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Abstracl. We obtain atomic decomposition formulas for weighted Bergman spaces AZE (£2),
a > —1,1 < p < oo, where 2 C C belongs to the class of regulated domains. We are able
to construct an atomic decomposition directly on a given regulated domain {2 by using its
geometric properties.
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1 Introduction

The concept of atomic decomposition was first introduced by Coifman and
Rochberg in [3], where they proved its existence in the standard Bergman-space
A% (D) on the unit disk I with radial weight functions. In principle it is easy
to generalise this result to other simply connected domains 2 € C using the
Riemann mapping theorem. However, the resulting atomic decomposition in the
space AL (Q)) is very implicit and its connection to the geometry of {2 remains
unclear.

In this paper we construct an atomic decomposition directly in the domain £
using its geometric properties assuming that the domain belongs to the class of
regulated domains (see [9]). We work in the Bergman-space AL (£2), 1 < p < o,
where the weight function is of the form z — (dist(z, 82))?, with a > —1.

An essential part of the study is to create a division of the regulated domain
2 into squares ¢ r, which are small enough for the functions f € AL (Q) to be
practically constant inside each square. '1'his covering, constructed in Section 6,
allows us to select the sequence of “sampling points” A, ; in a way intrinsic to
(2. In Section 7 we show that the sequence (A, ;) does in fact define an atomic
decomposition, the proof uses the same method as |11 and [8].

Important results for us are found in (2|, where it was shown that the
weight function |[4/'|>7P, where ) : D — € is a conformal mapping, satisfies a
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Muckenhoupt-type condition it and only if certain geometric conditions for the
boundary of {2 hold. This was also found to be equivalent to the boundedness
of the Bergman projection on the space LP({2). These results were generalised
for arbitrary regulated domains in [10] which then gave rise to this article. Also

useful has been the treatment of duality between weighted Bergman spaces
in [7].

2 Preliminary results

Let £ € C be a simply connected, bounded domain with a locally connected
boundary. Thus the conformal map 17 : D — €2 is continuous in ID and the curve
w(t) = P(e®),0 < t < 27 is well-defined.

A function is called Dini-smooth if its derivative exists and is Dini-continu-
ous. We say that d€2 has a Dini-smooth corner at /() if there are two closed
arcs in T ending at ¢ € T and lying on opposite sides of { that are mapped
onto two Dini-smooth Jordan-arcs forming the angle 7y at 2/((}. Then we have
by (9] that

1 Theorem. If 082 has a Dini-smooth corner of opening 7wy, 0 <v <2, at
W(() # o, then the functions

¥(z) — () ) ¥ (2)
(z —C) N PO T

are continuous and bounded away from 0 in D N D((, p) for some p > 0.

(1)

For a conformal mapping f : £2 — £2' the Koebe distortion theorem has the
tform

1 dist(f(2), 85") dist(f (2), 65)
4 dist(z, J%2) dist(z, 0%)
As a corollary to (2) we have that if 1y maps D conformally into C then

(L [P ()] < dist((z), 39(D) < (1 [« ()| for z€ D (3)

To combine (3) with Theorem 1 set ¢ := w1l Q3 D, 2z € ) where (2) €
D((,p) C D, p > 0, and 7y is the corner of opening nearest to z. Now if
0<v<1, we get

< |fi(z)] <4 , =z €L (2)

d(z) == dist(z, Q) < C(1 — |p(2)[*)". (4)

According to [9], Section 3.5, €2 is called a regulated domain if each point
on J€! is attained only finitely often by 4, and if

B(t) = lim arg (w(T) — w(t)) (5)

T—L+
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exists for all £ and defines a regulated function. Recall that 3 is regulated if it
can be uniformly approximated by step functions, i.e. if for every £ > 0 there
exist 0 =15 <1 < --- <1, = 27 and constants y{,...,v, such that

B(t) — 1| <e for 4,1 <t<t, v=1,...,n. (6)

Geometrically 5(¢) = 8(¢+) and g(¢—) are the direction angles of the forward
and backward tangents (respectively) of 82 at w(t). Specifically, if w(?) is a
corner we determine the argument by

p(t+) — Blt—) =7(1—v), 7y opening angle. (7)

For more details, see [9].

3 Bergman spaces

Let dA(z) be the area measure on [J normalised so that the area of ID is 1,
thus dA(z) = %dmdy and let {2 C C be a regulated domain. We denote by

d(z)® = (dist(z, Q) )¢ for some a > —1 (8)

the power of boundary distance, the simplest possible type of weight function
on . For 1 < p < oo let the Bergman space A%5,(Q2) be the space of analytic
functions f : 2 — C with the norm

1

£ llap — ( [ a@risp mﬁi(ﬂ))E _ ( [ 15t dAa(z))E < o,

By (3) the weights (8) correspond on the open unit disk D to the weights
v(z) = (L — |2)*1' (2)* 12, (9)

where 7/ : D — € is a Riemann conformal map and ¢ = ! : Q& — I
Obviously v is in general a nonradial weight on [, although it is easily obtained
from a very natural class of weights on {1.

