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Abstract. The k-guarded art gallery problem asks for the minimum number of k-guarded
point guards that can collectively monitor a simple polygon with n vertices. A guard is
k-guarded if it can see k other guards. For &£ = 0, this problem is equivalent to the classi-
cal art gallery problem of Klee. For k = 1, a tight bound of |22~1| was shown recently by
Michael and Pinciu and, independently, by iyliﬂski. In this paper, we settle the problem for
every k > 2 and show that k| 2 | +| 282 | k-guarded guards are always sufficient and sometimes
necessary to guard a simple polygon with n vertices.
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Introduction

The art gallery problem asks how many guards are sufficient to see every
point of the interior of an n-vertex simple polygon. The guard is a stationary
point who can see any point that can be connected to it with a line segment
within the polygon. The art gallery problem was first raised by Klee in 1973. In
1975, Chvatal [2] proved that | 3| guards are occasionally necessary and always
sufficient to cover a polygon with n2 vertices. Since then many different variations
of this problem have arisen; see [11], [13| for more details.

Herein we analyze the concept of k-guarded guards that was raised by
Michael and Pinciu [9]. A set of points S in a polygon P is a k-guarded guard
set for P provided that (i) for every point z in P there is a point g in S such
that g sees z; and (ii) every point of S is visible from at least & other points in
S. For a polygon P, we define

gg(P, k) = min{|S| : & is a k-guarded guard set for P}.

Liaw, Huang, and Lee [6], [7] referred to a 1-guarded guard set as a weakly
cooperative guard set and showed that the computation of gg( P, 1) is an NP-hard
problem. Let
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Figure 1. An n-vertex polygon P with gg(P) = k| &| + |22 ];
here n = 20, and gg(P) = 4k | 4.

gg(n, k) = max{gg(P, k) : P is a polygon with n vertices},
g9 (n, k) — max{gg(P, k) : P is an orthogonal polygon with n vertices}.

The 1-guarded guards problem for orthogonal polygons was solved by Her-
niandez-Penalver [5| and, independently, by Michael and Pinciu |9], who proved
that gg | (n,1) = | 3 |. The 1-guarded guards problem for general simple polygons
has been completely settled by Michael and Pinciu [8], and, independently, by
Zylinski [14], who proved that gg(n,1) = |2%—=|. If & > 2, then Michael and
Pinciu [9] established that gg, (n, k) = &[5 [”gzj- The case of general bound
for arbitrary polygons has been remained open, and in this paper our main result
is the following theorem.

1 Theorem. Forn > 5, gg(n, k) = k| %] [“’ngj.

The necessity is established by the gallery P shown in Fig. 1. Each wave re-
quires £ + 1 k-gunarded guards, and it i1s clear that for n = 0 mod 5,
gg(P. k) = k[E] + [%ZJ; the case of n = 1.2,3,4 mod 5 is indicated with
dashed lines. As far as the sufficiency is considered, then the proof is based
upon the reduction to a combinatorial problem on a fixed triangulation of the
polygon (Section 1). The upper bound follows from an induction argument for
n = 13,14,15,16, and n > 18 (Section 2); for the remaining cases, we prove
Theorem 1 by a thorough case analysis (Section 1).

Before we proceed further, let us make an interesting comment. Consider
the 12-vertex polygon P that is shown in Fig. 2. It is easy to see that it requires
five 1-guarded guards: each prong requires a guard, but these guards will form
a hidden set, as they do not see each other. As any additional guard see at
most two of these three guards, the fifth guard is needed |8, 14|. However, if we
consider the k-guarded guards problem with & > 2, then 2k + 2 k-guards are
enough: we have to place £ — 1 guards at vertex z1, £ — 1 guards at vertex zo,
and one guard per each of vertices v, v2,v3 and z3. This shows the discrepancy

between |32 |- and k|| + | %2 |-bound, whereas in the case of orthogonal
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Figure 2. For k£ > 2, a polygon with 12 vertices can be guarded 245+ 2 &£-guards.

polygons, the tight bound for & > 2 easily follows from that for £ = 1, and one
could expect that the same property would hold for general simple polygons.

