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1 Introduction

Let 7 be a semifield Hock of a quadratic cone translation plane with spread in
PG(3,q). In 1987, Johnson [6], showed that semifield Hocks of quadratic cones;
semifields of order ¢? that commute over a left nucleus GF(g); are equivalent to
semifields of order ¢? that commute over a right or middle nucleus isomorphic to
GF(q). Since semifields of order ¢° that commute over a middle nucleus GF(q)
are commutative, there is an implicit connection with commutative semifields
of order ¢ with middle nucleus G F(g) and semifield flocks.

'The ideas for this paper were conceived when the second two authors were visiting the
University of Lecce during May and June of 2003. The authors are grateful to the university
and to the MIUR for support on this research. Furthermore, part of this work was done at
the Obermann Institute for Advanced Studies of the University of Towa and the authors are
indebted to the Institute for support both financial and collegial. The authors are also indebted
to A. Maschietti for helpful conversations and suggestions regarding symplectic spreads.
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In 1994, Thas and Payne [14] have shown geometrically that given a (Cohen-
Ganley |2]) semifield flock, there is a corresponding semifield spread in PG(3, g),
whose dual lies in (Q(4, g); the semifield spread is symplectic with symplectic di-
mension 2. Iiven though Thas and Payne worked scolely with the Cohen-Ganley
Hock, this result is also more generally valid by work of several authors Lu-
nardon (10|, Bloemen [4|, Thas [16] (see also Payne and Johnson [8] (section
14})). The construction connects the associated generalized quadrangle of order
(¢%, q), forms the translation dual of order (g,¢?), within which it is realized
that there are subquadrangles isomorphic to (4, q), and subsequently deter-
mines ovoids of isotropic points of a symplectic polarity within PG(4,q). The
dual of Q(4,q) is M(3,q), the set of isotropic points and lines of a symplectic
polarity of P(G(3, ¢). Thus, the ovoids of (Q(4, ¢) determine symplectic spreads of
PG(3,q), that turn out to be semifield spreads, although this is not altogether
completely obvious from this construction.

Recently, in 2003, relying on what we will call the Thas-Payne construction,
Ball and Brown [1] have shown that there are six semifield spreads associated
with a semifield flock spread, two of which are spreads in PG(3, ¢). Furthermore,
these two spreads in PG(3, g) are isomorphic if and only if the semifield flock
spread 18 Kantor-Knuth.

Also, in 2003, Kantor [9] has now connected symplectic semifield spreads
with commutative semifields by the iterative construction process of transpose
and dualization (from the commutative side).

Furthermore, it turns out that a commutative semifield of order ¢? with
middle nucleus G (g) will construct a symplectic spread in PG (3, ¢), with sym-
plectic dimension two. Actually, we show that any symplectic semifield spread
in PG(3, ¢) must have symplectic dimension two.

If one tries to coustruct semifield spreads by an iteration of the construction
processes of transpose and dualization, it turns out that there are not six but
three possible spreads (see also Theorem 6). Using the Thas-Payne construction.
there are three additional semifield spreads. But, also using the constructions
of distortion, #-cxtension and derivation, i1t is possible to construct the samc
semifield spreads completely algebraically.

Hence, we see that there is now a complete equivalence of symplectic semi-
field spreads in PG(3, q) and semifield Hocks of quadratic cones in PG (3, qg) (see
section 3), using only the algebraic methods of construction of various semi-
fields of transpose, dualization, t-extension, derivation and #-distortion. In this
way, we may obtain the results of Ball and Brown [1], independent of the Thas-
Payne construction of ovoids of Q(4, g). However, we also obtain generalized
Hall planes in our sequence of spreads as well.

There are no semifields with spreads in PG (3, ¢) that are symplectic but not
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of dimension two. However, this certainly raises the question whether any sym-
plectic spread in PG(3, g) must have symplectic dimension two. In particular,
are there flock spreads in PG(3. g) that are of symplectic dimension two? We
show that the only such flocks are Desarguesian or Kantor-Knuth.

Finally, we include sections of the transpose of arbitrary finite semihelds,
which may be of independent use, both in the determination of semifields, com-
mutative semifields and symplectic spreads, and of ‘lifting’, another construction
procedure that produces arbitrarily long chaing of semifield spreads from a given
semifield spread in PG(3, g).

2 Symplectic Flocks

As noted in the introduction, there is an interesting connection between
commutative semifields and symplectic spreads, shown by Kantor in [9]; every
semiheld plane that has a coordinate commutative semiheld produces, by trans-
pose and dualization, a symplectic spread. Furthermore, Maschietti [12] points
out that 2 X 2 matrix spread sets consisting of symmetric matrices produce and
are equivalent to symplectic spreads, considered over a 4-dimensional vector
space.

We note subsequently that there is a conical flock spread, the Kantor-Knuth
flock spread that admits a representation of symmetric 2xX2 matrices. In general,
any flock spread has the following standard form:

u+G(t) F()
1 U

(*):mﬂ,ym[ ],Vt,uEGF(q).

Clearly, we are not considering a representation where the matrices are 2 X2 and
symmetric, unless F'(t) = ¢ and we note below that this implies that the conical
flock spread is Desarguesian when ¢ is even or Kantor-Knuth or Desarguesian
when ¢ is odd.

The question then becomes: What are the Hock spreads that are symplectic
and can also be written as symmetric spread sets of 2 X 2 matrices?” We show
that the only possibilities are the Desarguesian and Kantor-Knuth Hock spreads.

For the benefit of the reader, we repeat the fundamental result proved by
Maschietti in [12].