In the Ililbert space Ai, by definition, there exists an orthogonal Bergman
projection P, : L% (2) — AZ%() defined by the formula

Paf(z) = (@ + 1) /ﬂ Ka(z OF(Q) dAC)  ze, (10)

where K, (z,() is the Bergman kernel of {2 or the reproducing kernel of AZ ()
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The projection (10) can be extended as a bounded projection from L% (2) onto
AL (Q), see e.g. [10].

Through the weight function v(2) = [¢/'(2)|?T* we get a connection between
the geometry of {2 and the boundedness of the Bergman projection on L, (£2).
It follows that the weight v satisfies the condition in Theorem 3.1 of [10]:

| p/q
sup/ lv| dA, (/ |v| 4P dAa,) < Cmg(5)?, (12)
5 J5 S

where S(0,p) = {re® c D |1 —p<r < 1,|0 —t < 27p}, with 0 < 6 < 27 and
D<p< it

m < and 2 > —g'ﬂ', (13)
where
m = sup (B(t+)—pB(—)) and no= inf (B(t+)— B(t—)). (14)
te[0,27] t€[0,27]

Conversely, if 71 > 7w or 5 < —g'}r, then (12) fails. Combining this with [1],
Théoréme 1, yields that the Bergman projection (10) is bounded on L4 () if
(13) holds.

oince 171 and 72 represent the biggest changes in the argument of the bound-
ary curve (71 for the smallest angle, o for the widest), we get from (7) that

m<rT < >0 and ng:w(1—7)>—gﬁr¢>7<p. (15)

Hence outward-pointing cusps are excluded. The second condition, however,
does not pose any restriction on the widest possible angle if p > 2, so inward-
pointing cusps are allowed in these cases.

By [1] and [7] we may now derive the dual space (AD)* (D) = A, (D), dual
pairing with respect to dA,(z) with the weight v*(2) = (1—|z|2)“|'z,b"(z)|_?5(2+a) _
Mapping A?.(DD) back onto {2 we get the dual space (A5)*(2) = AL, (?) with
the weight function

o*(z) = d(2)%w(z),  where w(z) = | (2)[7*1e).

In the dual space A%, () we set
g () = [ d@PIFICT dAR) = mau(4) (16)
A

For other powers of |¢'(2)| we denote the measures with a weight of the type
d(2)*|o' (2)|P by mq,0e- Also for every f € Aq(Q),g € AL ()

(fowlgodan = [ (110l (£ dAG) = (£] 9l (17)

Q
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Using the notations above, setting additionally A% . (D) := AD(D), we have

2 Lemma. If 1 <p <oo,z+¢=10a>—1and f € AL.(D), then
freApia D) and [|f llgipy < C’Hf\lp

G+P,y —
PrROOF. Differentiating the identity f(z) = P,f(z),z € ID, once under the
integral sign we get the identity

F(2) = (a+ 1)( a+2)/ (lwf W) A, (w). (18)

_ zﬁ) a+3

By using the normal dual pairing (in the sense of [7]) of the spaces Ag, , (D), we
see that

H-f ||ﬂ:—|—p,11 = sup{ (JH g)a+p 9‘|g+p,ﬂ—QEp!q <1}

| (19)
= sup{ [{ ' | 9)atpl | llg(z)(1 —|2]*)

a,u—9/P,g = 1}

1
Here (|g]gpo—arpq = (f5 19(2)|9(1 — |2[2)*TPu(2) 4/P dA(2)) ¢ and the weight
v(z) = |9 (2)|*T*. Using (18) for f'(z) we may write

(f'19)atp = (a+ D{a+2) /Df’(Z)TZ)(l — 291 — |2|? PP/ d Ay (2)

(et i+ [ ( wf (w) dAa(w)) 9@ (1 — 2P/ dAg.1(2)

;’
= (a+ 1) / wf(w) ( o+ 2) / g('?(i ;J';"l 3: - dAﬂJrl(z)) dA,(w)