1 Guard definitions and small triangulation graphs

An art gallery is a simple polygon P, i.e., a region bounded by a simple
polyline P (together with P). A guard ¢ is any point of P. A point z € P is
said to be seen by a guard g if the line segment with endpoints £ and g is a
subset of P. A collection of guards S is said to cover polygon P if every point
z € P can be seen by some guard g € 5. A set of guards § is called &-guarded
provided that each guard g € 5 sees at least & elements from 5.

1.1 Reduction to combinatorial guards

A friangulation T of polygon P is a partitioning of P into a set of triangles
with pairwise disjoint interiors in such a way that the edges of those triangles
are either edges or internal diagonals of P joining pairs of vertices. It is easy to
see that any polygon with n vertices can be partitioned into n — 2 triangles hy
the addition of n— 3 internal diagonals. A triangulation graph G of an n-vertex
polygon P is a graph whose vertices correspond to nn vertices of P and whose
edges correspond to the n edges of the polygon 17 and n — 3 internal diagonals
of triangulation 7.

The reason for introducing triangulation graphs is that a proof of the sufh-
ciency of a certain number of combinatorial £-guarded guards in a triangulation
graph of a polygon P establishes the sufficiency of the same number of geomet-
ric k-guarded guards in polygon P. Formally, a vertez guard in a triangulation
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graph G7 is a single vertex of G, and a set of guards 5 is said to dominate
Gr it every triangular face of G has at least one of its vertices assigned as a
guard. Next, the multiset of guards S is said to be &-guarded if every element
of 5§ is adjacent in G to at least & elements of S; note that we allow to choose
a vertex many times for the location of a guard with the assumption that any
two copies of the same vertex are adjacent in G. Then it easy to see that the
following lemma holds.

2 Lemma. Let P be a simple polygon and G be one of its triangulation
graphs. If Gp can be domainated by m combinatorial k-guarded guards, then P
can be covered by m geomelric vertex k-guarded guards. [QED]

1.2 Sinall triangulation graphs

As the prootf of Theorem 1 is based upon the reduction to guarding trian-
gulation graphs and it is an inductive proot, let us first establish the sufficiency
of k| & |+ | 22| k-guarded guards for small triangulation graphs. From now on,
for simplicity, a k-guarded guard will be simply referred to as a k-guard.

In 1983, while considering the mobile guard problem in simple polygons.
()’Rourke [10] introduced the concept of diagonal guards in triangulation graphs.
Similarly to vertex guards, a diagonal guard in a triangulation graph G is a
single edge of G7. A set of guards (diagonals) S is said to dominate Gr if every
triangular face of G has at least one of its vertices assigned as an endpoint of
an element from S. Let us recall some of O’Rourke’s results.

3 Lemma. [10]

a) Fvery triangulation graph of a pentagon can be dominated by a single
diagonal guard with one endpoint at any selected vertex.

b) Every triangulation graph of a hexagon or a septagon can be dominated
by a single diagonal guard. [@ED]

As far as k-guards are considered, than it is easy to see that the lemma
above implies the following corollary.

4 Corollary.

a) Bvery triangulation graph of a pentagon can be dominated by k+ 1 com-
binatorial k-guarded guards with k guards placed at any selected vertex.

b) FEvery triangulation graph of a hexagon or a septagon can be dominated
by kE+ 1 combinatorial k-guards. [QED]

Although the above corollary settles the case n = 6, let us establish more
powerful property which will be used throughout this paper.
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Figure 3. A triangulation graph of a hexagon can be dominated by & + 1 com-
binatorial £-guards, with k-guards placed at any vertex of degree at least 3.

5 Lemma. Let G be any triangulation graph of a hexagon, and let x be
any vertex of degree at least 3. Then G can be dominated by k+ 1 combinatorial
k-guards with k guards placed at x.

PrROOF. Let the selected vertex be labeled 1. As vertex 1 is of degree 3,
there is a diagonal d with one of its endpoints at z. This diagonal partitions the
six boundary edges of G according to either 2+ 4 =6 or 3 +3 = 6.

