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Abstract: Among the exploratory techniques, Principal Component Analysis has 

the best properties in the study of relations between original variables, but in 

customer satisfaction applications it provides all positive correlations (the first 

component is an average or a sum of the scores).This feature entails trivial 

results of little interest that cannot help in decision-making, or even less, 

rotations (varimax, etc.) that can improve the interpretation of data structure. 

The aim of this paper is to highlight, via a comparison of methods, the role of 

Simple Component Analysis to improve the interpretability, over and above the 

lack of some desirable property (variance explained, etc.).This comparison will 

be supported by an application to real data on Patient satisfaction in a hospital in 

Naples. 
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criteria, Patient Satisfaction 

 

 

1. Introduction 
 

Today when we want to measure the performance of a Public service, the focus is moving in the 

direction of the Customer Satisfaction. This is a useful implementation of the logic of quality in 

the design and delivery of public services. 

In health care companies, for example, increasing the patient satisfaction may increase the use of 

the system, attract new customers, improve the image of the company in Public Sector and, 

consequently, ensure an improvement in long term financial results. 
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This paper focuses on the explorative statistical analysis. It starts from a critical review, based on 

a comparison of the methodological instruments of this type of analysis (in particular Principal 

Component Analysis and techniques of rotation), and some scientific developments. After a brief 

methodological review, the paper highlights the contribution of a recent methodology for 

exploratory data analysis, Simple Component Analysis, to be used in the evaluation process of 

Customer Satisfaction. This approach, as explained below, is extremely useful in the application 

contexts to which we have referred. 

 

 

2. Methodological developments based on different strategies of analysis 
 

From a viewpoint of the exploratory techniques, the Principal Component Analysis (PCA) has 

optimal properties for determining the latent variables in the study of relations between original 

variables. However, in many scientific applications, such as those based on data regarding 

satisfaction, the correlations between the variables are all positive (or negative) and, 

consequently, the first principal component is equivalent to the average or to the sum of the 

values of the observed items. For these reasons the results of PCA are not easily interpretable. 

Consequently, the PCA technique may be unsatisfactory when used in contexts such as those 

related to customer satisfaction. To overcome such problems, several authors have proposed 

alternative methods (sub-optimal) that are more easily interpretable, in comparison to the 

traditional approaches.  

PCA leads to results that are trivial, not usable by public decision-makers. In order to improve 

the interpretability of results, the most recent literature has proposed methodological 

developments based on different strategies of analysis. In particular, it points to Least Absolute 

Shrinkage and Selection Operator (LASSO) [10], [12], Hausman Principal Component Analysis 

[4], Simple Component Analysis [20], [21], Simple Principal Components [21], Simple 

Component Analysis based on RV Coefficient, SCA-RV (by analogy with the usual statistical 

vocabulary, RV = Vectorial Correlation, invoking the usual notation Bravais-Pearson’s 

correlation coefficient linear "r") [5], over the alternative that sees the use of means of rotation. 

These approaches all produce pseudo-optimal, but better interpretable, results. 

 

 

2.1 Principal Component Analysis 

Principal Component Analysis is a well known technique in multivariate analysis [16] that seeks 

to uncover the underlying structure of a relatively large set of variables.  

PCA involves a mathematical procedure that transforms a number of correlated numeric 

variables into a corresponding number of uncorrelated variables (artificial variables) called 

principal components, of which the first most representative can be considered (relevant PCA).  

In this way a further objective of PCA is to reduce the dimensionality of the data set and to 

identify new meaningful underlying variables. It is useful when, analyzing data on a large 

number of variables, one may believe that there is some redundancy in those variables. In this 

case, redundancy means that some of the variables are correlated with one another, possibly 

because they are measuring the same construct. Because of this redundancy, it is believed that it 

should be possible to reduce the observed variables into a smaller number of components that 
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will account for most of the variance showed by the observed variables. A principal component 

is a linear combination of optimally-weighted observed variables. 

We describe the steps for getting PCA: 

 it is assumed that the multidimensional data has been collected in a data matrix, in which 

the rows are associated with n statistical units (sample) and the p columns with the 

original variables. 

 PCA is performed on the symmetric covariance matrix or on the correlation matrix. The 

latter case is equivalent to standardize the data first, so eliminating the influence of the 

different units measurement of the original variables. 