— (a4 1) <Ef(z) | Pai1 (g(z)(l — |z|2)P;’q) >

Cx

Set ((z) = g(z)(1—|2|?)?/?. Now the above, combined with (19) and the bound-
edness of the operator Py (see [1]), yields

|7 [orpw < C'sup{ [(Zf(2) | Pat1(G(2)))al : IG(2)lgp-arp,q <1}
< Csupt [{Zf(2) | G(2) )al : IG(2)]lqp-a/p g < 1} < Cllflle

which proves the initial statement. [@ED

Lemma 2 has been taken from [8|, an unpublished manuscript. By applying
the Riemann mapping 7/ : D — & a simple change of variables now shows that

3 Corollary. If1 < p < o0, lJr l — 1, a > —1 and f € AL(Q), then

f'€ A, < Clf la-

(1) and moreover ||f fHﬂ:—FP:Q!?p <

o+, PP (
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4 Domain ) and related definitions

The presentation in the following sections 1s very detailed, since we want to
control the various constants. This is needed in the example of Section 8.

Let £2 be a bounded, regulated and simply connected domain such that 942
consists of finitely many arcs ), € U and every point on 942 is attained only
once. The angles 7wy (or corners of opeuning (7)) between adjacent arcs C,, may
vary within 0 < v < min{2,p} as in (15) including equality in the right-hand
side if p > 2. Thus, as mentioned before, no outward-pointing cusps are allowed
in {2, but if p > 2, then inward-pointing cusps are accepted. Let {2 also be such
that i1t fits into a disk of radius 1.

Let @ > —1 be fixed and set @7y, to be the sharpest and ny,, the widest
opening of a corner on J4). These exist, because the number of corners is finite.
Then set

to = min{y,, 1 — 72}, (20)
where clearly 0 < vy < 1, and let b be a constant for which
0
b= : (21)
2—7

hence 0 < b < 1 for all possible values of 3. The reason for defining v, and
b as above will become clear later in (41). Intuitively vy tells how “close” the
“worst” (sharpest or widest) corner is to the critical values of v =0 and v = p.
The constant b makes the set of belts I',, (22) more dense accordingly.

To construct a sequence in {! connected to its geometry we will divide §2 in
smaller sets (see Section 6). For this purpose we define the sets

I, ={z€Q|(r+1)"<d(z) <n "}, 0<b<], (22)

to be a decreasing sequence of belts in {2 parallel to the boundary o%2.
We call §,, the “width” of a belt I',, and detfine

bn=1"—(n+1)"" (23)

Although the definition is not precise and the actual width of the belts may
locally differ even significantly from ¢,, when 7 is small, these problems do not
arise anymore when n grows. Since we are mainly concerned with what happens
near the border ¢}, the concept of “width” as defined above is justified.

There i1s a correspondence between the width of a belt §,, and the distance
to the border d(z) as

b
4
By (4) we may also pronounce (24) as

d(z)t < 6, <A(b+ 1)d(2) . (24)
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Figure 1. Belts I'y_1,I'y, and I'y41 in the domain . Now d(zp) = n 2, d(z1) =
(n+ 1)~% and d(22) = (n + 2)°.

4 Lemma. Let Qt be as above. There exists a constant C5 > 0 such that
d(z) < Gl ()7, 7 #1 (25)

(and d(z) < G5, when v = 1) locally near every corner with opening wy.

PROOF. From Theorem 1 we see that there exist such constants ¢ and C’
that when wv, 0 < v < 2, is the opening of a corner at ({) € 84, then
C'le' (2)] < le(z) — (17 < Cle'(2)| in DN D((, p) for some p > 0,2 € . By
(3) and (4) we now get that

d(z) < (1 —|e(2)[P)]¢' (2)| 7 < Chl&' (2)| T, (26)

which proves the stateinent for v £ 1.
When v = 1 Theorem 1 implies that 0 < C' < |¢'(2)| < C, which proves
the claim. [@ED]

Lemma 4 is valid only locally, every corner having its own constant C.
Fortunately there are only a finite number of corners in J¢2, which enables us
to choose the maximum out of all candidates. This makes it feasible to say that

5 Corollary. There exists a constant Cy > 0 (depending on ) such that

d(z) < Gg|<,a'(z)|1_295 for all z € §1, (27)

where vy 15 as i (20).
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5 Integral estimates in (2

According to [11] analytic functions on the unit disk I are “subharmonic”
in the hyperbolic metric. that is, there exists a constant C > 0, independent of
r and p, such that

(
‘D(Z, T)‘ D(z,r)

[f)F < |[flw)” dA(w) (28)

for all analytic f, 2 CID,p > 0 and r < 1, |D(z,7)| is the arca of a hyperbolic
disk D(z,r).

We will prove that (28) is valid also for an analytic f € £2 with the integral
taken over a small square (). The outline of the proof is to map §2 onto the
unit disk and to show that the squares approximate the disks |D(z, )| closely
enough. We begin by showing how much the images of sets in £ (under the
Riemann mapping ) are distorted.