Case 1: 24+ 4 = 6. Let d = {1,3}. Then (1,3,4,5,6) is a triangulation graph
of a pentagon (see Fig. 3), and by Corollary 4, this graph can be dominated
by & + 1 combinatorial k-guards with & guards placed at 1; the guards at 1
dominate triangle (1,2, 3).

Case 2: 3+3 = 6. Let d = {1,4}. Then (1,2,3,4) and (1,4, 5,6) are triangulation
graphs of quadrilaterals (see Fig. 3). No matter how these quadrilaterals are
triangulated, & guards at vertex 1 and one guard at vertex 4 dominate all
triangles. [@ED]

By the same method as in the proof above, we get a. sequence of the following
lemmas.

6 Lemma. Let Gp be any triangulation graph of an octagon, and let x be
any vertex of degree at least 3. Then G can be dominated by k+2 combinatorial
k-guards with a guard placed at .

PrOOF. Let the selected vertex be labeled 1. As the degree of vertex 1 is
at least 3, there is a diagonal d with one of its endpoints at z. This diagonal
partitions the eight boundary edges of ¢ according to either 2+ 6 =8, 3+ 56 =8
or14+1=8.

Case 1: 2+ 6 — 8. Let d — {1,3}. Then (1, 3, 4, 5, 6, 7, 8) is a triangulation
graph of a septagon (see Fig. 4(a)), and by Corollary 4, this septagon can be
dominated by £ 4+ 1 combinatorial £-guards. One of these guards dominates
vertex 1. Moreover, we can swap our &£ guards in such a way that &£ guards
dominates vertex 1. Placing one additional guard at 1 gives a domination of

triangle 7' = (1,2, 3) and all of Gr as well. The guard set is k-guarded.
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Figure 4. An octagon can be dominated by &+ 2 combinatorial £-guards,
with a guard placed at any vertex of degree at least 3.

Case 2: 3+ 5 = 8. Let d = {1,4}. Then (1,2,3,4) and Hg = (1,4,5,6,7,8)
are triangulation graphs of a quadrilateral and a hexagon, respectively (see
Fig. 1(b}). In Hg either vertex 1 or 1 is of degree at least 3, without loss of gen-
erality, we can assume vertex 4 to be that one. By Lemma 5, £+ 1 combinatorial
k-guards will dominate Hg with & guards at 4. Now place one additional guard
at 1. Regardless of how the quadrilateral is triangulated, the guards at 1 and 4
will dominate it.

Case 3: 4+4 = 8. Let d = {1,5}. Then P! = (1,2,3,4,5) and P2 = (1,5,6,7,8)
are triangulation graphs of pentagons (see Fig. 4(c)). Dominate P by & + 1
combinatorial .-guards with & guards placed at vertex 1, and dominate PZ by
k + 1 combinatorial &-guards with & guards placed at vertex 1, thus getting the
domination of G by £+ 2 combinatorial &-guards with at least one guard placed
at vertex 1. [@ED

7 Lemma. Let Gp be any triangulation graph of an octagon and let  be
any degree 2 vertex. Then one guard g at vertex x with an additional £+ 1
combinatorial k-guards are sufficient to dominate G+ (but, perhaps, guard g is
not adjacent to any other guard).

PROOF. Let the vertices of an octagon be labeled 1,...,8, in a counter-
clockwise manner, and assume vertex 1 to be of degree 2. By placing a guard
at vertex 1 and cutting off triangle (1.2,8) from G, we get a triangulation
graph G7. of a septagon. By Corollary 4, graph G’ can be dominated by & + 1
combinatorial k-guards, and the thesis follows. [QED]

8 Lemma. Let Gr be any triangulation graph of an enneagon. Then G
can be dominated by k + 2 combinatorial k-guards.

ProOOF. In any triangulation graph of a polygon, there is at least one vertex
of degree 2 (Meister’s Two Ears Theorem 1975). Let the vertices of an enneagon
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(a)

