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Abstract. The aim of this paper is to get some results about ruled surfaces which configure a
projective theory of scrolls and ruled surtaces. Our ideas follow the viewpoint of Corrado Segre,
but we employ the contemporaneous language of locally free sheaves. The results complete the
exposition given by R. Hartshorne and they have not appeared before in the contemporaneous
literature.
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Introduction

Through this paper, a geometrically ruled surface, or simply a ruled surface,
will be a P'-bundle over a smooth curve X of genus g. It will be denoted
by # : § = P(&)—X and we will follow the notation and terminology of
R. Hartshorne’s book (8], V, section 2. We will suppose that £ is a normalized
sheaf and Xy is the section of minimum self-intersection that corresponds to the
surjection £&—O0x (¢)—0, A?E = Ox(¢). Which are the linear equivalence
classes D ~ mXy + bf, b € Pic(X), that correspond to very ample divisors?.
When ¢ = 1 and m = 1, a characterization is known ( [8], V, ex.2.12), but
the classification of elliptic scrolls obtained by Corrado Segre in [17] does not
follow directly from this. A scroll is the birational image of a ruled surface
7: 85 = P(&)—X by an unisecant complete linear system.

The philosophy of this work is to develop a theory of ruled surfaces that al-
lows their projective classification, by using the modern language of P™-bundles
and rescuing the classical viewpaint introduced by C. Segre in [18]. This Segre’s
paper was reviewed with criticism by F. Severi in [19], but only some of the
results of this work were reformulated nowadays. The study of directrix curves
with minimum self-intersection and the formalization of the concept of ruled
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surface of general type was made by F. Ghione in [6]. The calculus of the genus
of a curve on a ruled surface appeared in Ghione-Sacchiero [7]. The Hilbert
scheme of the nonspecial ruled surfaces was studied by the second author in [1]
and [16], where the property of maximal rank was proved. The theorem of
C.Segre which says that e > —¢ in a ruled surface 7w : P(£y)—— X was proved
by M. Nagata in [15], by H. Lange in [10], and it was generalized to higher rank
by H. Lange in [11]. Finally, M. Maruyama studied ruled surfaces by using el-
ementary transforms in |[13]|. He applies the classification theorem of Nagata (all
geometrically ruled surface 7 : P(£y)—— X is obtained from X x P! by applying
a finite number of elementary transformations, [21], V,§1) to study the moduli
of ruled surfaces of genus g < 3. Anyway, the results of this paper complete the
exposition about ruled surfaces given in |8 and they have not appeared hefore
in the contemporaneous literature.

The paper is organized in the following way:

: Ruled surfaces and scrolls.

: Unisecant linear systems on a ruled surface.

: Decomposable ruled surfaces.

: Elementary transtormation of a ruled surface.
: dpeciality of a scroll.

: Segre Theorems.

In section 1, we introduce the basic facts about ruled surfaces and we relate
them to the scroll. The classical authors define a scroll as a surface B ¢ PV
such that there exists a line contained 1in R that passes through the generic point
(see [20], 204). We show that any scroll is the birational image of a geometrically
ruled surface S = P(&;) by an unisecant linear system. In a modern way, this
is the equivalence between morphisms ¢ : X—G(1, N), where X is a smooth
curve, and surjections Og+1—>8 , where £ = ¢"U is the locally free sheaf of
rank 2 obtained from the universal bundle 7.

In section 2, we characterize when a complete linear system defined by an
unisecant divisor H ~ X+ bf in S is base-point-free. The most important result
is Theorem 20 which describes the points where the regular map ¢z : S— P is
not a local isomorphism. Equivalently, this characterizes the singular locus of the
scroll R = ¢ g(.5), qb;Il(sing(R)) = {z € §/z is abase pointof |H—Pf|,P € X},
and when |H| is very ample.

In section 3, we consider a decomposable ruled surface £y =2 Ox B Ox(e).
There exist two disjoint sections Xy and X, which correspond to the surjections
Eo—0x(e)—0 and £—Ox—0. We prove some results that localize the
base points of a unisecant complete linear system H ~ Xy 4+ bf over X, or
X1. We study the existence of sections in |H| and we give a sufficient condition
for ¢ to be an isomorphism in points out of Xy or X;. The main result of
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this section is Theorem 34, where we describe the support of the singular locus
of the regular map ¢g : S— R C P?. We finish this section studying the
base-point-free and very ample m-secant complete linear systems.

In section 4, we make a classical study of the elementary transformation of a
ruled surface. We describe some elementary properties and we show that the el-
ementary transform corresponds to the projection of a scroll from a nonsingular
point.

The study of how the divisor e is transformed by the elemnentary transform-
ation at a point z in the minimum self-intersection section allow us to give an
easy demonstration of the result of C.Segre (Corollary 48): any indecomposable
scroll 1s obtained from a decomposable one by applying a inmite number of ele-
mentary transformations. We use that e = —3(e) < 2¢ — 2 in a decomposable
ruled surface.

The main result of this section is Theorem 50, where we identify the elemen-
tary transtorms of a decomposable ruled surface at a point z according to 1ts
position.

In section 5, we introduce the special ruled surfaces. Then we use the elemen-
tary transtormation to give a geometrical meaning, according to Riemann-Roch,
of the speciality of a scroll. In this way, we pose the problem of the existence of
scrolls with speciality 1 over a smooth curve of genus g > 1 and such that any
special scroll is obtained by projection from them. This problem is solved in [5].

Finally, in section 6, we rescue the results of Segre in |18 about special ruled
surfaces. We conserve the spirit of Segre’s methods, although we write them in
modern way. In fact, Segre proved that a special ruled surface of genus g and
degree d > 49— 2 always has a special directrix curve, but the condition over the
degree is not necessary: any special ruled surface has a special directrix curve
(see [5)).

Most of the results that appear in this paper generalize to higher rank and
will be studied in a forthcoming paper.