6 Lemma. If (Q C {2 s a small square far from O, thatl s, if for s
sidelength £ we have

< cd(z)H% forall z€@Q. 0<c<<l1 (29)

and if supgcq d(§) < (1 + c¢)infeeq d(§), again with 0 < ¢ << 1, then its image
o(Q) C I is small. Especially then

sup(l — |p(2)[?) < (1 + ¢} inf (1 — |o(2)|?), (30)
2€Q 2EQ
and
sup |¢' (w)| < (1 + ¢)? inf | (w)], with 0 <c << 1. (31)
weQ we

In condition (29) we actually set £ << §,,, where §,, is the “width” of the
belt I',, (23) in £ such that Q N T, # &. Thus by (24) we have (29).

ProOOF. The result follows by basic use of the Koebe distortion theorem
(2). [QED

An immediate consequence of Lemma 6 is the following:

7 Proposition. Let ) be as wn Lemma 6, r > 0. Then there exist disks
D C D such that -
D(z,7) C (@) C Dz, 2r). (32

where z = w(z),z € Q@ and z is the center of Q.
From (28) and Proposition 7 it now follows that
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8 Corollary. If () C £l 15 such that Proposition 7 holds, then

S@P < gy | 1FP daw) (33)

for all analytic f: X - C, a c @, p>0.

ProOF. Using the previous results, we get for a, A\, € £ and b,z,w € I,
b= p(a) that

C
‘D(Z: %)‘ D(2,%)

C
Vo daw < o [ 1 0w daw)

[Flp(0))]F <

C
<
- |D(Z:2T)| w(Q

Naturally

|[f o p(w)|” dA(w)

_ _ ! 2 - ! 2
mie@) = [ are) = [ 1OF 440 2 pigld OFm@)

which implies that

TR @) o o B 4
< T OVEm@) J FOPI O 4a(¢)
< L9 [ 17t dac)
by (31). Now (33) follows by fixing the constant Cp. GED

Now we are in a position to formulate

9 Lemma. Let o > —1 be the one fized before and 1 < p < oc. Then there
exists a constant C1 = Ci(p,a) > 1 as follows: If Q C {1 is a square as in
Lemma 6, then for all analytic [ wn § and for all a € 82, we have

F@P <G /%\f(z)\p dAg oo (2) / Meinor(@) aC€Q.  (34)

This fixes the constant Cf.

PrROOF. Since, by definition, the images () are included in hyperbolic
disks D(z, 2r) C D, we have by Corollary 8, that

\f(ﬂ)\EC’n_/Q £)1dA) [ /Q dA(2),
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where a € Q, recall that fQ dA(z) = m(Q). Here we can replace dA(z) by

dAy1p(2), since for z € Q, function d(z) is equivalent to d{ae) within constants
independent of a. The same is also true for |¢'(2)| by (31). So we get, because
p=p/q+ 1, that

P < 0o ( [ r@p@reer taip@)) [ masn@P
<an /Q FEPI PP (I dhasn(@) ) ( /Q dAW(z))p/q [masn(@

_2_1

< Co (/Q LF(2)Ple’ ()P dAa+p(z)) @' (@) Pma-p(QP Umatn(Q) ¢

< G, ( j@ )P dAa+p,an(Z)) / (wanp /Q dAa+p(Z))

< C[]C/C; | f(2)° dAg+p,pr (Z)/m&_|_p:{pp Q)

where we used (31) and replaced dA(z) by dA,(z) as above. QED

Combining some of the specifically named constants created above we let

Cy = 8(b+ 1)C5 2 (CE 4 on)VP. (35)

6 Division of Q and the sequence (A, )

Let ¢y, » be half-open squares with the sidelengths i, = {(¢},) depending on

1 by
On

p— ab:
where C} is the constant in (35) and §,, represents the “width” of a belt T,
defined in (23). For n € Z, k € Z? we define the squares by setting

Que =1 (z1,22) | Inki <y <lplki +1), =12} (37)

and thus |, Qnx = C for every fixed n € Z and Qyn,,» NQnp = F, when m # p.
We may now use the squares @, x to cover (2. For each I',, we assign respec-
tively a collection Q,, of the squares ¢}, ;. as tollows

Qn,k < Qn = Qn,k M Fﬂ ?A 2. (38)

Obviously there are only finitely many squares which satisfy condition (38),
so¢ we assign J, to be the number of squares in each QQ,. Assume then that

the sequence (Qn,k) I

k=1
Qn,k C Qn-

- (36)

is re-indexed such that for all k = 1,....J,, we have
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10 Remark. Every Q. € Q. satisfies for all n, k& the requirements of
Lemma 6. This follows from (36) and the properties of §,, and d(z}, see (24).