1 Theorem. Let ® be a finite translation plane. Then, there 1s a malrix

spread set & for w that s symplectic if and only if there 1s a set of matrices such
that if M is in S then M — M*, (transpose).

PrROOF. Let f be the symplectic form and assume that & is a symplectic
spread. Assume that L is a component of & and change bases, regarding the ker-
nel as the prime subfield so that L is y = 0. We may further change bases so that
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[ —OI g ] represents the skew-symmetric form determined by the symplectic

polarity, since all forms are conjugate.

Suppose we have a spread, written as a set of matrices & whose difterences
are non-singular or identically 0, and containing the zero matrix (but we do
not here require that the identity is in &), and note that the zero matrix is
automatically isctropic. Then a subspace y = zM is isotropic if and only if

@am | O g ][ a0

it and only 1if
z(—M 4+ MYzt =0,

for all z, if and only if M = M?, [@ED]

1 Definition. A symplectic spread S will be said to have ‘symplectic di-
mension &’ it and only if some matrix spread set representing S is elementwise
self transpose, the matrices are £ X £ and & is minimum in any self transpose
representation. If S has order p* then 1 < k < ¢.

Note the symplectic spreads of symplectic dimension 1 are exactly the De-
sarguesian spreads.

1 Remark. In the above representation, it may not be the case that the
matrix spread set of symmetric matrices contains the identity matrix. It this 1s
required, we would need to adjust the symplectic form more generally to be:

0 A
A 0|’
where A = A'.

1 Example. The Kantor-Knuth conical Hock spreads are symplectic spreads
of symplectic dimension 2.

ProoF. A Kantor-Knuth spread may be represented as follows:

B B uw  yt?
r = U,y—ﬂ:[t " ]

7

where u,t € GF(q),q odd,y non-square, o a non-identity antomorphism.

Y ],whereA [O L

0, A 1 0 ] , to change the spread

Apply a basis change [

set 1in the form:

r U

mﬂ,yﬂ:[
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Since the associated spread is elementwise selt-transpose, the Kantor-Knuth
spreads are symplectic of symplectic dimension 2.
Note that this amounts to taking the symplectic form:

0 A 0 1
o e[ o]
[@ED]

We now show that the Kantor-Knuth planes are the only non-Desarguesian
translation planes with symplectic dimension < 2.

We begin with a fundamental lemma. We shall take the representation for
a conical Hock spread as indicated above.

1 Lemma. For e flock spread of the form above, the spread is a Kantor-
Knuth spread provided one of the following occur:

(1) F(t) = tfo, for all t € GF(q), fo a constant.
(2) G{t) =1tf1 + F(1)fe, for all t € GF(q), for constants f; and fs.

PROOF. Let the plane of the associated flock of a quadratic cone zgz2 = z3,
be represented in the form:

ot + z1G(t) — z2 F'(t) + 23 = 0.

If the planes have a common point, it is known by Thas [15] that the plane is a
Kantor-Knuth spread.
In situation (1), then we have

Tt +1G(E) — zotf, + x3 = 0.

The planes then have the common point (z2 f,, 0, 22, 0).
Now consider situation (2) above. Then we have

zot +z1(tf1 + F(t)fo) — zoF(¢) + z3 = 0.

We then have the common point (—z1f1, 21,21 f2,0). This completes the proot
of the lemma. QED]

2 Theorem. A flock spread s symplectic of dimension 1 or 2 if and only
of ot 25 esther Desarguesian or Kantor-Knuth.

PROOF. We assume that the dimension is 2. Therefore, we may represent
the symplectic spread S so that M = M? for all Min S and S is a set of

2 X 2 matrices over GF(q). Hence, M = [ i f(zu) ], for all u,t € GF(qg).
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Now change bases by [ 64 (}2 ], such that A = [ (1] (l] ] This transtorms the
2 12
spread into the form
aa | w fu) |
mO,ym[t " ]Mt,u-

Since the spread is a conical Hock spread, it follows that there is a set of reguli
sharing a component. Since the symplectic group is transitive on ordered pairs
of totally i1sotropic subspaces of the spread, we may assume that the z = 0 is
an elation axis for the associated flock spread.

We know that the elation group E 18 of order g and each orbit of components
union the axis is a regulus. If the plane 7 is non-Desarguesian, there is a unique
regulus containing any non-axis component. Let R denote the unique regulus
containing y = 0. So, the regulus has the following form:

2 Uy
tor 2 = 1,2,...,9 — 1. Choose any of these, say M; and change bases by
I 0 |
[ 02 Mz_l ], so that we have x = 0,y = 0,y = z represented in the regu-
2

lus R. When this occurs, the regulus then has the form:

uw 0
mO,ym[O u],uEGf(q).

Qur spread now has the form

u (i, u) 1
I I I M' n
z=0,y=0,y ﬂ:[ p " ] ;

Also, when this occurs, the elation group £ has the following form:

<[£z E]U[E 2];uEGF(q)>.

Furthermore, it follows that the form for the conical Hock spread is now:

r=0y==x [ uJFf(t) FS) ] Vi, u € GF(q),

where G and F' are functions on GF(g), as well as

U f(tﬂ u’) ] M._l_

z=0,y=0y ﬂ:[t N ;
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Let Mj_l = [ ': 2 ] Hence, we have the following equations that must

hold:
ua + flt,u)c ub+ f(t,u)d | | v+ G(s) F(s)
[ ta + uc th + ud ][ s Y ]’

for all w, ¢, where v and s are functions of u and %.
Hence, we have:

tht+ud+ G(a+uc) = wua—+ f(t,u)e, and
F(ta+uc) = ub+ f(i,u)d.