1 Ruled surfaces and scrolls

1 Definition. A geometrically ruled surface, or simply ruled surface. is a
surface S, together with a surjective morphism 7 : 5——X to a smooth curve
X, such that the fibre S, is isomorphic to P! for every point £ € C, and such
that # admits a section (i.e., a morphism 7 : X —.5 such that m o1 = idx).

2 Proposition. If 7 : 55— X 15 a ruled surface, then there exist a locally
free sheaf £ of rank 2 on X such that § = P(£) over X. Conversely, every such

P(&) is a ruled surface over X. If £ and &' are two locally free sheaves of rank
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2 on X, then P(E) and P(E") are isomorphic as ruled surfaces over X if and
only if there is an invertible sheaf L on X such that E'=2 EQ L.

PROOF. See (8], V, 2.2. [@ED]

If # : §5—X is a ruled surface, we can choose § =2 P(&) where & is a
locally free sheaf of rank 2 on X with the property H°(Ep) # 0 but for all
invertible sheaves £ on X with deg(£) < 0, we have HY(§y ® £) = 0. In this
case we say & 1s normalized. The sheaf & is not determined uniquely, but it is
determined e = — deg(£&).

Let e be the divisor on X corresponding to the invertible sheaf /\2 &p, then
e — —deg(e). Moreover, there is a section 7 : X——8 with image X, such that
Os(Xp) = Og(1).

3 Proposition. Under the above assumpiions:

Pic(S) 2 Z @ =" Pic(X)
where Zi s generated by Xg. Also
Num(S)=2ZdZ

generated by Xg and f, and satisfying Xo.f = 1, f? =0.
PROOF. See (8], V, 2.3. [QED]
Thus, if b € Div(X), we denote the divisor #*b on § by bf. Therefore, any
element of Pic(5) can be written nXy + bf with n € Z and b € Pic(X). Any

element of Num(X) can be written nXy + 6f with n,b € Z. A linear system
InXo + bf| will be called n-secant because it meets each generator at n points.

4 Proposition. Let £ be a locally free sheaf of rank 2 on the curve X, and
let S be the ruled surface P(E). Let Og(1) be the invertible sheaf Opg)(1). Then
there 15 a one-to-one correspondence between sections i : X — 8 and surjections
E—L—0, where L is an tnvertible sheaf on X, given by *Og(1).

Furthermore, if DD 15 a section of §, corresponding to the surjection E—L—0,
and L = Ox(a) for any divisor a on X, then degla) = Xyp.D, and D ~ Xy +

(a—e)f.
PROOF. See [8], V, 2.6 and 2.9. [@ED]

It £y 18 a normalized sheat and Xy the corresponding section of the ruled
surface m : §——> X, we have that:

T+ Og(X0) = &o
Moreover, if H ~ Xy + bf, by the projection formula:
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Since R'w,.Og(H) = 0 for any i > 0, we have that HY(Og(H)) = HY (EyO x (b)).
From this and from the definition of normalized sheaf, we see that the curve
Xp is the minimum self-intersection curve on S and Xg = —e.
The image of a ruled surface by the map defined by an unisecant base-point-
free linear system is a surface containing a one-dimensional family of lines.

5 Definition. A scroll R C P is an algebraic surface such that it has a line
passing through the generic point. The lines of the scroll are called generators.

Let R C PY be a scroll. Let H be a generic hyperplane section of R. H is
smooth away from the singular locus of R. Thus there is an open set U C H,
such that there is a unique generator passing through any point.

Let G(1, N) be the Grassmaniann parameterizing the lines of PV . We have
a map:

U—G(1, N)

which applies each point of U/ over the unique generator passixﬁ through it.
The map extends uniquely to the nonsingular model X of H:

n: X—G(1, N)

If X is a curve of genus g, we say that R has genus g, that is, we define the
genus of R as the geometric genus of the generic hyperplane section.

6 Definition. Let V € P¥ be a projective variety in PY. We say that V
is linearly normal, when there is not any variety V! € PY, with N’ > N and
deg(V) = deg(V’) such that V' projects over V.

7 Proposition. A bnearly normal scroll R s the smage of a unitgue ruled
surface S by the birational map defined by o base-point-free unisecant complete
linear system |H |.

PROOF. Let R C P¥. Consider the corresponding map 7 : X—G(1, N).
We build the following incidence variety: PN
7 ]
G(1, N} xP¥N + XxPVN>Jx = {(P,z)/z € lﬂ(p)}<
P> x5 @q(1,N)

Jx and X are smooth varieties and the map p : Jx—X has fibre P!
and surjective differential. Then, applying Enriqiies—Noether Theorem (see (2],
I1), there exists an open set U/ C X verifying p~ ' (U’) = U’ x P'. Since X is a
smooth curve, we deduce that p : Jx——X has a section and it is a geometrically
ruled surface.

The image of the projection ¢ is exactly the scroll £ on P¥. The generic
fibre of ¢ is a point. Consider the invertible sheaf £ = ¢*Opn~(1). Their global
sections correspond to the complete linear system |H|where H := ¢*H. It is
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an unisecant linear system, because it meets the generic generator at a unique
point. The map ¢ is determined by a linear subsystem § C |H|, so |H| is base-
point-free.

But R is linearly normal, so II°(Q g, (II)) = II°(Opn(1)). From this g is
determined by the complete linear system.

Note that the construction does not depend of the election of the hyperplane
section, because any twao hyperplane sections are birational equivalent. In fact,
the ruled surtace Jx 1s unique:

It we suppose R defined by the birational map determined by a base-point-
free unisecant linear system |H’| over the ruled surface 7 : P(£)— X

we can define a birational map 7' : X —G{1, N) which applies a point P € X
on the line ¢g (P f) on PY. The maps n and 7' are equal up to automorphism
of X and then the incidence variety Jx is isomorphic to P(£). [QED]

8 Definition. Let B C P" be a linearly normal scroll, let S be a ruled
surfacc and let |H| be a basc-point-free unisccant lincar system dcfining a bi-
rational map ¢g : S—PY. If ¢5(5) = R, then we say that S and H are the
ruled surface and the linear system associated to R.