11 Definition. For every (), € Qn we denote by A, ; the center of the
square ¢y, -

Since @y NQum = D for all n € Z,1 # m, it is clear that inside the family
Q. a point A, ; may belong to only one Qy, ;. It 1s possible that the squares in
the adjoining families Q.+ would overlap the squares in Q,,.

Assume Ay g € Qo for some k£ € Jy, 9. According to Definition 11 there
exists also a point Ay o € Quyag- Clearly, as Ay € Qp and Ao € o

) .
V2:lpio = v2- Hz < Opt2 < Opt1 < dist(Ap g, Ani2,k)s (39)

but this is a contradiction since both points belong to the same square and
thus we should have dist(A, z, Ajor) < V21, o. Using the same argument for
An—2.k and A, . we see that the points A, ;. belong to at most 3 squares.

Clearly now £ = Un’ . Qni and every z € {1 belongs to at most 3 sets QQy, .
From the definition above it is also easy to see that (Q, s NIp)N(QpmiNn) = &
when (1, k) # (m,1).

Remark 10 implies that for 2 € @, the functions d(z) and |¢'(2)| are
equivalent to d(\; ) and |¢' (A )| respectively. Thus

C'd(An) 1 )| Qne) < Mo (@) < O )1 oI Quse)-
(40)
By Remark 10, Proposition 7 and Lemma 9 hold and we may prove that

12 Lemma. Let 1 <p < oo, o> —1 and f € AL(QY). For all A\, ; €  we
have, that

3 ) M2p, 0 Q)| f )P < C /ﬂ F(F dAaspon(2)
1,k

holds for all f € Ag,,-

Here and later E-n,k — Z;ﬂﬂ Zgil-

PROOF. Since the distance d(A, ) is equivalent to d(z) for all 2 € Q, i, we
have d( A, 1)*Mpor(Qni) < Cmgyper(Qni). Thus we get by Lemma 9, that

A 1) (Qrie ) LF ) [P < O ]Q F(2)P dAcsp,or(2).

Ag any point in {) belongs to at most 3 of the sets Q) and Qi NQppw =
for k £ k', the statement follows. [@ED]
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By combining (24) with Corollary 5 it follows that

12 < Cld(2) 5 = C'd(2)H™0 = C'd(2)d(z) o
<26, (b + 1)126, d(z)|¢' ()], (41)
with C7 = 20;1/2(6 + 1)1/2. On the other hand, for [,, it is also true, that
In = 6,05 " < 4(b+ 1)Cy 'n ) <46+ 1)C; (42)
Together, we have
< S 207 A6l ()] < gl @ (@)

From Corollary 3 and (43) we have
13 Lemma. Let 1 <p < oco,a > —1. For all f € AL(Q), we have

Z]cm (2) — f(Ani)|” dAg(2) < 01+1/|f ()P dAg(2),  (44)

where C1 s the constant in (34).

PROOF. Since |z — Ap | < 2, for any z € Uy, , using (43) we may estimate

1F(2) — FOup) <20, sup {|f'(w)|}

weQn,k

1 ! !
< (Olz_l_al)l/pd(’\n,k)‘(ﬁ (Z)\wigik{\f (w)|}-

Hence, using Lemma 9, we get for all n and & that

1
[ 10— FOnl dAa() < G masn(Que) s (i)}

weQn,k

1
< '(2)|P dA
> 01+1/Qn,k el e 1)

Here we have used the fact that for z € Q,, 1 the distance d(\,, ;) is equivalent
to d(z). The result now follows from Corollary 3. [@ED]
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7 Atomic decomposition

In atomic decomposition every function f € A% is represented by a unique
linear combination f(z) — En plan 1 )k(z, Adp i), 2, Ak € (2, of atoms & which
in A%, consist of the 1eproducmg kernel K, (z Mn.k) and an appropriate weight
function. The one-to-one correspondence between functions f € A% and the
sequence of coefficients (uy, ) € P means that the spaces P and Ab are isomor-
phic. By [6], Thm. 2.a.3, p.54, we have that

14 Theorem. Let 1 < p < 0. Then every infinite-dimensional comple-
mented subspace of (P s tsomorphic to [P.

Recall that a closed subspace G of a Banach space B is complemented if and
only if there exists a continuous projection I : B — B such that P(B) = .