Assume that a — 0. Then, ¢b is not zero and
Fluc) = ub—+ f(t, uld,
Gluc) = [f(t,u)c— ud —1tb.

If d = 0 then F(uc) = ub and we have situation (1) of the lemma. If d is not
zero then letting t = 0, we have G(uc) = u(—b — d) + F(uc)d ¢
Letting ¢ = 0, we have

Gluc) = u(—bd 1c — d) + F(uc)d 4,

which is situation (2) of the lemma.
Hence, a is not zero. But letting © = 0 we then obtain

G(ta) —tb+ f(0,u)c
F{ta) = f(t,0)d.

and we are finished as before unless d = 0. But then /' is identically zero, and
we may apply situation (1) of the lemma. This completes the proof. [@ED

Note that our proof of the above result did not make specific reference to
having the transforming matrix be orthogonal.

3 The Equivalence of Symplectic Semifield Spreads
and Semifield Flock Spreads

3 Theorem. Let S be a semifield flock spread in PG(3, q).
(1) Then applying the following sequence of construction aperations produces
a symplectic semifield spread Sgpym n PG(3.q):

S(flock) +—— dualize —— distort —— derive
—>  transpose — dualize — Sgym (symplectic)
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(2) Let Ssym be a symplectic semifield whose spread is in PG(3,q). The

applying the following sequence of constructions produces a semuifield flock spread
in PG(3,q).

Ssym(symplectic) +—— dualize — transpose — derive
—  extend — dualize — S(flock).

PrROOF. By Johnson [6] (2.7),

S(flock) — dualize — distort — derive

produces a commutative semifield plane S(commutative) of order ¢ with mid-
dle nucleus isomorphic to GF(q). Using Kantor [9] (3.8),

S(commutative) —> transpose — dualize ——> Sy, (symplectic).

It remains to show that S, (symplectic) has its spread in PG(3,q). Since
S{commutative) has middle nucleus GF(¢), the transpose has right nucleus
G F(q) and transpose-dual has left nucleus GF(g). This proves part (1).

Part (2) is similar:
Ssym(symplectic) — dualize —> transpose
produces a commutative semifield plane S{(commutaetive) using Kantor [9) (3.8).
Since S, (symplectic) has its spread in PG(3,q), the left nucleus is GF(qg),
the dual has right nucleus GF(g) and dual-transpose has middle nucleus GF(qg).
'I'hen

S'(commutative) — derive — extend —— dualize — S(flock),

by Johnson [6] (2.7). [@ED)]

2 Definition. Let S be a semifield flock spread and let S;,;, denote the as-
sociated symplectic semifield spread constructed and connected as in the above
theorem. In either case, the remaining semifield is the ‘5th-cousin’ of the former.
Thus, the 5th-cousin of a symplectic semifield spread in PG(3, g) is a semifield
Hock spread and the 5th-cousin of a semifield flock spread is a symplectic semi-
field spread. More generally, any two spreads constructed from one another by
1-iterations of the construction techniques of dualization, transpose, derivation,
extension, dualization are said to be “it/-cousins’.



Symplectic flocks 93

4 The Symplectic Semifield Flock Spreads

When we have a semifield flock spread in PG (3, ¢), there is a corresponding
symplectic lock spread in PG(3, ¢), the 5th-cousin. We intend to show that a
semifield flock spread is symplectic if and only if it is Kantor-Knuth or Desar-
guesian.

Qur proof 1s based on the fact that if the semifield Hock i1s symplectic then
the dual transpose is a commutative semitield spread. We are not assuming
anything regarding the symplectic dimension. So, there is a problem dealing
with transposed spreads, since in the standard model the transposed spreads
may be obtained via the transpose of matrices spread spreads, which might be
large dimensional.

We choose a different symplectic form for which a more convenient model 1s
possible when the original spread in in PG(3, ¢). We begin with a more general
analysis of the dual transpose of a semifield spread in PG (3, g).

2 Lemma. Let

R [ gi1(t) + g2(u) = g(t,uw) f1(t) + folu) = f(,u) t.u € GF(qg),

[ U

be a semifield spread in PG(3,q), where g; and f; are additive functions from
GF(q) to GF(q),i=1,2.
Define the associated pre-semifield (S8 — GF(q) X GF(q),+,-) as follows:

(¢, d) - (£, u) = (c(g1(2) + g2(u)) + di, c(f1(t) + fa2(u)) + du).

A ssume that the spread 1s non-Desarquesian, then this defines a pre-semafield

with left nucleus {(0,a);a € GF(q)}.

PRrROOF. Note that for additive functions g(¢. «) and f(u, t), since the spread
is additive, it follows that ¢(¢,u) and g¢(¢,4) can be written in terms of two
functions, each of one variable. The pre-semifield will be a semifield if the original
matrix spread set contains y — z. [QED

3 Lemma. Define the dual pre-semifield (S, +, +) by taking
(a,b) = (c,d) = (c,d) - (a,b) = (cgla,b) + da,cf(a, b) + db),

which defines a pre-semifield with right nucleus {(0. a);a € GF(q)}.

PROOF. Since we are merely interchanging left and right, the left nucleus
becomes the right nucleus. [@ED
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4 Lemma. Let p" = q, for p a prime, so that g;(z) = ;_D gwﬂ:p“ and

filz) = Zf fwﬂ:pj Then (S, 1+, <), with

r—1
(s,t) o (c,d) = ( 91/1"’3( )17 +Zf1 /P’ (cs)1/P +
j=D F=0

defines a pre-semifield which coordinatizes the dual transpose of the original
semafield plane.