9 Definition. A directrix curve of a scroll is a curve meeting each generator
at a unique point.

The directrix curves of a scroll R correspond to the sections of the associated
ruled surface S. Suppose that A is the image of S by the map defined by the
linear system | X+ bf|. We will denote the image of a section D of S by D C R.
The curve has degree deg(D) = D.Xp + deg(b). The degree of the scroll R is
(Xo + bf)2 = X2 + 2deg(b).

The minimum self-intersection curve X, ot & corresponds to the minimum
degree directrix curve of R. If we take two sections 101 ~ Xy + a1 f and Dy ~
X+ az f on &, they have non negative intersection. Thus:

deg(D1) + deg(Ds) = 2X¢ + 2deg(b) + deg(ai) + deg(as) =
= X2 + 2deg(b) + D;.Dy > deg(R)

We see that the sum of the degree of two directrix curves of R 18 greater than
or equal to the degree of K.

We have seen that the study of the scrolls is equivalent to the study of geo-
metrically ruled surfaces and their unisecant linear systems, but it is equivalent
to the study of locally free sheaves of rank 2 over the base curve X too. In
the next section we begin the study of the unisecant linear systems on a ruled
surface and in this way we treat the study of the scrolls.
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2 Unisecant linear systems on a ruled surface.

Let w : S—X be a geometrically ruled surface. An unisecant complete
linear system |H| — | Xy + bf| on S defines a rational map ¢z : S—P". The
map ¢g is regular out of base points of |H| and it is an isomorphism onto its
image when |H| is very ample. In this section we will study general conditions
for an unisecant linear system to be base-point-free, to have irreducible elements
and to define an isomorphism.

10 Lemma. Let b be a nonspecial divisor on X. Then, 1f 1 > 0:

A (Os(Xo + bf)) = B (Ox (b)) + 1 (Ox (b +¢))

PrROOF. Because S is a surface, it is sufficient to prove it for 7 < 2. Let us
consider the exact sequence of Xp on 5

0—0gs(—Xp)—05—>0x,—0
Tensoring with Og( Xy + bf), we get the cohomology sequence

0— H(Og(bf))—H(Os(Xp + bf))—H(Ox,(Xo + bf))—
— H' (Og(bf))—H (Os(Xp + bf))— H' (Ox,(Xo + bf))—
%HZ(OS(bf))%Hz(OS(XD T hf))HHZ(OXn (Xo+bf))—

We have A*(Og(bf)) — A (Ox (b)) and h*(Ox,(Xo +bf)) — A (Ox (b +¢)). But
R (Ox(b+e)) = h?%(Ox (b)) = 0. Since b is nonspecial, A (Og(bf)) = 0 and the
lemma follows. [QED

11 Remark. Note that we have seen that the following inequality always
holds:

R (Os(Xo + bf)) < hH(Ox (b)) + A (Ox (b + ¢)).

Furthermore, if we consider the linear system |mXy + bf| with m > 0, for
each 2 > 0 we have the ezact sequence:

HY(Os((m — 1)Xo + bf))—H'(Os(mXg + bf))—H (Ox (b + me))

From this, we deduce that h*(Os((mXy+bf))) < A Ox(b+me))+ A (Os((m—
1)Xp + bf)). We continue in this fashion obtaining:

m

W (Os(mXo+bf)) <D hH(Ox(b+ ke))
k=0
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12 Proposition. Let S be a geometrically ruled surface and let b be a divisor

on X. Let |H| = |Xo+ bf| be a complete linear system on §. Let P be a point
in X. Then:

(1) |H| is base-point-free on the generator Pf if and only if \°(Os(H—Pf)) =
h(Os(H)) — 2.

(2) |H| has a unigue base point on the generator Pf if and only if A (Os(H —
Pf)) = h’(Os(H)) — 1.

(8) |H| has Pf as a fized component if and only if h®(Os(H — Pf)) =
h*(Os(H)).

PROOF. Let us consider the trace of the linear system |H| on the generator
Pf:

0—H(Os(H — Pf))—H*(Os(H)) = H°(Op;(H))

H meets each generator at a point, so H*(Op;(H)) = H*(Op1(1)). Therefore
h*(Ops(H)) =2 and:

(1) If dim(Im(w)) = 2, then the linear system |H| traces on Pf the complete

linear system of points of P!. Since this is base-point-free, |H| is base-
point-free on FPf.

(2) If dim(Im(e)) = 1, then the linear system |H| traces on Pf a unique
point, so |H| has a unique base point on the generator Pf.

(3) If dim(Im(a)) = 0, then the generator Pf is a fixed component of the
linear system |II|.

From the exact sequence we obtain dim(Im(w)) = A°(Og(H)) — R (Og(H —
Pf})), which completes the proof. [@ED]

13 Corollary. Let S be a geometrically ruled surface and |H| an unisecant

complete linear system on S. |H|is base-point-free if and only if for all P € X,
W (Os(H — Pf)) = h°(Os(H)) — 2.

14 Proposition. Let b be a divisor on X. If P is a base point of |b+ ¢,
then Pf N Xy s a base point of the complete linear system | Xy + bf|.

PROOF. Let us study the trace of the linear system |Xp + bf| on Xp:

0—H(Os(bf))—H°(Os(Xo + bf))— H°(Ox, (Xo + b)) =~ HY (Ox (b + ¢))

By hypothesis, £ is a base point of |b + ¢/, so all divisors of | Xy + bf| trace on
Xy a divisor which contains P. We conclude that Pf N X, 18 a base point of

[ Xo + b f. [@ED
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15 Lemma. Let b be a nonspecial divisor on X. Then:

(1) If P is not a base point of b and b + ¢, then the linear system | Xy + b f|
has no base points on the generator Pf.

(2) If P is a base point of b+ ¢ bul not of b, then the linear system | X+ b f|
has a unique base point on the generator Pf. This point s XoN Pf.

(3) If P is a base point of b but naot of b +¢, then the linear system | Xy + b f|
has at most a base point on the generator Pf.

(4) If P is a base point of b and b + ¢, then the linear system | Xy + bf| has
at least a base pownt on the generator Pf.