Obviously we now need to define an isomorphism from A% to a comple-
mented subspace of P using the sequence (A, ;) from Definition 11. Thus we
define operators R : AL(R2) — P, S:AL(Q) — AL(Q), and T : [P — AL(QD),
as follows:

(Rf)nge = mapf(Ong), f € ALY

_ f(An,k) AP (O
o= Z T (@O P P Al (45)
_ tﬂ,k
r ((ﬂn,k)) (%) = HZJE An.,k (1— @(Z)Sﬁ?(/\n,k))2+ﬂ: (ﬂn,k) c %,

The coefficients 7, s and { in (15) are such that

ol t m(Qn, )
g = (1 — (M) 9% ¢ (An’k)‘zma,w(Qn,i)lf‘f’

Sne = (1 = Q1) )21 Q) 2m( Qi)
tn,k — ma,w(Qn,k)lrfq:
where (A, 1) is the sequence in {2 defined in Definition 11 and ¢},  is the disjoint

decomposition of £2. The coefficients (46) are equivalent, after a slight effort of
tidying up, to the following;:

(46)

o = A @ s (2) = d(Ak) Ka(z, Ane)  and

(47)
t;L,k('z) — ( 1, k)E__K (z:' An,k)u

meﬂ—2+b_i

Directly from the definition (15) it is easy to see, that TR f(2) = Sf(z). T
verity that the operators are continuous we get
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15 Lemma. The operators R: AL, 1P S: AL, — AL and T : 1P — AL are
bounded, when p > 1.

PROOF. Let 1 +1 =1and f € H® C A%,, where H* stands for the space

p o
of bounded analytic Eunctions. Since d(z)* is approximately equal to d(A, )%,

it is fairly straightforward to see, using (17), that

(T(ana) | Ha=(@+1) [ (1= e P 3 T((an) F&) dA)
2 n,k

B ) (1 —lp)A) e (D> =
— % ﬂn,kma,w(Qn,k)l q(a’ + 1) L ( B @()‘“:k)@(g))q(z_l_a) f(Z) dA(Z)

- Z ﬂﬂgkma,w(Qn,k)l'qu()\ﬂ,,k).
1.k

Using the inequality of Holder and Lemma 9 and recalling that m, ., (Qn,k)l/ 1 <

Cd()\n,k)“/‘?mg,w(Qn,k)lf‘f by (40) we see that there exists a constant C > 0. such
that

(T ((ane)(2) | Flal <CY
.,k

U k(A k) %mﬂ,w(Qn,k)lqu(/\n,k)‘

q

1,k

< (OZ ‘ﬂ*n,k‘p) (CZ d(}\ﬂ!k)ﬂ’m[],w(Qn,k) f(}ln,k)‘q)
1,k

< C/l(an,) lwC (/ﬂ d(2)°1¢' )12 f (2)° ‘“(2’)) |
= Cll{an,e) i ||.f || a2,

by Lemma 12. We have shown that sup{ (T ((ant))(2) | f}|} is finite, when
f € H® goes through the unit ball of A%, Because H™ is densein A%., the same

applies also when f € AL, Thus T : [? — A} is bounded, because (AL)* = AY,.
For R we have

(i) (O ) |2 (Qn )
(An,k)a’/q |’ (/\n,k) | 2+am(Qn,k)1” 4

Trg < Od = Od(/\n,k)%m(Qn,k)ﬂl’a

and theretore

IRFIE, <CY  dOn i) FOn,e) Pm(Qn i)
.k

<c f F(2)Pd(2)* dA(z) = C'||f |
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Thus R is also bounded. The boundedness of S follows from the fact that ||S|| =
ITR]|. QED

16 Lemma. If p > 1, the operator S is invertible in AL,

PROOF. Let - + ¢ = 1 and A = I — 8, where I is the identity operator.
For § to be invertible, by using the Neumann series it is enough to show that
|A|l < 1. Let {-| -)o = (-0 | - o1 )p be the normal inner product and let
f,g € H* be fixed. Thus it follows that

(Af |9 — /ﬂ (1 — lo(=)2)%¢' ()2 £ ()3 () dA()
T Z(l - “P(’\n,k)‘z)m‘ﬁﬂf(’\n,k)‘Z'm(Qn,k)f(’\n,k)
7,k

. Py 2y |, Af Py 2
[ S

- /9(1 — le(2)")°¢ ()] f(2)9(2) dA(z)

= . FO g1 (1 — o) D¢ (A i) dA(2),
nk ¥ Yk

because m(Qy, ) is the area of @, . We then choose a Q;hk C Qn i forevery n, k,
such that | J, . Q;hk = 2 is a disjoint union. (This is always possible, in cases

- ! !
where An,k — A?L—kl,k’ we put Slﬂlpl}" Qﬂ,,k — Qn,k\“Qn—kl,k and Qn+1,kf — Qn—l,k-)
Then