PROOF. We take the symplectic from from GF(g)? to the prime field G F(p)
defined by {(a,b,c,d), (s, ,u,v)} = T(av + bu — ct — ds), there T is the trace
function to GF(p). We consider

(a,b) = (c,d) = (c,d) - (a,b) = (cg(a, b) + da, cf(c,b) + db),

Let ¢* = cgla,b) | da and d* = cf(a,b) | db. We wish to describe (s, #) ¢ (¢, d).
Hence, we obtain

T(av + bu — c*t — d*s) = T(av + bu — (cg(a,b) + da)t — (cf(a,b) + db)s) = O

for all a, 6. Let h(z) = Z;zé hia? . T(eh(z)w) = Tz h;”ip‘: (ew)1/Pi)). Letting
a — 0, we obtain:

r—1 1 1
b(u - Zg”f"” @)+ o1 (cs)VP + ds)),
§=0

for all b in GF'(q), and letting 6 = 0, we obtain:
T(a(v — (Z g7 (ct)P + Zf”f“" (cs)V/7 + dt)),

for all ¢ in GF'(q). Hence it follows that

&
|

r—1 1 1
Zg”“"’" )P+ 17 ()P + ds),
=0

r—1 ‘ 1
v = Zgif;pj )lfijerllf?(ﬂS)l/ijrdt)-
=0

This completes the proof of the lemma. [@=D]
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5 Lemma. Under the assumptions of Lemma 4, (0,1)¢ (0,1) = (0,1) and
defining a multiplication © by

((5,2) ¢ (0,1)) @ ((0,1) ¢ (¢, d) = (s,1) o (c,d),

will produce the dual transpose semifield which has middle nucleus {(0, a);a €

F(q)}. Let §i(z) = Y ics giF '/ and Fil@) = Y520 £ /P | fori=1,2.
Then

(5,2) ® (Ga(c), G1(c) + d) = (Ga(ct) + falcs) + ds, g1 (ct) + fi(cs) + dt)),
is the semifield (S, +,®), with middle nucleus {(0,a); « € GF(q)}, and identity
(0,1).

PrRoOOF. The proof is immediate by calculation. [@ED

6 Lemma. Any semifield (S, +,®) of order ¢? and middle nucleus GF(q)
that commautes over {(0,a);a € GF(q)} may be written in the form

(s,1) ® (c,d) = (H (sc) + ct + sd, M(sc) + dt)

and constructs by transpose and dualizatron a symplectic spread of dimension
fwo - N
M(t)+ H(u) wu

r=0y=2z
o ) 1

];t:uEGF(q).

Assume an isolope s commutative. Then the original semifield may be re-
coordinatized by functions g; and f; such that g1 () = 0, and g2(u) = wu, for

all t,w € GF(q). In this case, the original semifield spread is symplectic of
dimension two defined by

U f1(f)+f2(u)][0 1][f1(?5)+f2(‘u) U

mijm[t y 1 0 y : t,u € GF(qg),

We adopt the notation developed in the previous lemmas. The previous
results produce specific functions when we have semifield Hock spreads. First to
construct the associated commutative semifield:

1 Proposition. When (S,+,-) defines a semifield flock spread, we may
assume that go(z) — = and fo(z) = 0. Hence, go(z) — = and folx) = 0. Then

(5,8) @ (c,d) = (ct + (d — g1(c))s, a(ct) + files) + (d — g1 (c))t)),

is the dual transposed semifield with middle nucleus {(0, a);a € GF(q)}.
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When (5,4, -) defines a semifield flock spread with additive functions g(t)
and f(t) so that

u+g(t) f(t) tu € GF(g).

r=0y==z p "

s the associated spread then the commutative semifield (S, +,®) obtained by
S(flock) — dualize — distort — derive = (commutative semifield)

may be defined by
(s5,2) ® (¢, d) = (—g(sc) + ct + sd, f(sc) + di).
ProOOF. This follows by tracing through the functions in the proot of this
result in Johnson [6]. QED]
We now produce the form for the symplectic semifield spread associated with
the semiheld Hock spread.

2 Proposition. When (S, +, -) defines a semifield flock spread with additive
functions g(t) and f(t) so that

z=0, y==z [ utglt) J) ] ;t,u € GF(q),

[ U

then the symplectic spread in PG(3,q) constructed using

S(flock) +—— dualize — distort — dertvation
—> transpose — dualize — S (symplectic)

18

ey

z = 0, ym[ﬁ(u);rf(t) ?];t,uEGF(q)-

PROOF. Apply our previous lemmas. QED

3 Proposition. Any semifield spread in PG(3,q) which is symplectic is
symplectic of dimension two.

ProOF. We know by dualization and transpose, we may construct a commu-
tative semifield plane of order ¢g? and middle nucleus isomorphic to GF(g). By
recoordinatizing, if necessary, we write the commutative semifield in the manner
of the Lemma 6) and re-construct the original symplectic semifield spread with
symplectic dimension two. [QED]

As corollaries to our analysis, we have:

1 Corollary. Let w be a semifield flock spread in PG(3,q). Then 7 is sym-
plectic +f and only +f m 15 a Kantor-Knuth plane or Desarguesian.