PROOF. By Proposition 12, it is sufficient to compute A°(Og(Xy+bf)) and
R (Og(Xo+ (b— P)f)). Since b is nonspecial, A°(Og(Xy + bf)) = A% (Ox (b)) +
R (Ox (b + ¢)). We consider two cases:

(1) If P is not a base point of b, b — P is nonspecial because b is nonspecial.
Therefore, B’ (Og(Xy+(b—P)f)) = A (Ox(b—P))+h%(Ox(b+e—P)) =
R (Ox (b)) — 14+ A% (Ox(b+e— F)). Then, if £ is not a base point of b e,
RA(Ox(b+e¢— P)) = h%(Ox(b +¢)) — 1 and the linear system is base-
point-free on Pf. If P is a base point of b+ ¢, then A°(Ox (b + ¢ — P)) =
h%(Ox (b + ¢)) and the linear system has a unique base point on Pf (by
Proposition 14, it is at Pf N Xp).

(2) If P is base point of b, then b— P is special. Then A’ (Os(Xp+(b—P)f)) <
RY(Ox (b — P)) 4+ h(Ox(b+ e — P)) = hMOx (b)) + R (Ox (b + e — P)).
If P is not a base point of b + ¢, A°(Ox(b+¢— P)) = A’ (Ox(b+¢)) — 1
and the linear system has at most a base point on Pf. If P is a base point

of b+ ¢, by Proposition 14, the linear system has at least a base point at
XoNPf.

[QED)

16 Theorem. Let S be a geometrically ruled surface and let b be g diwisor
on X . There exists a section D ~ Xo + bf i+f and only 1f one af the following

conditions holds:

(1) h°(Os(Xo +bf)) — 1 and R°(Os(Xpo + (b —P)f)) — 0 for all P € X.

(2) B’(Os(Xo +bf)) > 1, h°(Os(Xo + (b — P)f)) < h°(Os(Xo + bf)) for all
Pec X and h°(Os(Xo+(b—P)f)) = kP (Og(Xo+ bf)) —2 for the generic
pornt P c X.
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ProOOF. We first note that reducible elements of | Xy + bf| contain at least
one generator, so they are in linear subsystems | Xy + (b — P) f|.

Let us suppose A’ (Og(Xp+bf)) = L If RP(Og(Xg+ (b— P)f)) = 1 for some
P € X, then the unique effective divisor of | Xy + bf| contains Pf so it is not
irreducible. Conversely, if A2°(Ogs(Xy + (b — P)f)) = 0 for all P € X, then the
unique effective divisor of the linear system does not contain any generator, so
1t 18 1rreducible.

Let us now suppose A (Os(Xog+bF)) > 1. If A% (Xo+(b—P) ) = h%(Os{Xo+
bf)) for some P € X. Then (by Lemma 12) Pf is a fixed component of the
linear system, so there are not irreducible elements in | Xy + bf]|.

If A°(Xo+(b—P)f) = h°(Os(Xp+bf))—1 for all P € X, then (Proposition
12) the linear system | Xp+bf| has a unique base point on each generator. Hence
there exists a fixed unisecant curve in the linear system and, as A°(Og(Xy +
bf)) > 1 the generic element is not irreducible.

Conversely, if the codimension of linear subsystems | Xy + (b — 7} f| is 2 for
the generic point and 1 for the remaining ones, then the reducible elements do
not satisty the linear system, so the generic element is irreducible. [QED]

The curve X is unique on its class of linear equivalence, except when the
ruled surface is X x L.

17 Lemma. Let S — P(&)——X be a ruled surface. Then h®(Os(Xp)) — 2
when P(&) = P! x X and h°(Os(Xy)) = 1 in other case.

PrOOF. Since X, is the minimum self-intersection curve, it corresponds to
the normalized sheaf &. Then we have that A°(Og(Xy)) = A%(&) > 0 and
R Os(Xy — PF)) = h°(Ey ® Ox(—P)) = 0, for any point P € X. From this,
h(Os(Xy)) <R (Os(Xg— Pf))+2=2.

If P(&) =2 P! x X then & =2 Ox & Ox and hD(OP(gn)(X[})) = 2.

Suppose that A°(Os(Xp)) = 2. Then | Xp| is a pencil of unisecant irreducible
curves, because K (Og(Xy — Pf)) = 0. If X}, X € | Xp|, X§-X§ = —e must be
positive, so e < 0. Suppose that e < 0. Then the curves X; and Xj have at least
a common point. Because | Xy| has dimension 1, the linear system has a base
point. By Proposition 12, there is a point P € X such that A°(Og(Xy — Pf)) >
R (Og(Xs)) — 2 = 0, but this is false. Therefore e = 0 and P(&p) has a pencil
of disjoint unisecant curves. We have an isomorphism:

1 Xo| x X — P(&)

that is, P(&) =2 P! x X. [eED

18 Corollary. Let b and b+ ¢ be effective divisors on X. If they have no
common base powmnits and b 158 nonspecial, then there exists a section 1) ~ Xg+bf.
Furthermore if b and b + ¢ are base-poimnt-free, then the complete linear system

| Xo + bf| s base-point-free.
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ProOF. Because b and b} ¢ are eftective divisors, a generic point P is not a
base point of both of them. By Propositions 12 and 15, A% (QOg(Xo+(b—P)f)) =
" (Os(Xo + bf)) — 2.

If P is a base point of b or b + ¢ (by hypothesis P is not a commmon base
point), by applying Proposition 15, we obtain that | Xy 4 bf| has at most a base
point on the generator Pf and A% (Og(Xy + (b — P)f)) < A (Os(Xy +bf)) — 1.

Now, by applying Theorem 16, the first part of the statement follows.

According to Lemnmna 13, we see that if b and b + ¢ are base-point-free, then
the linear system | Xy + bf| is base-point-free. [QED]

19 Remark. A unisecant complete base-point-free linear system |H| deter-
mines a morphism ¢ : S—PY that gives us a scroll R = ¢ (S) in PY.