(Aflgha =) / (F2)9GY(1 — e P2l ()2
nk ¥ @nk (48)

g (1 [0 D21 M) ) dA(2),

Set W (z) = (1 — |o(2)]2)*|¢'(2)|%. The integral in (48) may now be split into
three different integrals by adding and subtracting appropriate terms. Then

(Af 1y =" | £(2) (90z) — 90up) ) W) dA(2)
n.k n,k

2. ] 9O i) (f(2) = FQn i)W (An k) dA(2)

+Y [ @I W (@)~ W) dAE)
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We apply the Hélder inequality twice for I; and get, because (1 — |p(2)|?)¢ <
Cd(2)*|¢' (2)|* and hence W (A, ;) < CW (2) < Cd(2)%|¢'(2)|*T%, that

1] < 10 (Z ]Q f()P dA (z))

| (Z/Q 19(2) — g(An 1) |4|¢" (2)|1CF) dAm(Z))

Now, with the help of Lemma 13, we arc able to find a constant Cy = (C; | 1)1,
0 < Cy << 1, such that

(ZL g(z) — nk)‘q dAg w(z))

which means

P

1
q

1

< ([ 191 dAaut))", (29)

'

1] < Cllfllazllgll ae, - (50)

Again using Holder twice we get

(2]@ £@ = fOnill dﬂa(z)) (Z /. |g(An,k)|wAm,w(z))

— (Z-/Q f(z) — f nk)‘p dAg( Z)) (Zmﬂ:w Gn k)‘g( nk)‘q)

According to Lemma 9

g

| 15|

IA

P

(51)

C1
ma,w(Qn,k)

for all » > 1. Since every point in {2 belongs to at most 3 sets @y, . we thus
have

‘Q(}‘n,k)‘q <

[ 19 dAauz) (52)
Gn.k

3 e (Qui)l90n)l7 < 301 [ 1911 dAau(2). (53)
., K 2

The factor } _, , fQ |f(2)— f(Ani)|PdAq(2) in (51) is again (similarly to (49))
bounded by (C + 1) Lo |f(2)|P dAq(2). Hence

[ 12| < C[fllaz llgl.as, - (54)
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Applying Lemma 6 and Proposition 7 to Iz yields |W(z) — WA, z)| <
ﬁW(z). Hence, adopting the same routine we used for 71 and I, we get

5] < IOOZ [, W@lsn i) () dAte)

(5L rerea) (5 worens) ©

< i
< IUOHJ"HAP g1l 4q,

Combining (50), (54) and (55) we find also a constant 0 < C7 < 1, for which

(Af | g)a < Crll fllazllgll ae,,

for all f,g € H°°. On the basis of the duality between A%, and AE* it is easy to see
that there exists a constant C' > 0, for which ||A|| = || — 8| < C « 1. [@ED]

Since § is invertible, we may define an operator RS~ 17T : [P — [P. Now

(RST'T)? = RS TR)S'T = RS 'S8 'T = RS 'T,

which makes RS !7T =: P a projection operator from ¥ onto a complemented
subspace of {P. Because S — TR is invertible, §~1 and T are surjective and R is
bounded from below. Thus P(I?) = R(AL (), making R : AL(Q2) — P(I?) an
isomorphism to a complemented subspace of [#. By Theorem 14 now Ay = [P.

We can now prove our main result, the atomic decomposition for functions
in A% (£2) using the sequence (A, ;) constructed directly in €.

17 Theorem. Ifp > 1 and %_I_ % = 1, then there exists a segquence (A1)

wn ) satisfying Definition 11 and a constant C > 0 with the following properties
(where t,, 1 are as in (46)):

(1) For any (an i) in lP, the function

- a tn,k
fle) =2 "1 — o(2)0np))2

n,k

is in AL (Q) with
| fllar < C\(an.i)le-

(2) If f € AL(QY), then there is (an k) in [P such that

_ tn,k
A P TRy

1.5
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and

[(ane)lle < CllF] 40

PrOOF. Statement (1) follows from Lemma 15, statement (2) from Lemma,

16 and the second part of the proof of Lemma 15, i.e. the boundedness of
S. |§ED

8 Numerical example

In order to check how the atomic decomposition obtained in Theorem 17
behaves, we have calculated a numerical example in a simple domain.

Let € be the first quadrant of the unit circle, that is & = {z € C | |2| <
1,Re(z) > 0,Im(z) > 0}. Then a conformal mapping ¢ : £ — I,

24 4 2422 + 1 8z(z* — 1)
r -th I
p(z) = v wi @ (z) = A 22 1 1)

— 222 + 1°

will map €2 onto the unit circle. Clearly €2 is regulated and 5€2 has three corners
with opening 7 /2. Thus

1 1
Jn  In+1

Since in Q the maximum distance to the border 8Q is sup,cq d(z) = V2 — 1,
the first belt that (partially) fits in €2 is I'14 with width 614 = 9.433 - 1073,
From [11| we get that the constant C in (28) is

1
b=3

making 0y =

(1 + s]2])*

C >
~ (12?5

> 54.598, when s =tanhr <1, 0<r < 1.