The mathematical technique used in PCA is called eigen analysis, looking for the eigenvalues 

and eigenvectors of a square symmetric matrix (covariance or correlation matrix) [17]. The 

eigenvector associated with the largest eigenvalue has the same direction as the first principal 

component. The eigenvector associated with the second largest eigenvalue determines the 

direction of the second principal component. The sum of the eigenvalues equals the trace of the 

square matrix and the maximum number of eigenvectors equals the number of rows (or columns) 

of this matrix. We can make the so called scree plot of the eigenvalues, to get an indication of the 

importance of each eigenvalue. The exact role of each eigenvalue (or a range of eigenvalues)  to 

the “explained variance” can also be queried.  

There are two methods to extract the number of components, based on the graphical analysis of 

the eigenvalues plot.  

1. If the points on the graph tend to level out, these eigenvalues are usually considered close 

enough to zero, so that they can be ignored. 

2. Limit variance accounted. The fraction of the total variance, accounted for by the 

extracted components. 

To understand the meaning of “total variance” as it is used in a PCA, remember that the observed 

variables are standardized in the course of the analysis. This means that each variable is 

transformed so that it has zero mean and unit variance. The “total variance” in the data set is 

simply the sum of the variances of these observed variables. Because they have been 

standardized, each observed variable contributes one unit of variance to the “total variance” in 

the data set. Because of this, the total variance in a principal component analysis will always be 

equal to the number of observed variables. 

PCA procedure can be geometrical interpreted as the projection of the multivariate data on the 

space spanned by the eigenvectors. The first component (C1) extracted in a PCA accounting for a 

maximal amount of total variance in the observed variables (Xi): 

 

1 11 1 21 2 31 3 1 1... T

p pC X X X X         α X        (1) 

 

is the linear combination of the variables such that 1 1 1T α α . We can show that Var(C1) is equal 

to first eigenvalue of the correlation matrix. 

The second component (C2) extracted in a PCA is the linear combination of the variables: 

 

2 12 1 22 2 32 3 2 2... T

p pC X X X X         α X       (2) 

 

where: 

http://www.fon.hum.uva.nl/praat/manual/Scree_plot.html
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2 2 1T α α ; 1 2 0T α α . 

 

C2 has two important characteristics: 

 this component will account for a maximal amount of variance in the data set that was not 

accounted for by the first component; again under typical conditions, this means that the 

second component will be correlated with some of the observed variables that did not 

display strong correlations with C1; 

 it will be uncorrelated with the first component; if you were to compute the correlation 

between C1 and C2, that correlation would be zero. 

The remaining components that are extracted in the analysis display the same two characteristics: 

each component accounts for a maximal amount of variance in the observed variables that was 

not accounted for by the preceding components, and is uncorrelated with all of the preceding 

components. A principal component analysis proceeds in this fashion, with each new component 

accounting for progressively smaller and smaller amount of variance (this is why only the first 

few components are usually retained and interpreted). When the analysis is complete, the 

resulting components will display varying degrees of correlation with the observed variables, but 

are completely uncorrelated with one another. 

 

2.2 Rotation Criteria  

Classical exploratory methods make an extraction of common factors in order to create a unique 

solution assuming that: 

 the common factors are mutually uncorrelated; 

 the common factors may be arranged in descending order of importance (decreasing 

eigenvalues). 

However, these assumptions have several drawbacks. On the one hand, they are arbitrarily 

imposed on the data to uniquely determine the solution and do not appear realistic, we have no 

reason to believe that the latent factors are always independent of one another. The extracted 

factors posses usually a complex structure, which is hard to interpret because each variable is 

often associated with multiple factors. 

In order to obtain a factorial model that is more easily interpretable, one may transform the 

solution found, taking into account the number of fixed factors and the communality (variance 

explained) of each observed variable. 

In this section, attention will be devoted to single stage rotation methods [8] that, in order to 

attain simplicity, minimize a smooth function of factor pattern coefficients. Both orthogonal and 

oblique rotations will be considered, although oblique rotations are probably more appropriate in 

most practical situations. 

Particular importance will be given to situations where a perfect cluster solution is inappropriate 

and more complex patterns are required.  

Most of these are virtually unknown but are very interesting. Methods for row standardization of 

a factor matrix prior to rotation in order to improve the solution will also be examined. 

Analytic rotation methods involve the post multiplication of an input p×m factor loading matrix, 

A, by a m×m matrix, T, to yield a rotated primary factor pattern matrix, 

 

Λ = AT 
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that minimizes a continuous function, f(Λ), of its factor loadings. This function is intended to 

measure the complexity of the pattern of loadings in Λ. By minimizing the complexity function, 

f(Λ), the rotation procedure yields a rotated matrix Λ with a simpler pattern of loadings. 