The map 15 tnjective +f it separates points, that s, given z,y € X with x F# v,
there is an element D € |H|, such that z € D, but y & D.

Furthermore, the differential s injective at x € § when #t separates tangent

vectors, that is, given t € T,(S), there 1s D € |H| such that x € D, butt ¢
(D). [@ED

20 Theorem. Let S be a geometrically ruled surface and let |H| = | Xp+bf|
be a buse-point-free complete linear system on S. Let o : S— P be the regular
map which |H| defines. Let K = {x € S5/x is a base point of |H — Pf|, for some
P € X}. Then the map ¢g s an isomorphism ezactly in the open set S\ K.

PROOF. Let us first see that ¢z is injective in S\ K and ¢g 1 (g (S\K)) =
S\K.Givenz € §/K and y € § with z # y, they must be separated by elements
of |H|:

(1) Suppose z and y lie in the same generator Pf. As we saw in Proposition
12, when |H| is base-point-free, it traces the complete linear system of
points of P on each generator Pf. Since this is very ample, it separates
z from y, so we can find a divisor IJ in | H| which meets Pf at z, but not
at .

(2) Suppose z and y lie in different generators, x € Pf, y € Qf. Since z & K,
z is not a base point of the linear system |H —Q f|. Moreover, the elements
of |H — Qf| correspond to the elements of |H| which contain Qf, so we
can find a divisor on |H| which contains @ (and y € Q1) but not z.

We now check that the differential map d¢ gy i1s an isomorphism at points
z € 5\ K. In order to get this we will see that |H| separates tangent directions
at z, this is, if ¢ € T,(S5), then there must be an element IJ in |H| satisfying

x € D but t g T;(D).
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Suppose z € Pf and t € T, (Pf). Because |H| is base-point-free it traces

a very ample system on Pf, so there is an element I in |H| which meets
Pf transversally at z and T,.(ID) # T,(Pf).

Suppose x € Pf and t ¢ T,(Pf). As z ¢ K, z is not a base point of
|H— P f|. Then there exists a divisor IJ' in | H— P f|, which does not contain
z. Taking D = D'+ Pf, we obtain an element of |H| which contains
and its tangent direction is Pf, so T.(D) =T,(Pf) and t & T,.(D).

We have seen that ¢y is an isomorphism in §'\ K. In fact, we can see that
1t 18 not an i1somorphism at points of K.

Let £ € K be a point in Pf. Since x € K, z is a base point of the linear
system |H — Q f| for some Q € X.

(1)

(2)

If Q # P, all elements of |H| which contain QQf pass through z, so the
image of z by ¢ g lies at a point of ¢ (@ f). Thus, there exists y € Qf
with ¢g(y) = ¢g(z) and ¢ is not bijective in K.

Let Q = P. Let C; € |H| be a curve which meets Pf transversally at z. It
exists because |I1| is base-point-free, so A’ (Os(IT— Pf)) < h*(Os(IT —x)).
Let t1 € T-(S) be the tangent vector to Ci at z. Suppose that there is
other curve C2 € |H| which meets Pf transversally at z. Let 15 € T,(S5)
be its tangent vector at z. Suppose (1} # (f2). We can define both curves
by local equations 11 and us. Taking u — Ajui + Asus we define a curve
on the linear system |H|. The tangent vector to C at z is £ = A1t + Aots.
By a suite election of A; and Ay we can suppose ¢ # 0 (so C nonsingular
at ) and () = T(Pf), because (t1) # (f2) and (f1,12) = T5(S5).

On the other hand, we know that an unisecant irreducible curve can not be
tangent to a generator. Then the curve C' is on the linear system |H — P f|
and it can be written as C = Pf + C'. By hypothesis, z is a base point
of |H — Pf|, so z € C'. From this, z is a singular point of C' and we get
a contradiction. Notc, that we had supposcd that there were two curves
on |H| which passed through z with different tangent directions. Then.,
we deduce that all nonsingular curves at z of |H| have a unique tangent
direction (#;) at =x.

Finally, let us see that d¢g is not an isomorphism. In other case, given the
tangent vector t1 € T,(S), there must be acurve I € |H| with 1 & T,(17).

But, if D is nonsingular at z, then 7,(D) = (#1). If D is singular at .
then T (D) = T,(S) and #; € T;(D).

[@ED]
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21 Remark. This theorem yields information about the singular locus of a

scroll in PY . Let R C PY be a linearly normal scroll given by the ruled surface
P(&) and the unisecant complete linear system |H| on P(£).

As P(E) 15 smooth, if dg s an tsomorphism in an open set U C P(E),
then R is smooth at points of the image dg(U). The singular locus of B will be
supported at points of R\ ¢ (U).

Let us apply Proposition 12. Since |Xg + bf| is base-point-free, we have
that h9(Os(Xo + (b — P)f)) = R%(Os(Xo + bf)) — 2. FPurthermore, the linear
system | Xo + (b — P)f| has a base point on Qf when h®(Ogs(Xy + (b — P —
QN f)) = kY {(Og(Xg + (b— P)YF)) — 1 and it has Qf as a fized component when
R (Os(Xg+(b—P—Q)f)) = h*(Og(Xy+ (b— P)f). From this there can appear
the following singularities:

(1) If % (Os(Xy+ (b — P —Q)f)) = h°(Os(Xo +bf)) — 3 with P # Q, then
the generators ¢g(Pf) and ¢g(Qf) meet at a unigue point.

2) If h°(Og5(Xy + (b — 2P)f)) = A% (Ogs(Xy + bf)) — 3, then the generator
(
o (Pf) meets ils infinitely near generator at a unigue point. It s called
torsal generator.

(8) If B’ (Os(Xo + (b — P — Q)f)) = h°(Os(Xo + bf)) — 2 with P # Q,
then the generators ¢ (Pf) and ¢g(Qf) coincide and we have a singular
generator.

(4) If i (Os(Xo + (b — 2P) ) = h%(Os(Xo + bf)) — 2, then the generator
o (Pf) coincides with its infinitely near generator and it is again a sin-
gular generator.