Examining more closely the proof of Corollary 8 we find, using again [11], that
since |D(z, 2r)|/|D(z,r/2)| < 5.00985 and since we may take ¢ = 1/10 in (30)
to be on the safe side, we have that

Cy =~ 54.598 - 5.00985 - 1.1* ~ 400.471.

From the proof of Lemma, (9) we see that C; ~ 1.12- Cy ~ 484.570. To calculate
C> in Corollary § we get, using M athematica, that

diz) _ 1
' (2)] S 4+4/2

where the maximum occurs at the corners 2 =1 and z = 3.

— 021
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Finally, investigating equation (4) more carefully we may optimize (35) such
that, taking here p = 2 yields Cp = 41(3} + 1)02\/ C‘f + C71. Thus, rounding up
to ease the calculations, we have ), = 30 and hence the sidelength (36) of a
square Q4. 18 {14 — 3.144 - 104

Recall from (37) that every division @), of C starts from the origin. Thus
knowing that the lower left corner of every Iy, is at (n 4 1)71/3(1 + 4), we get
that the first index such that Q) r, intersects I';; is

k1(n) = (Mn, My,) € N> with My, = [, (n+1)71/3],

where [z] — min{k € N | & > «}. In the belt I'14 we have My4 — 1290.
Then let (,, 1 = dist{A, 1,041), which for the first point of the sequence in I',
yields Ap 1 = (n,1(1 +7) and (because Ay 1 is at the center of the square Qy, ;)
C14,1 = (1290 — %) - {14 =~ 0.40547.

Thus for every n we have the first A, 1 at ¢;,1(1+7) and all the other A, ; are
translations of A, 1 to z- and y- directions by [,,. Eventually we get a sequence
of points A14;, where

Aa1 = Cra1(144) = (1290 — 3)(1 + 49)l14 = 0,40547(1 + 1)
)\14!2 — C14!1(1 —+ '3) + {14 == 0.40578 + 0.405473

Magr = C1a1(1+17) + 67 - {14 ~ 0.42654 4 0.40547%
Aags = C141(1 +7) + 1147 =~ 0.40547 + 0.40578:

Here 67 happens to be the number of squares (14 3 that cover the lower border
of I'14, 1n total there are approximately 3600 squares that intersect 1'y4.

The number of squares needed to cover the belts '), grows rapidly when
the belts get closer to the border (Table 1). In this case it takes 1000 belts to
get within the distance of 0.1 from §€! and already there will be approximately
80 million points A in the decomposition. As the smallest angle gets sharper.
the situation becomes even more cumbersome to handle. For instance with the
angle w/4 we get b = 1/7 and to get closer to the border than 0.1 would require
10 million belts and a large number of covering squares.

It seems that in order to be applied the method above would need to be
optimized. In this study, however, the priority has been to ensure that the
sequence Ay, i in Definition 11 does indeed meet the requirements of an atomic
decomposition and accordingly many of the approximations have been done
with an ample margin to ease the calculations.
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L On, In M, Cn,l #Qﬂ,k
14 9.4331-10 2 3.1444-10 * 1290 0.40547 3 509
15 8.6299-10"2 2.8766-10"% 1380 0.39683 12459
16 7.9391-10"2 2.6464-10"% 1470 0.38889 21141
17 7.3397-10"% 2.4466-10~* 1560 0.38154 32526
18 6.8152-10"° 2.2717-10~% 1650 0.37472 43 585
20 5.9430-10—2 1.9810-10~% 1830 0.36243 67635
30 3.4984-103 1.1661-10~%* 2730 0.31830 221709
50 1.7859-10"° 5.9528-107° 4530 0.26963 662 855
100 7.1339-10"% 2.3780-10"° 9030 0.21472 2299 927
1000 3.3311-10"° 1.1104-10"% 90030 0.099966 77727082

Table 1. Some data of the belts I',,. Here n i1s the number of the belt, §,, the
width ot a belt, [, the sidelength ot a square ¢, ., M, tells how many squares
QQ,..x are needed counting from the origin before the first intersects I',,, (.1
the border-distance of the first point A, 1 of a decomposition and #Q), ; the
minimum number of squares ¢},  needed to cover a belt I'y,. All other entries

have been calculated as above, #Q}y, by comparing the areas ot the squares
and I',,.
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