system each axiom is a V3-statement, i. e. all universal quantifiers (if any)
precede all existential quantifiers (if any). Its last axiom requires 7 variables.
so 1n this sense it is less simple than the first one. The axiom systems in |7]
and [15] were not presented here as their axioms can neither be all written as
Vd-statements, nor all be expressed by means of at most 6 variables.

The L.-theory of dimension-free projective spaces will be denoted by P.

5 An axiomatization of the Grassmann space

The axiom system in [4, Th. 3] for the Grassmann space representing the
lines of a projective space of an arbitrary dimension > 3 can be expressed in
the two-sorted language Lo, with individuals for lines and pencils, denoted by
lowercase Latin and lowercase Greek letters, and a binary relation € of line-
pencil incidence (pencils may be thought of as collections of lincs in a fixed
plane passing through a fixed point, and a line is said to be incident with a
pencil, if it belongs to it). When expressed in this language without the use
of the set-theoretical definitions which make the axiom system look so simple
in |[4], we end up with the following rather complex-looking axiom system:

1 FDM. (p,gc X))+ A2x=XVp=g

2 FDM. (VA)(dpg)p # g A (p,q € A)

3 FDM. (Vp)(3X) (p € A)

4 FDM. (VA)(Jpq)(Vua)(Aal) ~(p,q € u)Nr(a € A — (p,a € a)A(q,a € §))

5 FDM. (VYAp1peps)(Jan)(Voganas) (@ € AA (Vi ~(p;, a € a;)))
vV (pi,pit1 € )

6 FDM. (VAulm)(Amp)(Vabppaz)(Fua;biafa’ ) (Va a8 827)
(peuyViiednmeu— (I mer))V{ilaec ANDE 4
~(a,p€a)Ab,pCB))A ((a1 €XADL € pA~(AL;((a1,pi € o)

ANbL P €BIN VVi1Pi =PV PL=p2)A((PEZAAD & 1)
Vilpe Avpe w)A{lluc dAAn—-(z,ucy) V{ue€ uh-(z,ucy))
Vi€l ANz €EANaEAINDE u— (z,a € )A(z,be F)))}

We shall denote the theory axiomatized by these axioms by G.
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6 The translations

We now show how to translate an axiom system for £/, P’ or G’ — which
are the theories £, P, and ¢ to which an axiom stating that the dimension is > 4
has been added — expressed in L1, L., or Lc into one for any of the other two
theories expressed in the language corresponding to it. In all these translations,
the two languages will share one individual vamable with the same intended
interpretation, namely lines, which will get translated identically into the lines
of the other language. We first define in L.. the ternary co-punctuality predicate
S, with S(abc) standing for ‘a, b. c are three different lines passing through the
same point’ and the closely related ternary predicate S, where S(abc) stands
for ‘c passes through the intersection point of @ and &, and then £ with E(abx)
standing for ‘line z lies in the same plane as the intersecting lines ¢ and 6 and
goes through their intersection point’ by:

3
S(aiazas) & (Vg)(Th) g ~ kA N(ai ~ ait1, h),
1—1
S(abc) < Slabc)V(a~bA(c=aVc=0b)),
2

E(ﬂ:lazﬂg) > a1~ ag N /\ as =~ a; A\ [(Elblbz) b1 £ by /\ b; ~ {I.j].
i=1 1<€4<2,1<§<3

In Le, the predicates 3, 2, Ec (the latter of which which we defined the
way we did, and not by means of just (da) (a1, a9, a3 € @) A a1 # a, for reasons
which will become apparent in the function the axiom GHI5 plays), having the
same intuitive interpretations as &, S, and E, are defined by (here and in the
sequel P(aba) stands for a 2 b A (a,b € a)):

Y araza3) & (Vg)(Thymimemsarasas) Plghy)
3
A N\ (Plaiaiiim) A Plasha;)),
1—1

S(abz) & Z(abz) V ((3a) Plaba) A (z = a V z = b)),
Ec(aia2as) & (Fbrboaaiioisoizmmiasas)(Vu) (a1, a2, a3 € o)

Aay 7 az A /\ P(bjajai;) A—=(b1,by € u).
1<4<2,1<5<3

In L1, the predicates 57, £7, K, the first two having the same intuitive inter-
pretation as S, E, and K(abc) standing for ‘the three lines a, b, ¢ are concurrent
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and lie in the same plane’, are defined by:

3
Stlaiaza3) & (dA) /\(Al a; A\ @i 7 @i+1),
=1

3
K(aiaz03) & (3gA14243) Siaraza3) A N\ (A; # A1 A (AsTas, 9),
i—1
Er(abr) & K(abz)V |[(AP)(Pla,b) ANa#bA(z=aVz=0).]

Notice that the definitions for S, S, 2, X, are valid only for dimensions > 4.
whereas the definition for E, E.-, 57, K, Et are valid for dimensions > 3. We
now indicate how to translate back and forth between £, P, G (the translations
from £ to P, and from L to G work only if the dimension is known to be > 4,
so they are actually translations from £’ to P’, and from £’ to G).