[@ED]

22 Corollary. Let S be a geometrically ruled surface and let |H| = | Xp+bf]
be a complete linear system on S. |H| is very ample if and only if h®(Og(H —

(P +Q)f)) — h*(Os(II)) — 4 for any P.Q € X.

PROOF. |H| is very ample if it is base-point-free and the morphism ¢y :
S—P¥ is an isomorphism.

Let us suppose |H| is very ample. Since it is base-point-free and according
to Corollary 13, we deduce that A% (Os(H — Pf)) = h%(Os(H)) — 2 for any
P € X. By the abave theorem, as ¢ g is an isomorphism at any point, |H — Pf|
is always base-point-free and A°(Og(H — (P + Q) f)) = h°(Os(H — Pf)) —2 for
any (J € X. It follows that:

R (Os(H — (P + Q)f)) = K’ (Os(H)) — 4.



38 L. Fuentes-Garceia, M. Pedreira

Conversely, let us suppose h°(Og(H — (P + Q)f)) = A (Og(H)) — 4 for
any P, € X. If |H| were not base-point-free there would be a point P € X
which satisfies A’ (Og(H — Pf)) > A (Og(H)) — 1 s0 h*(Os(H — (P + Q)f)) >
R (O g(I1))—3, which contradicts the hypothesis. If ¢ g were not an isomorphism
at a point z, by the above theorem,  would be a base point of |H — Pf| and
there would be a Q € X satisfying h°(Og(H — (P4 Q) f)) > h*(Og(H —Pf))—1,
so h®(Og(H — (P + Q) f)) > h®(Og(H)) — 3, which contradicts the hypothesis
again. [@ED

23 Proposition. Let D be a section of a ruled surface S and let |H| =
1D + bf| be a base-point-free complete linear system. Let ¢g - S—PY the

reqular map defined by |D 4 bf|. If b s very ample, then ¢g s an isomorphism
out of 1.

ProoF. Applying Theorem 20, we see that it is sufficient to check that
1D + (b — P)f]| is base-point-free out of D.

Let z € §\ D be a point in the generator Qf. Let P € X. Since b is very
ample, b — P is base-point-free and we can take a divisor b’ ~ b — P which does
not contain Q. Then, D+ b'f ~ D + (b — P)f does not contain z and this is
not a base point of |D 4 (b — P) f|. [QED]

24 Proposition. If b and b + ¢ are very ample divisors on X and b is
nonspectal, then the complete linear system |H| = | Xy + bf| is very ample.

PrOOF. Because b is nonspecial and very ample, given P € X, b — P is
base-point-free and nonspecial.
Applying Lemma 10 we see that

W (Os(H — (P+Q)f)) =h’(Ox(b—P—Q)) + h°(Ox(b+e— P —Q))

for any P Q € X.

Since b and b+ ¢ are very ample, A’ (Ox(b — P — Q)) = A’ (Ox (b)) — 2 and
RY(Ox(bt+e—P—Q)) = A’ (Ox(b+e)) —2; we obtain A°(Os(H — (P+Q)f)) =
h(Os(H)) — 1 and by Corollary 22, |H| is very ample. [@ED

3 Decomposable ruled surfaces.

25 Definition. Let §—— X be a geometrically ruled surface over a nonsin-
gular curve X of genus g. The ruled surface is called decomposable it £ is a
direct sum of two invertible sheaves.

The invariant e on a decomposable geometrically ruled surface is positive:

26 Theorem. Let S be a ruled surface over the curve X of genus g, deter-
mined by a normalized locally free sheaf &p.
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(1) If & 15 decomposable then & =2 Oc ® L for some L with deg(L) < 0.
Therefore, e > 0. All values of e > 0 are possible.

(2) If £ is indecomposable, then —g < e < 2g — 2.

PROOF. See (8], V, 2.12. and [15]. [@ED]

27 Remark. Geometrically, a decomposable ruled surface has two disjoint
unisecant curves. These unisecant curves are given by suriections &y = Ox &
Ox(e)—0Ox(e)—0 and & = Ox @ Ox(¢)—Ox—>0. We denote them by
Xy and X1. According to ( [8], V,2.9), we know X1 ~ Xp —ef.

Since & is decomposable the equality h*(Os(Xo + bf)) = R{Ox(b)) +
R(Ox (b + ¢)) holds always, because H'(Og(Xy + b)) = H* (& @ Ox (b)) and
Eo =2 Ox @ Ox(e). [QED

28 Proposition. Let S be a decomposable geometrically ruled surface. Let
|H| = | Xy + bf| be a complete linear system. Then, x € Pf 45 a base point of
|H| if and only if it satisfies some of the following conditions:

(1) P is a base point of b and x = Pf N X;.
(2) P is a base point of b +¢ and x = Pf N Xj.

(3) P is a common base point of b and b+¢. In this case Pf is fized component
of |H|.

Moreover, |H| is base-point-free if and only if b and b+ ¢ are base-point-free.

PROOF. Let us examine the trace of the linear system | Xy + bf| on Xj:
H(Os(bf)y—H(Os(Xo + bf)) — H (Oxo(Xo+ bf)) = H(Ox (b + ¢))

According to the above remark, we know that R°(Og(Xg + bf)) = A (Ox (b)) +
h%(Ox (b + ¢)), so the map « is a surjection and |H| traces the complete linear
system |b+ ¢| on Xy. Thus, if P is a base point of b+ ¢, then any divisor of | H|
meets Xy at Xg N Pf and conversely.

The same reasoning applies to the trace of |H| on X;. Since H*(Ox, (Xg +
bf)) =2 HY(Ox (b)), we can see that P is a base point of b if and only if any
divisor of |H| meets X; at X; N Pf.

Finally, by Remark 27, we conclude

h(Os(H)) — h°(Os(H — Pf)) =
= (A (Ox (b)) — R (Ox (b — P))) + (h°(Ox (b +¢)) — h°(Ox(b+ ¢ — P))).

By Proposition 14, we see:
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(1) |H]| is base-point-free if and only if b and b + ¢ are base-point-free.