Figure 5. A domination of a 10-vertex polygon — Case 1 and 2.

be labeled 1,....9, in a counterclockwise manner, and assume vertex 1 to be
of degree 2 in Gp. Cutting off triangle T' = (9, 1, 2 from G results in a trian-
gulation graph G7 of an octagon. By Lemma 6, graph 7. can be dominated
by & + 2 combinatorial &-guards with one guard placed either at vertex 9 or 2.
This yields a domination of G7 by & + 2 combinatorial k-guards, as triangle T
is dominated, too. [@ED]

9 Lemma. Let G be any triangulation graph of a 10-vertex polygon. Then
Gt can be dominated by 2k + 2 combinatorial k-guards with one guard placed
al any selected vertew.

Proor. Let the vertices of a decagon be labeled in a counterclockwise man-
ner, assuming that vertex 1 is the selected vertex. First, suppose that vertex 1
is of degree at least 3. Then there is a diagonal d with one of its endpoints at
1. This diagonal partitions the ten boundary edges of G according to either
24+48—=10,347=10,4+4+6 — 10 or 5+ 5 = 10. Assume that d cuts oft the
minimal number of vertices.

Case 1: 2+ 8 = 10. Let d = {1,3}. Then £y = (1,3,4,5,6,7,8,9,10) is a
triangulation graph of an enneagon, see Fig. 5(a). By Lemma 8, enneagon F4 can
be dominated by & 4 2 combinatorial £-guards. One of these guards dominates
vertex 1. By placing &£ additional guards at 1, we get a domination of triangle

(1,2, 3), and the guard set is k-guarded.

Case 2: 3+ 7= 10. Let d = {1,4}. Then Og = (1,4,5,6,7,8,9,10) is a triangu-
lation graph of an octagon, and the minimality of d ensures that quadrilateral
(1,2,3,4) has diagonal {2,4}, see I'ig. 6(b). By Lemma 6, octagon (g can be
dominated by & + 2 combinatorial 4-guards with one guard either at vertex 1
or at 4.
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Figure 6. A domination of a 10-vertex polygon — Case 3 and 4.

Subcase 2/1: there is a guard at 1. By placing & — 1 additional guards at 1 and
one guard at 4, we get a domination of all triangles in G7, and the guard set is
k-guarded.

Subcase 2/4: there is a guard at 4. All triangles of Gr are dominated. Now place
k additional guards at 1 — they are k-guarded, as there 1s a guard at 4.

Case 3: 4+6 = 10. Let d = {1, 5}. Then 57 = (1,5,6,7, 8,9, 10) is a triangulation
graph of a septagon, see Fig. 6(a). By Corollary 4, septagon S7 can be dominated
by & + 1 combinatorial £-guards, and pentagon (1,2, 3,4, 5) can by dominated
by &£ + 1 combinatorial £-guards with &£ guards at 1.

Case 4: 5 +5 = 10. Let d = {1.6}. Then H} = (1.2,3,4,5,6) and
Hg = (1,6,7,8,9,10) are triangulation graphs of hexagons, and the minimality
of d ensure us that hexagon H& has a diagonal {2, 6}, see Fig. 6(b). By Lemma 5,
this hexagon can be dominated by &£ 4+ 1 combinatorial k-guards with & guards
at vertex 6. Place &k guards at vertex 1. As either vertex 1 or 6 is of degree 3 in
HZ, we need at most one additional guard for hexagon H¢ to be k-guarded by
Lemma 9.

Thus the lemma holds for all vertices of degree at least 3. Now let us assume
vertex 1 to be of degree 2. Eg — (2,3,4.5,6,7,8,9,10) is a triangulation graph
of an enneagon. We proceed in four cases, depending on the triangle 7" in £y
bounded by diagonal {2, 10}.

Case 5: T = (2,3, 10), see Fig. 7(a). Oz = (3,4,5,6,7,8,9,10) is a triangulation
graph of an octagon. Place £ guards at vertex 10 and one guard at 1. By
Lemma 7, & guards at 10 permits the remainder of O3 to be dominated by
at most £+ 1 k-guards.
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Figure 8. A domination of a 10-vertex polygon — Case 7 and 8.