To translate from £’ into P/, a point A is identified with a couple (a1, a3) of
lines with a; ~ ay. We have?

2
(ﬂq, ﬂ‘.g) = (bljbg) = /\ g(ﬂlﬂgbﬂ'), (6.1)

'

A1l if and only if S{aiaal),

where (a1,a9) is the couple associated with A.

To translate from P to L, all we need is{ ~ m < (JA) (AT, m).

To translate from L' to G', a point A is identified with a triple (a1, a2, @)
with P(aia20a), such that

2
(n‘.’l‘;lj as, t:lf) — (blj bo ,H) e /\ E(ﬂ,lﬂ,zbg)j (6-2)

=1

All it and only if f(alﬂgl),

where a1 and a9 are the two lines associated with A.

To translate from G into £, a pencil « is identified with a triple (A, a1, az2),

“In the definiens of each = and in those of I and € we have omitted, for simplicity’s sake,

the conditions on the couples or triples which are required so they actually stand for points
(in (1) and (2)) or pencils (in (3) and (4)).
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with a1 £ as A (Alaq,as), and

9
(A,a1,a0) = (B,b1,b) & /\ Er(aiasb;), (6.3)

=1

3
a3 € « if and only if (A1 A2A39) Alas A /\(A-i # AN(A4:i1la; g)),

=1
where (A, a1,a9) is the triple associated with .

To translate from P to G , we note that [ ~ m if and only if (Ja) P(lma),
and to translate from G to P we identify a pencil a with a pair (a1, a2) of lines
with a1 ~ a2, such that

2
(a1,a2) = (b1,b2) : & /\ E(a1a2b;), (6.4)

i—=1

| € « if and only if E{aiasl),

where (a1, a2) is the pair associated with o.

We are now ready to find the axiom systems we were after.

7 Axiom systems for P and G

Consider the following L. -axioms:

1 P. (Yaibiasbe)(Ip)(Vg) Aicy ai ~ bi A =S(arbraz) — Ay S(aibip)
A A;=1 S(aibiq) — p = q)

2P. (I~nmp A (m~p,n)A-(Snim)V Ship) Vv S(mip) Vv S(mnp))
— 1 ~p

3 P. (Vl)(aﬂlﬂzﬂ.g) va (mﬂzﬂg) A A{?:]_(l ~ a; N\ _'S(lﬂiﬂi—l-l))

4 P. S(abl) AS(abm)Al#+m =1 ~m

5 P. (dabcd)(Vef)(b~a,c)Ac~dANatcAb#td
A((Eaf it ﬂ:buﬂ:d) — € = f)

{HI1, P1-P5} axiomatizes P’ and to see this, we shall think of a couple of
intersecting lines (a, b) as a point (and we shall write all such virtual concepts in
italics), and interpret point equality and point-line incidence as in (6.1). P1-P3
thus become L1-L3, and P5 implies (dac) ¢ # ¢, which becomes 1.4, so we know
that our lines and our points, together with point-line incidence are those of

dimension-free projective geometry. What we don’t yet know is the meaning of
~, and it is the function of axioms HI1 and P4 to “define” it. P4 tells us that
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it two difterent lines { and m have a point in common, then [ ~ m, so all lines
that intersect are in the relation ~. Conversely, if two lines { and m are in the
relation ~, then there is a point, namely ({,m), which is incident with both {
and m. 1111 ensures that ~ applies only to different lines that have a point in
common (the symmetry of ~, i. e. HI2, follows from P4 with a = m and b = {).
Given P5, which is a slight strengthening of the negation of T5, the dimension
of this space is 2> 4, so the definitions in (6.1) have the intended interpretation,
thus all axioms in which S and S occur are sound (are valid in P').

Let ¥ denote the conjunction of the axioms HI1, HI2, T1-T6, and let =
denote the conjunction of the axioms HI1, P1-P5. Then ¥ V 7 is a sentence of
quantifier complexity ¥V31Vd which axiomatizes P.