(2) |H| has a unique base point on P f if and only if P is a base point of b or
b + ¢, but not both.

(3) |H| has Pf as a fixed component if and only if P is a common base point
of band b+ e.

[QED]

29 Remark. The above proof shows us that a complete linear system |Xo+
bf| traces the complele linear systems |b+4-¢| and |b| on curves Xy and X1. Hence,
when the linear system | Xo + bf| is base-poinit-free and it defines a regular map

on S, Xo and X1 apply on linearly normal curves given by the linear systems
|6+ ¢| and |b| on X. [QED]

30 Theorem. Let S be g decomposable ruled surface. The generic element
of the complete linear system | Xo+ bf| is trreducible if and only if b~ 0, b~ —¢
or b and b + ¢ are effective without common base points.

PrROOF. Let us first suppose there exists an irreducible element I} ~ X3+b f.
It 1) ~ Xy, then b ~ 0 and if I ~ X4, then b ~ —¢. In other case, I meets Xy
and X1 at effective divisors, so 7, (DN Xg) ~ b+ ¢ and 7. (D N X1) ~ b must
be effective. Furthermore, if b and b+ ¢ had a common base point P, then, by
Proposition 28, Pf would be a fixed component of the linear system and this
would not have irreducible elements.

Conversely, ifb ~ 0 or b~ —e¢, then Xy +bf ~ Xg or Xg+ bf ~ X1 and
the generic element is irreducible.

If b and b+ ¢ are effective divisors without common base points, the generic
point P is not a base point of b and b + ¢, because they are effective. Thus, by
Remark 27, A% (Os(Xo + (b — P)f)) = A%(Os(Xo + bf)) — 2. A finite number
of points P can be base points of b or b + ¢ (but not both), so, in this case,
h(Os(Xo + (b — P)f)) = h%(Os(Xo + bf)) — 1. Applying Proposition 18 the
theorem follows. [@ED]

31 Corollary. If P(£) is a decomposable ruled surface it holds Xg = —e,
X2 — e and for any other unisecant curve D not linearly equivalent to these,
D? > e+ 2. In particular:

(1) If D = Xy then D ~ X when e >0 and D ~ Xy or D ~ X1 when ¢ = ().
Moreover, if D~ Xy and ¢ £ 0, then D = X,.

(2) If D = X1 then D ~ X1 whene >0 and D ~ Xy or D ~ X, when ¢ = ).
Moreover, if D~ X1, e=0and e £ 0, then D = X;.
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PROOF. We know X? = —e and Xl2 — e. By the above proposition if 1) ~
Xop+bf is an irreducible curve no linearly equivalent to the first, then b and b+e
must be effective divisors, so deg(b) > e and deg(b) > 0. Since b+ ¢ is effective,
if deg(b) — e, then b ~ —¢ and D ~ X. I'rom this, necessarily deg(b) > e + 1
and D? = 2deg(b) —e > e+ 2. [@ED]

32 Proposition. Let S be a decomposable ruled surface. The complete lin-
ear system |X1| = | Xy — ef| satisfies following conditions:

(1) The set of reducible elements of | X1| s exactly {Xg + bf/b ~ —¢}.

(2) If P is not a base point of —¢, then there exists an irreducible curve of
|X 1| passing through any point of Pf not in Xj.

(3) If P is a base point of —e, all irreducible curves of | X1| pass through a
unique base point on Pf.

Proor. (1) Let D+ bf be a reducible element of | X;|. Since I} + bf ~
Xp —ef, we have deg(b) < deg(—e¢) and D ~ Xy + (—b — ¢) f. From this,
D is an irreducible curve of self-intersection strictly smaller than X;. By
the above corollary, DD must be Xy and b ~ —e¢.

(2) According to Proposition 28, we know that if P is not a base point of —e,
the linear system |Xi| has not base points on Pf. Hence, it traces the
complete linear system of points of P! on the generator. For each point z
of Pf there passes an effective divisor of | X| not containing the generator.
But, as we see at 1, if z ¢ X, the divisor must be irreducible.

(3) According to Proposition 28, if P is a base point of —e, the linear system
|X1| has a base point on the generator Pf, so all irreducible elements of

the linear system pass through it.
[@ED

33 Theorem. Let S be a decomposable ruled surface and let |H| = | Xp+bf|

be a complete linear system on 5. Then:

(1) If b is very ample and b+ ¢ is base-point-free, then |H| defines an isomor-
phism wn S\ Xj.

(2) If b+ e is very ample and b is base-point-free, then |H| defines an isomor-
phism n S\ X;.

(3) |H| is very ample if and only if b and b+ ¢ are very ample.
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ProoOF. By Proposition 28, if b and b + ¢ are base-point-free the linear
system | Xy + bf|is base-point-free.

Since Xg+bf ~ X1+ (b+e)f, we can apply Proposition 23. Taking D = X
or 2 — X4, we obtain the assertions 1 and 2.

The third equivalence is consequence of Corollary 22: |H| is very ample if
and only if A (Os(H — (P + Q)f)) = h%(Os(H)) — 4. Now, it is sufficient to
remark that in a decomposable ruled surface it holds A°(Og(H)) = A* (O x (b)) +
h'(Ox(b+¢)) and A2 (Os(H — (P + Q)f)) = A (Ox (b — P — Q)) + A*(Ox (b +
e— P —Q)). QED

34 Theorem. Let S be a decomposable ruled surface and let |H| = | Xo+bf]

be a base-point-free linear system. Let ¢ : S—— R C PY be the map defined by
|H|. Then:

(1) N = h’(Ox(b)) + h%(Ox(b +¢)) — 1 and deg(S) = 2deg(b) — e.

(2) ¢ (Xo) and ¢dg(X1) are linearly normal curves given by the maps dy. . :
X—dg(Xp) and ¢p : X —>dg(X1). Moreover, they lie in complementary
disjoint spaces of PY .