Let the factor correlation matrix after rotation be represented by Φ. In orthogonal rotation the 

transformation matrix is required to satisfy the m(m-1)/2 constraints 

 

Φ = T’T = I           (3) 

 

defining factors that are uncorrelated and have unit variances. In direct oblique rotation [9], a 

complexity function, f(Λ), is also minimized but now a smaller number, m, of constraints 

 

Diag(Φ)=Diag(I)          (4) 

 

is imposed, defining factors possibly correlated but still having unit variances. This process 

defines a factor pattern, Λ, that directly minimizes the complexity criterion. 

Thus orthogonal and oblique rotations involve the same problem of minimizing a complexity 

criterion, and only the imposed constrains differ. It is appealing to make use of complexity 

functions that are suitable for both orthogonal and oblique rotation. Since fewer constraints are 

imposed in oblique rotation, it is generally possible to obtain a lower value of the complexity 

function and consequently greater simplicity of the factor pattern than in orthogonal rotation. 

All rotation criteria to be considered are expressed as complexity functions to be minimized to 

yield a simple pattern of loadings. All of these complexity functions have a greatest lower bound 

of zero. 

 

 

3 The contribution of Simple Component Analysis to the evaluation of 

patient satisfaction  
 

Simple Component Analysis is an alternative to the traditional exploratory analysis procedures, 

in terms of contribution to interpretation: its methodological approach is, in fact, based on the 

criterion of obtaining a more simple and more interpretable result, even at the cost of give up 

optimal solutions. 

The purpose of SCA is to replace the first q principal components with an improved system of q 

so called “simple components”, which are better interpreted. However, though SCA sacrifices 

some of the features of classical optimality of PCA, if the loss of variability extracted is minimal, 

and correlations between components are low, it may be  attractive to use this approach 

whenever the interpretation of results becomes easier.  

There are three different approaches to remove the trade-off between the PCA optimality and 

SCA simplicity: 

 to seek a compromise between simplicity and optimality, using criteria that get the 

optimality, incorporating at the same time aspects of simplicity [13]; 

 to seek the simple solution of optimal systems of components, thus obtaining a “simple 

optimal system” [13]; 

 seek the optimum solution of simple systems, thus achieving an “optimal simple system” 

[8], [21], [20]. 
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Of course, whichever approach will be preferred, it is necessary to define what is meant by 

optimality and simplicity. 

Let be (U1, …, Uq) an orthonormal system of components, (X1, …, Xp) with q≤p, a set of original 

variables and (Z1, …, Zp) the corresponding standardized ones. A system of components (U1, …, 

Uq) is called optimal if it maximizes the explained variability of the original variables, getting the 

maximum of one of the following criteria: 
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In our case, the system (U1, …, Uq) is the one defined by the loadings concerning the first q 

relevant principal components. 

Let now introduce the concept of simplicity of a system of standardized random variables (Y1, 

…. , Yp). The characteristic elements of the simplicity are: 

 to have more than one block-component in case of an approximate block-structure in the 

correlation matrix C with rank q (q ≤ p); 

 the weighting scheme of variables should be “really” simple: all variables involved in a 

block component should have the same weight. For the difference-components, we would 

like to a have “proper” contrasts of variables: all positive weights should be equal, all 

negative weights should be equal, and the sum of all weights should be zero. 

In formal terms, a system of q components will be called "simple", with b blocks, if its matrix of 

generating loadings P satisfies the following requirements: 

 each of the first b columns of P is proportional to a vector with values 0 and 1. Moreover, 

these b columns should form a partition of the variables (these are the b block-

components, where each variable belongs to one and only one block); 

 the last (q-b) columns of P are proportional to vectors which contain m times the value h, 

h times the value -m and p-m-h times the value 0 (m and h are strictly positive integers 

such that m+h  p, and m and h might be different for each column); this leads to (q-b) so 

called difference-components (as the sum of loadings is zero for each component, these 

differences correspond to the contrasts of the variables); 
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 (optional) we obtain then “within-block” difference-components, as in case of an exact 

block-structure in the correlation matrix. 