2 Corollary. The symplectic 5th-cousin of a semifield flock spread 1s a flock
spread if and only if the semifield flock 1s Kantor-Knuth.
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4.1 The Roman Son

In Payne and Thas [14], there is a construction of a semifield spread in
PG(3,q), using the Cohen-Ganley semifield flock spread. Basically, one con-
siders the associated generalized quadrangle Q(CG), of type (¢°, ¢) and forms
the translation dual of type (g, ¢?), the ‘Roman generalized quadrangle’. This
generalized quadrangle is shown to have subquadrangles isomorphic to Q(4, g),
the set of totally isotropic points and totally isotropic lines with respect to a
quadric in PG(4, q). Payne and Thas |14, show that there are ovoids in (4, g).
Since the dual of (4, q) is M (3,q), the set of totally isotropic points and to-
tally isotropic lines of a symplectic polarity of PG(3, ), we obtain from any
such ovoid a symplectic spread in PG(3,q) (given by a symplectic form over
the associated 4-dimensional vector space V4, ‘symplectic dimension 2’). It is
furthermore determined by Lunardon [10] that these symplectic spreads are
semifield spreads. We call any such semifield spread a ‘Roman Son’. In fact, it
is noted in Payne and Thas [14] that all Roman Sons are isomorphic.

Hence, we obtain:

4 Theorem. The Roman Son (Thas-Payne spread) and the Cohen-Ganley
flock spread are non-i1somorphic 5th-cousins.

4.2 Penttila-Williams’ 5th-Cousin

There is a sporadic ovoid in Q(4, 3%) and hence a symplectic spread of sym-
plectic dimension 2 in PG(3,3°), due to Penttila and Williams [13]. This turns
out to be a semiheld spread, so the 5th-cousin 1s a semiheld Hock spread in
P@G(3,3%). This is the scmificld flock spread constructed in Bader, Lunardon,and
Pinneri [11]

5 Theorem. The symplectic Penttila- Williams semaifield spread 1s not iso-
morphic to its Sth-cousin, the associated semaifield flock spread of Bader, Lunar-
don and Pinnert.

2 Remark. (1) Ball and Brown [1]| show, using thc Thas-Paync construc-
tion, that there are six semifield spreads corresponding to a semifield Hock.
Furthermore, they show that the symplectic semifield spread and semifield flock
spread are isomorphic if and only if the semifield flock spread is Desarguesian or
Kantor-Knuth (our version of this did not require that the symplectic semifield
spread had symplectic dimension two).

In our sequence of constructions

S(flock) +—— dualize —— distort —— derive
—>  transpose — dualize — Sgym (symplectic)
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and

Ssymlsymplectic) +— dualize — transpose — derive
—  extend — dualize —> S(flock),

we see that there are also five possible semifields and a generalized Hall quasifield
and these are mutually non-isomorphic provided the Hock is not Desarguesian
or Kantor-Knuth; two each with left, right nucleus isomorphic to GF'(g) and
one with middle nucleus isomorphic to G ¥ (q). Furthermore, if one considers
the sequence

S(flock) — dualize — transpose.

another semifield with middle nucleus G F(q) is constructed. The six semifield
spreads in our sequences are isomorphic to the six semifield spreads of Ball and
Brown, who also included dual and transpose versions of the various semiheld
spreads.

(2) If one considers an iteration of transpose-dual-transpose, etc. it is po-
tentially possible to construct twelve semifield spreads. To see that there are, in
fact, only six, Ball and Brown [1]| show that any transpose of a semifield flock
spread is isomorphic to the original. using the Klein quadric.

More generally, one could ask if the transpose of a Hock spread is isomor-
phic to itself. And, in fact, this is valid as well, and an algebraic proof using
transposed matrices is all that is required.

6 Theorem. The dual spread of a flock spread s 1somorphic to the flock
spread.

PrOOF. Represent the flock spread as follows:

z—09y—z [ qutQ(t) fif) jl;u,ﬁEGF(Q)j

where g and f are functions on GF(q) (not necessarily additive). The dual
spread is

ooy —s| WHIO IO ]T S R R}

Now note that

0 1 u+ g(t) 1 0 1| [ —u f(t)

—1 0 f(t) u —1 0 | ¢t —wuwu—g@® |’
and letting —u — g(¢) = v, the previous matrix is

[ oo £ ] |
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Since the operations listed merely correspond to a basis change, we have the
proof. [@ED

3 Remark. It also is now trivial to note that there are no non-Desarguesian
symplectic semifield spreads in PG(3, g), when g is even. That is, the symplectic
dimension must be two so there is an associated Hock semifield plane of even
order g2, which is necessarily Desarguesian by Johnson [6].

4 Remark. A direct comparison of our matrix spread sets and those of Ball
and Brown will show that there is a sign difference on the functions g. However,
the spread

r=0y=ga [ “Jrf(t) fS) ] su,t € GF(q)

is isomorphic to the spread

T R

which shows that the sign on the functions g is not critical.
PROOF.

[(1] (11] [Htg(ﬂ fS) ] [[1] (1]] [f?t) u—l—tg(t) ]
Letting u + g(t) = v, we have the spread

r=0,y=2 [ '”;é)(ﬂ ,f, ] u,t € GF(g),

but this spread is isomorphic to its transpose

z=0y==x [ v—tg(t) 'fS) ] u,t € GF(q).

[QED]

5 Lifting and More Cousins

Given any semifield spread in PG(3, ¢), the plane defined by dualizing the
semifield may be derived to obtain a non-semifield spread corresponding to the
semifield spread. Furthermore, any semifield flock spread may be derived using
one of the base reguli, to obtain a spread of order ¢? admitting a Baer group of
order g. The reader is referred to the paper of Jha and Johnson [7], where these
derived planes are discussed in greater detail. Any of these might be called a
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‘cousin’. If cousins of semifields may only be semifields, then there is the matter
of ‘lifting’.