Case 6: T = (2,4,10), see Fig. 7(b). Then 57 = (4,5,6,7,8,9,10) is a triangu-
lation graph of a septagon, and by Corollary 4, this septagon can be dominated
by £ + 1 combinatorial &-guards. Place & guards at vertex 1 and one guard at
vertex 2 — all of G i1s k-guarded.

Case T: T — (2, 5, 10), see Fig. 8(a). Then Hg — (5,6,7,8, 9, 10) is a triangulation
graph of a hexagon, and by Lemma 5, hexagon Hg can be dominated by & + 1
combinatorial k-guards with £ guards either at 5 or at 10.

Subcase 7/5: there are k guards at 5. By placing k& additional guards at 1 and
one guard at 2, we get a domination of all triangles in G — no matter how
quadrilateral (2, 3,4, 5) is triangulated; the guard set is k-guarded.

Subcase 7/10: there are k guards at 10. By placing k& additional guards at 1
and one guard at either at 2 or 5, depending on how quadrilateral (2, 3,4, 5) is
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triangulated, we get a domination of all triangles in G, and the guard set is
k-guarded.

Case 8: T = (2,6,10), Pi = (2,3,4,5,6) and P2 = (6,7,8,9,10) are triangu-
lation graphs of pentagons, see Fig. 8(b). By placing one guard at vertex 1,
k — 1 guards at vertex 2, £ — 1 guards at vertex 10, and one guard at vertex
6, with one additional guard for P}, and one additional guard for PZ, we get a
domination of G, and the guard set is 5&-guarded. [QED]

10 Lemma. Let Gr be any triangulation graph of an 1l-vertex polygon.
Then G can be dominated by 2k + 2 combinatorial k-guards.

PrOOF. In any triangulation graph of a polygon, there is at least one vertex
of degree 2. Let the vertices of an 11-vertex polygon be labeled 1,...,11, in a
counterclockwise manner, and assume vertex 1 to be of degree 2 in GGp. Cutting
off triangle T' = (1,2,11) from G7r results in a triangulation graph G7 of a
10-vertex polygon. By Lemma 9, graph G7 can be dominated by 2% 1 2 combi-
natorial £-guards with onc guard placed at vertex 2. This yiclds a domination of
Gt by 2% + 2 combinatorial k-guards, as triangle 7' is dominated, too. [QED]

Betore we proceed with the case n = 12, let us recall the following theorem
that establishes the existence of a special diagonal.

11 Theorem (the Cutting Diagonal Theorem). [12] Given a polygon
triangulation graph Gr of n vertices and some positive integer t < n — 2, there
exists an edge d of G which separates G into two preces G%n and G% (with d
in both pieces) such that G1 has between t and 2t — 1 triangles, inclusive. The
degenerate case G2 is allowed. [@ED

12 Lemma. Let G be a triangulation graph of a 12-vertez polygon. Then
for all k > 2, Gt can be dominated by 2k | 2 combinatorial k-guards.

PrOOF. Theorem 11 guarantees the existence of a diagonal d that partitions
Gr into two graphs G} and GZ%, where G- contains [ boundary edges of Gr
with § <[ < 8. Assume that { is minimal. We consider each value of { separately.

Case 1: { = 5. Let d = {1,6}. Then G} and G2 are triangulation graphs of a
hexagon (1,2, 3,4,5,6) and an octagon (1,6,7,8,9. 10,11, 12), respectively. By
Lemma 5, G}, can be dominated by & + 1 k-guards with k& guards either at 1 or
at 6. By Lemma 7, § guards either at 1 or at 6 permit the remainder of Og to
be dominated by at most & 4+ 1 k-guards.

Case 2: [ = 6. Let d = {1,7}. Then G, and G? are triangulation graphs of
septagons, and by Corollary 4, both of them dominated by 2%+ 2 combinatorial
k-guards.

Case 3: [ = 6. This case is equivalent to Case 1.
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Figurc 9. A domination of a 12-vertex polygon Casc 4.