(8) The singular locus of R is supported at most in ¢g(Xo), dg(X1) and the
set K = {¢g(Pf)/|b — P| and |b+ ¢ — P| have a common base point}. If
K = 5 the map ¢g is not birational. If K # 5 the map ¢y s birational
and singularities of R are exactly:

a. Singular unisecant curves ¢g(Xp) or ¢g(X1) if the regular maps
Gpte : X—0a(Xo) or ¢p : X—¢g(X1) are not birational.

b. Isolated singularities on og(Xy) or dg(X1) when b+ e or b are not
very ample but they define birational maps. They correspond to the
generators Pf and Qf meeting at a point on og(X;). If P = Q), the

generator Pf 15 a torsal generator.

c. Double generators when b+e¢— P and b — P have a common base
point Q). Then ¢g(Pf) = ¢g(Qf). If P= Q, the generator ¢g(Qf)

corncides with +ts wmfinstely near generator.

PrROOF. The linear system |H| is base-point-free, so it defines a regular
map ¢g : S——PY. The hyperplane sections of the scroll 2 correspond to
divisors of the linear system |H|. If we denote Ny = A°(Ox(b + ¢)) — 1 and
Ny = h%(Ox(b)) — 1, then N = A%(Os(Xp + bf)) —1 = Ny + Ny + 1 and
deg(R) = deg(H) = (Xp + bf)? = 2deg(b) —e.

At Remark 29 we saw that curves ¢5(Xy) and ¢g(X,) are linearly normal
and they are defined by maps ¢p . : X—>dg(Xg) C P(HY(Ox(b + ¢))V) and
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o« X—da(X1) C P(HY(Ox(b))Y). Thus ¢z (Xp) lies in PN and ¢ (X)
lies in P™1. Since A°(Os(H — X — X1)) = 0, there are not hyperplane sections
containing both curves. Hence these lie in complementary disjoint spaces.
Finally, let us study the singular locus of R. Applying Theorem 20, we know
that ¢ is an isomorphism out of base points of linear systems |H—Pf|, P € X.

As we saw in Proposition 28, in a decomposable ruled surface base points
of linear system lie in Xy or X, except when there is a base generator. In this
case, b — P and b+ ¢ — P have a common base point.

It follows that the singular locus of R is supported at most in ¢g5(Xp),
dg(X1) and K = {dg(Pf)/|b— P| and |b+ ¢ — P| have a common base point}.
It K =5, the map ¢g is not an isomorphism at any point so it is not birational.
On the contrary, it K # 95 we can see which are exactly the singularities of R.
We will reason on the curve ¢g(Xp), but similar arguments apply to the curve
og(X1)-

If the morphism ¢y, : X—>d5(Xp) is not birational, then it is a £ : 1 map
and we have an unisecant singular curve on the scroll.

If the morphism X —>¢g(Xy) i1s birational, the map given by b + ¢ is 1:1
in an open set, but isolated singularities can appear. This happens when the
divisor b + ¢ — P has a base point () for some P € X. Then the linear system
|H — Pf| have a base point at Xy NQ f:

- If Q is not a base point of b — P, the linear system |H — Pf| has no
more base points in Qf and then the unique singular point in ¢g(Pf) lies
at ¢og(Xo) Ndg(Qf)N ¢g(Pf). The generators ¢ (Qf) and ¢ (P f) meet at
a point. Morcover, if Q = P, the gencrator ¢g(Pf) mects its infinitely ncar
generator at a unique point and it is a torsal generator.

- If Q is a base point of b — P, the linear system |H — Pf| has Qf as a fixed
component. Then, both generators coincide in the image, so ¢ g(Pf) = ¢og(Qf)
15 a singular generator. If P = () the generator ¢gx(Qf) coincides with its
infinitely near generator. [@ED

We will finish this section by studying conditions for m-secant divisors to
be very ample on a decomposable ruled surface.

We begin with a technical result on computing the dimension of a m-secant
linear system on a decomposable ruled surface. It is known that:

h*(Os(Xo + bf)) = h*(Ox (b)) + A" (Ox (b + ¢)).

Let us see the following generalization:

35 Lemma. Let |mXy+bf| be a m-secant linear system on a decomposable
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ruled surface 5. Then,

W (Og(mXo+bf)) =Y K (Ox(b+ke)), i>0
k=0

PROOF. We note that because S is a surface, then A*(Og(H)) = 0 when
7 > 2. The proof is by induction on m:

It is clear that A*(@g(bf)) = A*(Ox (b)) and in particular £%(@s(bf)) = 0.

Assuming the formula holds for m — 1, we will prove it for m. Let |H| =
lm Xy + bf| be a m-secant system. Consider the exact sequence:

0—Os(H — X1)—0Os(H)—Ox, (H)—0
Since X1 ~ Xg — ef and introducing cohomology, we have:

0 — HYOs(H-—X1)) — HYOg(H)) B HYOx(b) —
— HYOs(H— X1)) — HYOs(H)) =3 HYOx(b)) —
— H?(Og(H — X1)) — H?*(0Og(H)) — 0

where H — X1 ~ (m — 1) Xy + (b + ¢)f. The map g is a surjection because
given b’ ~ b we have b’ = a(mXg + b'f), where mXp + b'f ~ mXp+ bf. a1
is a surjection too, because h?(Og((m — 1)Xg + (b + ¢)f)) = 0 by induction
hypothesis. We conclude that:

-+

R(OsimXg+bf)) = hi(Ox(b)) +TZ::; hi(OX(h + (k+ 1)e)) =

m

= I (Ox (b + ke))
k=0
[QED]

We will now restrict our attention to study the trace of a m-secant linear
system |mmXg+ bf| on a generator Pf. Consider the exact sequence:

0—0s(mXo+ (b — P)f)—0Os(mXo+ bf)—OpsrimXg + bf)—0
Introducing cohomology:
00— H(Os(mXy+ (b — P)f))—H*(Os(mXp + bf)) = HYOp1(m))

We see that |[m Xy + bf| traces a linear subsystem of the complete linear system
of divisors of degree m on P! on the generator Pf.

Let us introduce homogeneous coordinates [zg : 1] on P!, where point [0 : 1]
is Xo N Pf and point [0: 1] is X1 N Pf.