Given any spread in PG(3, q), there is an associated spread in PG(3,¢?),
obtained by a process called ‘lifting’. In fact, the construction is not spread de-
pendent but quasifield dependent, in that i1t is possible to construct two difterent
lifted spreads from the same spread.

The following is from the authors’ text [3], 29.5, p. 450. Let K be isomorphic
to GF(q) and let K1 be a quadratic extension of K, by 6, where 6° = 8a + 8,
for a, 3 € K. Let

g(t.,u) f(t u) ] utc K.

. :U _
(M Y :r[ . o

then

(Os +w)? —Og(t,u) + (f(t u) + ag(t,u))

(0f + u) (s + w) ] s, wt,uc K

bl gy = Dy==x [
is a spread in PG(3, K?), called a spread ‘lifted’ from =. 7 is called a ‘contraction’
of 7. Of course, this process may be repeated indefinitely to obtain an infinite
chain of lifted planes.

It is clear from the construction that if the original spread set is additive
then the lifted spread set 1s additive; semifields litt to semihields. In particular,
this means that a semifield flock or a symplectic semifield spread constructs an
infinite chain of lifted planes. But, also note that this means that a semifield flock
spread in PG(3, q) could be the ‘nth-cousin’ of a semifield spread in PG(3,¢* ),
obtained by a series of n contractions. To complicate matters, we note that we
may derive the net

(0s + w)? 0

R I

:r:[]jyﬂf:[

to produces spreads in PG(7, g). Are these ‘cousing’?

5.1 Lifting Semifield Flocks and Their 5th Cousins

As an example of the enormous variety of semifield spreads associated with
a given one, we consider a semifield Hock spread

v —0y—a [ utg(t) ) ];u,teGF(q)j

2 (7
where ¢ and f are additive functions. Hence, we obtain the lifted spread

(Os +w)? —0(g(t) +u) + (f(2) + ag(t))

(6% + u) (0s + w) ;s,w, t,u € K.

wL:mU,ym[



Symplectic flocks 101

Consider the 5th-cousin of the semifield spread

9+ t ). cor@.

mﬂ,ym[
7 7

'1'his spread lifts to

F T P ¥

P [ (0s +w)? —0(—g(u) + F(1)) + (¢ + a(—G(w) + F(2))) ] .
’ (0t + u) (0s + w) ?

where s, w,t,u € K.

Obviously, we have a longer chain connecting a semifield spread and its
b5th-cousin, if we begin with once of the lifted versions. But, what is a dircct
connection between the two lifted 5th-cousins?

So, the main question seems to be: Are all spreads in PG(3,¢) cousins?

6 Appendix: Transpose of Semifields

In the following, we consider the general transpose of semifields, with partic-
ular attention to commutative semifields and their transpose-duals. Most of the
results, especially when considering the commutative case, are straightforward
generalizations of ideas implicit in Kantor |9).

Let (S,+,-) be a semifield and let L, R, M denote the left nucleus, right
nucleus, and middle nucleus, respectively, isomorphic to GF(q), GF{w), and
G F(z), respectively. Assume that ¢ — w™ — 2*. Then, S is a left n-dimensional
L-space, a right m-dimensional R-space and a right (by stipulation) & dimen-
sional M -space.

The ‘transpose S** of S is a semifield coordinatizing the dual spread of the
spread coordinatized hy 5. The standard manner of obtaining the transpose
is to write S over the left nucleus in matrix form: Letting z = (z1,22,...,2,)
written over a basis for S over L, and

£ - (81: SQ-J === Sﬂ.) — mM(Sl,Sz,...,Sﬂ)
- f11(s1,---,8n)  fio(S1,---,8) -+ finlS1,---,8n) ]
Fo1(s1,---,8r) fools1,---,8) - fon(S1,--.,8n)
— - p!
_ S1 S92 Sn

= X7

where f;; are additive functions over L of n-variables.
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Now, in this setting, the transposed semifield spreads may be easily described
simply as

2
M5, 52,0008n)

C f11ls1,---580)  fi2(S1,---580) -0 fin(s1,---58n)
Fo1(81,---y8n) fo(si,---y8n) - fon(s1,--.,8n)

81 52 "t S

= nXn

However, if the semifield is represented over the right or middle nucleus, the
direct transpose of the associated matrices may not be convenient. Hence, we
seek an alternative method for the construction of the transpose.

For:=1,2,...,n— 1, define

gijke(sk) = fi;(0,...,8%,0,...,0), fori=1,...,n - L;5,k=1,...,n

Since we have a left vector space over L, we know that

YL
Jii(81,...,8n) = Zgijk(sk): tor.=1,2,....n—1;5=1,2,....1n
k=1

Let g = p", where p 18 a prime, then for z in L.

r—1

Gigk(€) = ) _ Gijhat® -
=0

Now define
1
gﬁjk ‘T‘-) — Zgg;f:g
Then
T
For, fij(s1,---.8n) = ) _ggnlse), fori=12,....n—1Lj=12...,n,

k=1
dehne

i1
fii(81,82,-...8,) — Z Giik(Sk)
k=1
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Let T denote the trace function from L to GF(p), defined by

r—1
T(a) = Z a?” .
s=0

Then, we note that
T'(bgiji(z)) = T(29:5%(D))-
We now consider the subspace y =z -s=x- (s1,..., 8p)-
We see that

(€1,¢2,--.,Cn) - (81,...,5n)

ri—1 ri—1 ri—1
= () cifiitcenst, Y cifritcasa,..., Y Cifni+ CnSn)
=1 =1 i—1
n—1 7
= ((Z C-i(Z grik(Sk)) + cns1),
-i::l ﬁ;::l