Case 1: [ = 7. Let d = {1,9}. The minimality of / ensures that the triangle T
in G,}n, which is bounded by d, is (1,5,9), see Fig. 9. By placing one guard at
vertex 1, & — 1 guards at vertex 5, £ — 1 guards at vertex 9, and one additional
guard for (1,2, 3,4, 5), one additional guard for (5,6, 7,8,9), and one additional
guard for (9,10,11,12,1), we get a domination of Gp, and the guard set is
k-guarded. [@ED]

Thus, with all preceding lemmas available, we get the following corollary.

13 Corollary. Forallk > 2, every triangulation graph G of a polygon with
5 < n < 12 vertices can be dominated by k| % | [”grzj combinatorial k-guards.

2 Arbitrary triangulation graphs

The induction proof of the sufficiency of k[ % | [”fj k-guards for triangu-
lation graphs with at least 13 vertices 1s a nearly straightforward enumeration
of cases. The idea of this proof follows the main outlines of O’Rourke’s proot
for mobile guards: we cut off a small piece for the induction step.

14 Theorem. For all & > 2, every triangulation graph Gr of a polygon
with n > 5 vertices can be dominated by k| 5] [“’%LZJ combinatorial k-guards.

ProOOF. Corollary 13 establishes the validity of the theorem forn = 5,..., 12,
so assume that n > 13, and that the theorem holds for all 5 < 72 << nn. The fol-

lowing lemma follows by the same method as in [10].

15 Lemma. Suppose that for all m < n, f(m,k) combinatorial k-guards
are always sufficient to dominate any m-vertex triangulation graph, with at most
k guards at each vertex. Then if ;. is any triangulation graph of a polygon with
n' vertices and n' < n, then:
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a) k guards g1,. .., g placed at any one of vertices of G with an additional

f(n' — 1,&) combinatorial k-guards are sufficient to dominate G’ (but,
perhaps, guards g1,...,gr are only (k — 1)-guarded);

b) there are at most k guards at each vertex of Gp.

PrROOF OF LEMMA 15. Suppose that for all m < n, f(m, k) watched guards
arc always sufficicnt to dominatc any m-vertex triangulation graph, with at most
k guards at a vertex, and let G’ be a triangulation graph of a polygon P’ with
n' vertices, where 1’ < n. Let u be the vertex at which & guards are placed, and
let v be a vertex adjacent in G- to u across an edge corresponding to an edge e
of P’. Edu'e-cuntrac:tinn (7~ across e produces the graph G% on n' — 1 vertices.
As G is a triangulation gTaph (see Lemma 2 in [10]), it can be dominated by
f(n' — 1 k) k-guards, as n' — 1 < n. Let z be the vertex that replaced » and
v. Suppose that no guard is placed at z in domination of G%. Then the same
guard placement with & guards at u will dominate all of GGf., since the given
guards at u dominate the triangle supported by e, and the remaining triangles
of G have dominated counterparts in G7%. Otherwise, if a guard is used at
z in the domination of G}, more precisely, by induction hypothesis there are
used at most £ guards, then these guards can be assigned to v in G, with the
remaining guards maintaining their positions. Again with £ guards at u, every
triangle of G7. is dominated. Note that all guards that were &-guarded in G7
are k-guarded in G as well. The only guards that could be non-&-guarded are

the ones at vertex u. And it is clear that there are at most &£ guards at any
vertex of Gr.. [QED]

Let us go back to the proot of Theorem 14. Theorem 11 guarantees the
existence of a diagonal d that partitions triangulation graph G into two graphs
GL. and G%, where GL. contains [ boundary edges of Gr with 5 < [ < 8. Assume
that { is minimal. We consider each value of [ separately.