We arc now going to providc an alternate axiomatization of the same quanti-
fier complexity for P by way of translating Ferrara Dentice and Melone’s |4, Th.
3| axiom system into L....

'1'he axiom system obtained in this manner consists of H1l and

1 N. (Vp)(Jdg)p ~ ¢
2 N. (Vl1i2)(3pg)(Va)p £ g N\ (E(l1lsa) > p~aNg~a)

8 N. (Vlilopipipops)(Fa) i1 ~ e AN pi # piv1 — E(lilac) A (Vi1 pi # a)

4 IN. (Wllzmlmglm) (Hpﬂ:lmg)(Vﬂbplpgm)(auﬂlbl) Zl s 12 A L] —~ T2
— {(E(l1lop) N E(mymap)) V (E(l1lsl) AN E(mymaom) — | = m)
V[(E(l1lea) A E{mimaeb) — (p~a,b)) A ((E(l1lsa1) A E(mimab;)
A=(Nj=1 (Pi ~ a1,61))) V V;_1 pi = pV p1 = p2)
A(—E(lilap) A —E(mimaep)) V ((E(lil2p) V E(mimap))
AN(E(Lbu) ANz £ u) V(IEmimou) ANz £2u)V Elz1297))
AN E(z1z2z) A E(l1l20) A E(mimab) — (z =~ a,b))))]}

5 N. p+#qgA E(abp) A E(abg) AN E(a'b'p) N E(a'b'q) — E(aba’) A E{abb’)
6 N. FE(abp) A E(abg) — p~ g

7 N. (Vaira2)(3b162) a1 ~ a2 — b1 # b2 N\1<ico 1<j<0 bi ~ a5

To see that it actually does axiomatize P, notice that if we think that two
lines ¢ and b with a ~ b determine a pencil (a,b) (H2, which is needed so that
the notion of pencil depends on the set {a,8} and not on the pair (a, b), follows
from N6 and N7), and that (4) holds for the identity of two pencils and for the
line-pencil incidence relation, then axiom IF'DM3 follows from N1, I'DM4 from
N2, FDMS from N3, FDM6 from N4, and FDM1 and FDM2 from our definition
of a pencil and N5, HI1. Thus all the axioms of the axiom system in [4, Th. 3]
hold for the structure of lines and defined pencils, so lines, pencils, and € do
have the desired interpretation. To prove that ~ has the desired interpretation
as well, notice that, by N7, we know that, if p ~ ¢, then p and g belong to the
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pencil (p,q), so that p and ¢ must intersect. Conversely, suppose p and ¢ are
two lines which infersect. Then there is a pencil (a, b), to which they belong,
and so, by N6, p ~ ¢, so ~ does indeed stand for line-intersection.

We can also axiomatize the Grassmann space representing the lines of a
three-dimensional projective space hy translating the axioms of [5] and adding
a few axioms to make sure that pencils and € get interpreted in the intended
manner. The axiom system consists of FDM1, FDM2, as well as

1 GHI. (Vﬂlaza’)(Hmlmgﬂllplguglpgg)(\?’ﬂ) P(alﬂ‘.ga’)
— /\15@,jgzp(miﬂjﬂij) A —(my, my € p)
2 GHI. (Vaja2d1bobsbsomiaraaisosmeg assainsons)(38)(VE)
Plaiaza) A /\153'52,15;;54 P(ﬂibjﬂij) = [(P(b1b30) A —(b1, b4 € 1))
V(P(b1b43) A —(b1,b3,8")) V (b1, b2 € B) V (b3,b4 € B) V by = b3 V b1 = by]
3 GHI. (Vaba)(dc)(VA) Plaba) — —(a,c € ) A—(b,c € )

4 GHI. (Vabca)(dla'G'A)(Vmur)(3d8) Plaba)
y (l,a Ca'YA (1,6 C B AP(cdN) A (P(mau) A P(mbr) > (I,m C 3))

5 GHI. (Vaiasas)(Fbi1bsaaiiaioaizasiassass) (Vi)
(l'.'ll.‘| o, 43 - ﬂ:') Al a1 75 as — A1£1£2,1£j£3 P(bgﬂjﬂ'g‘j) AL _l(bl:, bZ - ,U)

From FDMI1, FDM2, GHI1-GHI4, we get, by interpreting the existence of
a with P({aba) as ‘lines ¢ and b intersect’, i. e. as ¢ ~ b, that the axioms HI1-
II17 are satisfied, so that we may think of lines as the lines of a 3-dimensional
projective geometry, and deduce from P{aba) that the lines ¢ and b intersect.
Thus E< has the desired interpretation, so that GHI5 (which states that (a,b,{ €
a@)Aa # b — E-(abl), the converse implication being an immdeiate consequence
of the definition of £-) ensures that pencils are what they should be, and € has
the desired interpretation. Thus our axiom system does indeed axiomatize the
Grassmann space representing the lines of a three-dimensional projective space.
Let 6 denote the conjunction of the axioms FDM1, FDM2, and GHI5, and let
v denote the conjunction of the axioms GHI1-GHI4.