Er T T

O 6D Gainlse)) Fensa)s- oo Y 6D gnik(sk)) + cnsn)
k=1

Now dualize to the associated semifield (S, 4+, ¢), with right nucleus L such that

(€1,€2,---Cn) - (81, -, 8p) = (81,.--,85) 0 (€1, €2, -- -, Cp)

We determine the transposed semifield (5, 4+, ®). to (S, +, ¢) by determining
the lines y = = ® (¢1,¢2,...,¢,) that as GF(p) -subspaces are orthogonal to
y = z¢(c1,...,C,). Since the associated spread arises from a 2n-dimensional
L-vector space, we use the following orthogonal form:

((ﬂla C2,....0Cx, C‘R—I—l:l ===y ﬂﬂﬂr)ﬁ ('51: 52, - - 5 Ippy Sﬂr—l—lﬁ === Sﬂﬂr))
2n
=T(> _(—1)%cisn—it1),
i=1
where i = +1forz=1,2,...,nand —1forz=n-+1,...,2n.
We want to consider the lines (subspaces) ¥y = z ¢ (c1,...,¢») and define an

associated subspace on the transposed spread defined by a semifield (5, +, ®).
Let

(81:---:Sﬂ)c’(claczﬂ"'ﬂcn)
:(ﬂlaﬂza"'ﬂc‘n)' (511521-"15?’1) — (ST,S;:'...:,S;),
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so that

n—1

8y = Z Cifzi(81,82,...,8¢) + Cns,
i=1
n—1 n
— Z Cj Z Qz,i,k('sk) T CpSz-

=1 k=1
We consider the vectors (s1,s2,...,8.,,87,8%,...,85) of y = z o (c1,¢2,...,¢4)
and determine the vectors (di,ds,...,d,) on y = 2 ® (c¢1,¢2,-..,¢,) that are
orthogonal to (si,s3,...,s;,), for all s}, fixing ¢; and varying s;, making y —

z®(c1,¢3,...,¢,) and ¥y = z ¢ (cy1,€2,-..,C,) orthogonal. Let the vectors on
¥y =1z ®(c1,co,...,c,) be denoted by (d1,ds,...,dyn,d7,d}, ..., d;), for all d;,
1 =1,2,...,n.

S0,
T T
T(Z Sily i1 — Z Sidn—i+1) = 0.
1=1 1=1
for all s;.
We need to determine d; _, ¢, fori=1,2,...,n.

Consider all s; =0 but s,. Then, we abtain:

Tt
T(Szd;—zﬂ _ Z Sﬁfdﬂ—ﬂ#l) = 0.

=1

T n—I1 T
D st Y i1 (D () giik(sk) + cnsi)
=1 k=1

j=1

L
S
3.
_|_
k.
|

=
i
 —
=

T
dn—i+1€3954.% (%) + E dy—i+1CnS;

=1

|
I \/
el W

N J
1
= .

.
1

oo,
=

=
y

i
N

= dn—i+1C§95,4,%(52) + dn—z11¢ns,.

L]

1
-
b

1
ok

Note that

n n—1

! !
T(sxdy 511 — >_, >_, dn—i+1€§G5,ik(52) + dn—z41CnS2)
=1 j5=1

n n—l1

— T(Sz(d;—,z+1 o Z ng,i,s(dn—i—klﬂj) T dﬂ—z+1‘3n)) =0,

=1 4=1

Vs,.
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Thus, we have:

n n—1

= i R
n—z+1 — >_, >_, Qj,i,z(dn—ﬂlﬂj) T dﬂ—z+1‘3n:
=1 5=1

n n—1

Y P
50 dz — L L gj,g’,n—e+1(dﬂ_g’+1f3j) + decn-
=1 5=1

6.1 The Middle Nucleus Semifield (S,+,®) transposes to the
Right Nucleus Semifield (S, +,¢)

Thus, we obtain the transpose of the middle nucleus semifield (S, +,®) is
the right nucleus (S, +,¢), so

(d1,d2, ..., dn) ® (c1, €2, ..., Cn)

n n—l1

= ((Z Zﬁ},i,n—eﬂ(dn—ﬁﬂt:j) + decn))ixn, fore=1,2,...,n

i—1 5—1

where

(d1,da, ..., dn) o (c1,c2,.-.,cn) = (C1,€2,-. ., ¢n) - (d1,d2, ..., dn)
n—I1 n
— (((Z Cj Zg_gjﬁ:k(ﬁk)) | CRSE))H}{I: for z = 1, 21 - ... TR
—1 k—1
Notice that we are connecting pre-semifields, not necessarily semifields.

6.2 Commutative Semifields

Now if we have a commutative pre-semifield S of dimension n2 over the mid-
dle nucleus M, then S({ranspose — dual) defines a symplectic spread given by
a symplectic pre-semifield of dimension 7 over the left nucleus M. We point out
that if the transpose-dual is re-coordinatized by the backward identity permu-
tation matrix, we obtain a matrix spread set of symmetric matrices. Of course,
Kantor |9] showed that if a commutative semifield is written over its prime field
then using the standard symplectic form, the transpose-dual spreads consist of
symmetric matrices. It is sometimes more convenient to write the semifield as
a vector space over its middle nucleus. 'Thus, one nice feature of this procedure
is that the commutative pre-semifields written over their middle nuclei give rise
directly to symmetric matrix spread sets.
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7 Theorem. If a pre-semifield (S, +,®) is written over its middle nucleus,

then the pre-semifield 15 commutative if and only if the transpose-dual pre-
semifield (S,+,-), followed by the backward identity permutation matriz, is a
symplectic pre-semsfield, whose spread in malriz form consists of symmetric
malrices.