Case 1: { = 5. Let d = {0,5}. Then G%a is a triangulation graph of hexagon
(0,1,2,3,4,5). In G%« either vertex 0 or 5 is of degree at least 3, we can assume
vertex 0 to be of degree at least 3. By Lemma 5, graph G} can be domi-
nated by &£ + 1 combinatorial &-guards with & guards placed at 0. Next by
Lemma, 15, k guards at vertex 0 permit the remainder of G2 to be dominated by
fin—4—1,k) = f(n — 5,k) k-guards. where f(7i, k) specifies the number of
k-guards that are always sufficient to dominate a triangulation graph on 7 ver-
tices. By the induction hypothesis,

(12 — 5)+2J—k[ Ju[n+2j P

Fln—5,k) = k|22 +|
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k-guards suffice to dominate the remainder of G%- Together with £+ 1 k-guards
allocated to G+, all of Gr is dominated by at most klg] [“grzj k-guards.

Case 2: | = 6. Let d = {0,6}. Then G% is a triangulation graph of septagon
(0,1,2,3,4,5,6). By Corollary 4, graph G% can be dominated by £4 1 &-guards.
Since graph G2 has n — 5 vertices, it can be dominated by k[”gﬁj | [(”_?HJ
k-guards by the induction hypothesis. This yiclds a domination of graph G by

kg Iﬂj;z\ k-guards.

Case 3:{ = 7. Let d = {0,7}, see Fig. 10(a). The presence of any of the diagonals
{0,6}, {1,6}, {0,5}, {2, 5} would viclate the minimality of {. Consequently, the
triangle T in G bounded by d is either (0,3, 7) or (0,4, 7), but without loss of
generality, we can assume 7" to be the first one. Form graph G!}_ by adjoining
triangle T to G%. G% has n — 6 + 1 vertices, and so can be dominated by
k [”gﬂ | [(n_§)+2j k-guards by the induction hypothesis. In such a domination,
at least one of vertices of 1" must be assigned as a guard. There are three
possibilities:

Subcase 3/0: there is a guard at verter 0. By Corollary 4, £ + 1 additional
k-guards with &£ guards at vertex 3 suffice to dominate pentagon (3,4,5,6,7).
Regardless of how quadrilateral (0,1,2,3) is triangulated, guards at vertex 0
and 3 will dominate it.

Subcase 3/3: there is a guard af vertex 3. We can move this guard to vertex 0
without destroying the k-guarded demination, thus getting Subcase 3/0.

Subcase 3/7: there is a guard al vertex 7. Place one guard at vertex 0 and & —1
guards at vertex 3. Regardless of how quadrilateral (0,1,2,3) is triangulated,
guards at vertex 0 and 3 will dominate it. Next, it is easy to check that there
is a vertex v in pentagon (3,4,5,6,7) such that v is adjacent to both vertices 3
and 7, and such that by placing one guard at v, together with & — 1 guards at
3 and one guard at 7, we get a domination of the whole triangulation graph.

Thus all but quadrilateral (0,1, 2. 3) and pentagon (3,4, 5, 6,7) can be domi-
nated by &£| & [”gzj k— 1 k-guards, and the pentagon and the quadrilateral
merely require together £+ 1 guards. As these £+ 1 guards with one guard either
at vertex 0 or 7 in G} are k-guarded, all of G is dominated by k%] [’”’%LZJ
k-guards.

Case 4: k = 8. Let d = {0, 8}, see Fig. 10(b). The presence of any of the diag-
onals {0,7}, {1, 8}, {0,6}, {2,8}, {0,5} or {3,8} would violate the minimality
of k. Consequently, the triangle 7" in G’%« bounded by d is (0,4, 8). Dominate
pentagon (0, 1,2, 3,1) by £+ 1 k-guards with & guards at vertex 1, and dominate
pentagon (4, 5,6,7,8) by £+ 1 k-guards with & guards at vertex 4, thus getting
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-2
iy |

Figure 10. (a) Case £ =7, (b) Case k = 8.

a domination of G by &k + 2 k-guards (triangle T is dominated by the guards
placed at vertex 4). Next the proof proceeds in five cases, depending on the
value of n mod 5.

Subcase 4/3: n =5t + 3, t > 2. Graph G% has 5(¢ — 2) + 3 vertices, and it can
be dominated by

t— 1)+ 1
5

k-guards by the induction hypothesis. Together with & 4+ 2 A-guards allocated
to G, we get a domination of G by th+1t+ 1 = klg] [”Jggj k-guards.