Based on Lenz’s axiom, we find that the axioms FDMI1, FDM2, GHI5, as
well as the following axioms, form an axiom system for G':

1 G. (Vaia2b1b2a8) (3 (V) P(a1aza) A P(b1b23) A —2(a1a2b1)
— E(ﬂlﬂ.zl) A E(blbgl) A (E(ﬂlﬂzf) A E(blbzl") — [ =1")

2 G. (Vapydelmnp)(3n) (LE o, 3,6) A(m € 7,d,6) A (n € a,7) A lp € B, 6)
A(2Z(inp) V Z(Imn) V Z(lpm) V Z(mnp)) — (n,p € 7)

(
(Vl)(aﬂllﬂgﬂgﬂlagﬂ.’g) A?zl(P(ﬂilﬂi) N —Iz(ﬂiﬂi+13) A i # ﬂi_|_1)
(
(

dim) (Vo) =(l, m € a)

3 G.
4 G.
5 G. (Vablm)(3a) X(abl) A X(abm) — (I,m € a)
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6 G.3(Elala2a3a4a1a2a3)2(‘dp1pgelezel1512513514621522523624)
/\i=1 P(ﬂiﬂi+lﬂi) A /\i:1 _'(ﬂz': ai+2 € N)
A(A15i52,15j54p(6iﬂjfij) — e = eg)

Again, we can think of triples ({,m, a) with P(lma) as points with point-
equality as well as point-line incidence defined by (6.2). 1t then turns out that
G1-G41 can be read as L1-11 (to get L2 from G2, let A, B, C, D, I be the names
of ({,n,a), ({.0,08), (m,n,v), (p,m,d), ({, m, ¢e), and use G6, and to get from G4
to L4, we need to use G5 as well), so that the “point, line, point-line incidence
theory” is that of £. What we do not know by this observation alone is what
pencils are to be interpreted as, nor what the meaning of the relation € is.

From G5 we conclude that, if two lines contain the same pownt, then they
belong to some pencil. From FDM2 we conclude that every pencil A contains
two different lines, p and ¢, which must intersect as they both pass, by (6.2),
through (p, ¢, A\). Thus every pencil contains two intersecting lines, and any two
intersecting lines determine a pencil. GHIS5 ensures that a line is contained in
the pencil determined by the lines { and m if and only if it passes through the
intersection point of { and m, and lies in the same plane as these. Thus all notions
have the intended interpretation, so our axiom system does indeed axiomatize
G', as G6, which is the Lc-counterpart of P5, ensures that the dimension is
> 4, so that 2 does indeed have the intended interpretation. Let v/ denote the
conjunction of G1-G6. Then § A (v vV ¥') is a sentence axiomatizing G.

The quantifier complexity of this sentence is Vv, a lesser complexity than
that of the axiom system in [4], but one that most likely can be further simplified.
With this we do not mean to suggest that our axiom system is in an informal
sense simpler than the one in |4, Th. 3|, as it is significantly longer, and it
was not the purposc of this paper to find the simplest axiom system for G, but
rather to show that an axiom system for G may be obtained by means of a
straightforward translation process.

The same can be done for dimension-free alfine geometry, also first axiom-
atized in |9), and we leave it as an exercise for the reader to turn that ax-
iom system, expressed in terms of points, lines, point-line incidence, and line-
parallelism, into one expressed in L. and into one expressed in L-. The latter
salves the problem of elementarily characterizing the Grassmann spaces repre-
senting the lines of an affine space, which received a non-elementary charac-
terization in [1]. The procedure is entirely analogous to the one performed for
projective spaces, given that the definitions of S, £, and their variants stays the
same {(and that for affine geometry all the definitions are valid for all dimensions
> 3, s0 there is no need to take the disjunction of the conjunction of two axiom
systems as we had to do) and that line-parallelism can be defined in terms of ~
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(and thus in terms of € as well) by

g || b:< (Jede)a =06V (u % bAS(acd) A S(bee) A (d ~ b,e) A (e ~ a)).
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