PrROOF. Assume that (S, +,®) is commutative. Then

n n—I1 n n—1
- . -~ TN
L Giin—et1{dn_ir1c5) +dec, = L Giin—e+1{Cn_it1d;) + cedyp
=1 5=1 =1 5=1
Ve Vc; Vd;.

Let 2=mn—2-+ 1 to transform

n n—l1 n—1ln—1
2 ™ 2 e : =~ e
=1 j=1 j=1 2=1
Similarly, let k¥ =n — 7+ 1 to transtorm
n n—l1 n—1l n
- g ™ ~ ..
L nga‘i:ﬂ ¢ | l(dﬂr ¢ | 1':_}*') to } , 2 , gj,n—k+1,n—e—|—1(d.€cﬂj)-
Hence, we obtain
™, ™ . —
2 ) Gin—ztln—et1(Czdj) + E Gi1,n—etr1({cnd;) + cedp
n—1ln—1 1i—1
™, ™ .y
- L gjn—k+1,n—e+1(0kCj) + Z gi1,n—e+1(dnc;) + decy,.

Now in order to equate, we let (z,5) —— (7, &) in the second expression. This
produces

n—1n—1 n—I1
! e R —
2 . 2 ,Q'k,n—j+1,n—e+1(ﬂjdk) + E :gj,l,n—e—kl(cndj) _|_ﬂedn
n—1ln—1 n—1
™, ™ . R
— Qj,ﬂ—k+1,n—e—|—1(dkﬂj) + E .Qj,l,n—e—l—l(dnﬂj) + deﬂn-
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Since this expression is valid for all di and for all ¢;, we obtain the following
identities:

Gkn—jt+ln—etl = Gin—k+ln—-etl, 10T 5 Fn, k#mn,
Gi1n—etr1 = Oforj+#eormn,
gi11 = 0,forj#mn
§e,1:n—3—|—1 — 1:, f{JI‘ c 75 Ti.

This implies that

kn—j+1ln—etl — Y4n—k+ln—e+1; for 3 #£ n, k #£n,
giin—er1 — 0for j# e ormn,
giin — 0O, forj#m
Ge,ln—et1 — 1, for e # n.

This mcans that

T
fii(s1,--o8n) = Y gijrlse) =
k=1

n
Zgﬂ—j—l,-n—i+l,k(3k) — fﬂ—j+1,ﬂ—i+1(51: == Sﬂ)a for Z,j 7£ Ii.
k=1

Also, fi,n(sla ey Sp) = gi,n,n—i—I—l(Sn—i—I—l) = Sp—it1, 10T 1 F£ 7.

Before we give the general conclusion, we pause to consider n = 2,3, 4.
If n — 2, we obtain

[ J11(s1,82) = g1,1,1(81) + g1,12(82) —s2  f(1,2) — g1,2,1(81) + g91,,2,2(52) ]
81 S2

]

101 _ g1,2,1(81) + g122(82) s2
1 0 S2 S1

a matrix spread set of 2 X 2 symmetric matrices.
If n = 3, we obtain: (we now write f; ;(s1,...,5,) merely as f; ;). We use
the 1dentities to obtain:

s3  fi,2 fiz ] ]0 0 1] - fi3 fi2 sz
sy foo foz=rfipz 0 1 0 |=| fig f22 s2 |,
81 82 53 111 0 0] 83 S22 81 |

a matrix spread set of 3 X 3 symmetric matrices.
When 1 = 4, using the identities, we obtain:



108 M. Biliotti, V. Jha, N. L. Johnson

fi2 = fas, f1,3 = foa,f22 = fa,3 and

sa  f1,2 fi3 f1,4
s3  f29 f2.3 foa= f13
s2 fao f33= S0 f34= f1p

S1 S9 S3 S4

e T e R
— = o D
= = = O

1 o O OO

fia 3 fi2 s4
fiz Jfoz foo S3
fi2 fop2 f3z2 s2 |’

54 53 g2 81

a matrix spread set of 4 X 4 symmetric matrices.
Generally, for arbitrary », using f; ; = frn—j+1,n—i+1, fOr 4, 5 # n, we obtain:

8 12 fiz - fina Fin
Sn—1  Jf2. fo3 - fom fon
Sn—2 " "t ' ) f3,n
s2 fn12 frni13 - frnin1 o in
. S1 52 53 "t Sn—1 Sn
-0 0 0 --- 0 17
0 0o --- .0 1 0
o --- --- 0 0
--- 0 1 0 O
0 1 g --- 0 0
1 0 0 --- 00
) fin fin—1 fin—2 -  fi2 s ]
fin—1= fon Jo,n—1 fom—2 -+ fo2  Sp1
| fim—2=fsn Sam1=Jta2 fam—2 -0 o3 Spo
fi2= fa—1m o ‘e --- frno12 82
i Sn Spn—1 Sp—2 - 52 §1  _
a matrix spread sct of nn X n symmetric matrices. [@ED]

3 Corollary. Any finite symplectic semifield of dimension n over its left
nucleus has symplectic dimension .

PrOOF. By Kantor [9], the dual-transpose produces a commutative semi-
hield plane that has dimension 12 over the middle nucleus. Re-coordinatize so that
we have a commutative semihield coordinatizing the semifield plane. Since the
middle nucleus is an invariant, this commutative semifield will be of dimension
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. over the middle nucleus. Now apply the previous theorem to obtain a sym-
plectic pre-semifield defining a matrix spread set of 7 X n symmetric matrices;

the symplectic semifield has symplectic dimension n. [@ED
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