Subcase 4/4: n=5t+4, 1t > 2.
5(1 — 1)+ 2 (t—1)+2/ 42

1 24 | =kt -4t 1=thtt—k—1

10 + 2

[5 | — — n |
k| 5 1+ 1 = ] .k—l—?-tk—l—t—l—l—k[t,)j F| = 1.
Subcase 4/0: n = 5t, 1 > 3.
JFiILL"J(t—;)+3J | [[5(1&_2);_3}4_% k4o

:tk+t—k+1§tk+t:kLEJ S as k> 2.

Subcase 4/1: n=5t+ 1, 1 > 3.

5(t—2)+4J | L[5(t—2)+4}+2
5 | 5

kl

:tk+t—k+1<_itk+t:k[zj 2, as k> 2.
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Figure 11. A 10-vertex triangulation graph without diagonals
cutting off 4, 5 or 6 vertices.

Subcase 4/2: n = 5t + 2, t > 3. First, let us consider the case ¢ = 3, that
is, 7 = 17. Then G% is a triangulation graph of a 10-vertex polygon, but the
minimality of & ensures that G7. has a form shown in Fig. 11. If we place & — 1
guards at vertex z, and one guard per each of vertices x; and x5, then it is easy
to see that together with at most two additional guards, we get a k-guarded
guard set of G2 of cardinality at most &1 3. This yields a domination of G by
at most 25 + 5 < 3k + 3 k-guards, as & > 2.

Now suppose that ¢ > 4. The minimality of & and Shermer’s proof of Theo-
rem 11 (see [12]) give us more, namely there is a diagonal d' in G2 such that d’
partitions G'% into two pieces, one of which contains 8 edges corresponding to
external edges of G% and vertices 0 and 8 are left in the remainder of G%. Again
by minimality of &, cut off piece G%l can be dominated by £+ 2 k-guards. Note
that G2? - the remainder of G2 - is now on n — 14 vertices. Thus we get

5(¢ — 3) + 3
5

(t—3) + 3] +2

19
|+ [

k|

| +2k+4—

2
:tk+t—k+2§tk+t:k[2j | [n;r |, as & > 2.

|§ED

Of course, when n — 3 or n — 4, the (k| ¢] [ﬂgzj)-bgund fails. Clearly,
99(3, k) = g9(4, k) = k + 1.

3 Discussion

The k-guarded sets constructed in the previous section are multisets, and
they are satistactory it we consider the graph theory only. But geometrically
speaking, 1t 15 not, as guards must not be placed at the same point. Nevertheless.
we will show now that the guards at the same vertex can be always separated
without destroying the k-guardness.
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Let T be a non-degenerate! triangulation of a polygon P, let S be a k-guarded
guard set for P (obtained by the method of the proof of Theorem 14), and let
V(S) denote the set of vertices of P at which our &£-guards are placed. For a ver-
tex v, define the fan(v) as the union of all triangles of 7" which are incident to
v. The following observations imply the existence of a disjoint set of &-guarded
guard set of cardinality k| %] [”gfzj.

(i) We have actually proved that for any vertex v € V(S), there are only

three possibilities: there is one guard located at v, or there are either £ —1
or k¥ guards located at v.

(27) Let n(v) denotes the number of guards located at v: we have to split up
only guards at this vertex v for which n(v) > k-1 > 2.

(#47) Let C, be a set of guards located at the same vertex v of fan(v). Choose
a vertex from C),, let it be labeled {(C)), and call it the leader of C,,. Note
that for any v, w € V(S), withn(v) > k—1 > 2, v #£ w, a guard g € C,
has to see at most {(C,,) € fan(v) to be k-guarded.

(7v) For a vertex v, as fan(v) is a star-shaped polygon and the triangulation
is non-degenerate, it easy to see that we can move and relocate all but
{(Cy) guards from C, preserving the visibility to all vertices of fan(v).
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