The first stage of SCA classifies p variables into b disjoint blocks. The approximate block-

structure in the correlation matrix leads to a maximum within block correlations and, in the 

meantime, to a minimum between block correlations. Several authors [20] have dealt this 

problem with an agglomerative hierarchical procedure based on a dissimilarity measure between 

clusters called “median” linkage, alternative to the possible “single” or “complete” linkages. 

With reference to the loading matrix corresponding to the b simple block-components of the first 

stage, the second step of the algorithm is based on a suitable difference-component shrinkage 

procedure of the sequential first components of the residual variables obtained by regressing, 

step by step, the original variables on the first (j−1) simple components. 

Recent developments have modified the first stage criterion [5], using the so called RV vectorial 

correlation coefficient [18], given by: 

 

2 2

( )
RV( , )

( ) ( )

V Z

V Z

tr
V Z

tr tr


W DW D

W D W D
        (8) 

 

where WV = VQ1V′ and WZ = ZQ2Z′ are the scalar product matrices associated to the vector 

variables V and Z, respectively, with Q1 and Q2 metric matrices and D a weighting diagonal 

matrix. It provides a measure of the similarity of the two configurations V and Z, taking also into 

account the possibly distinct metrics to be used on them. 

 

4. Patient Satisfaction in a local public health service 
 

Often in patient satisfaction analysis the first component of PCA quite corresponds to overall 

size, so it can be considered as a sum or an average of the original variables. To show how the 

SCA analysis produces easier interpretable results compared to PCA we use a dataset relative to 

the patient satisfaction in a Hospital of the City of Naples. 

Data collected is based on 35 items measuring five latent dimensions [3]. Item V1 concerns the 

“Managing Hospitalization” dimension, items V2 – V9 measure the “Medical Assistance” 

dimension, items V10 – V15 are related to the “Nursing” dimension, items V16 – V26 to the 

“Organization” dimension and items V27 – V35 to “Tangible aspects and location” dimension.  

The nominal scales used in the questionnaire range from 1 to 6 and are easy to understand, for 

each instance and given meaning. 

Before analyzing the data, it was decided to pre-treat them, in order to ensure the quality of 

information that will be extracted. In particular, the following operations were performed:  

 assessing the quality of the data, responding to the requirements defined by Eurostat 

documentation in evaluating the quality of statistics produced by the member countries of 

the European Community; this concerns the dimensions of relevance, accuracy, 

timeliness, transparency, comparability, consistency, completeness; 

 the treatment of missing data, using deterministic techniques (deductive imputation, mean 

imputation);  

 Thurstone scaling, which respects the ordinal nature of the data through a transformation 

from ordinal to metrical [22], [6]. 
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Table 1. Description of Variables 

DIMENSIONS VARIABLES 

Managing 

Hospitalization 
V1 Reception 

Medical Assistance 

V2 Competence of doctors 

V3 Information about the disease and treatments 

V4 Availability of doctors 

V5 Regularity and frequency of medical 

V6 Medical care 

V7 Information on the risks of therapy 

V8 Information received about surgery and / or diagnostic 

V9 Privacy by doctors 

Nursing 

V10 Competence of nursing 

V11 Availability of nurses 

V12 Regularity and frequency of nursing care 

V13 Readiness of the nursing staff 

V14 Ability to calm 

V15 Privacy by nurses 

Organization 

V16 Availability staff 

V17 Staff ability to offer customized services 

V18 Food Quality 

V19 Food Quantity 

V20 Mealtimes 

V21 Choice menu 

V22 Personalized menus 

V23 Entertainment and socialization 

V24 Visiting 

V25 Common Areas 

V26 Quality spaces 

Tangible aspects 

and location 

V27 Identifiability and decorum staff 

V28 Hospital environments 

V29 Clean Rooms 

V30 Comfort of beds 

V31 Clean linen 

V32 Restrooms 

V33 Therapy in post-resignation 

V34 Dietary recommendations for post-resignation 

V35 Physical activity for post-resignation 
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4.2 Results of SCA and comparison 

The comparison of the different exploratory techniques prove that the SCA technique made it 

possible to obtain a preliminary analysis to highlight the links between the different relevant 

variables. These results may support the assessment phase of real Patient Satisfaction in which 

one can propose and validate a specific statistical model. 

The following tables show the results of the SCA. 
 

Table 2. Percentage of extracted variability 

Extracted variability PCA 54.51 %  

Extracted variability SCA 50.42 %  

Optimality SCA 92.50 %  

 

Table 3. Optimality Criteria used in SCA 

SIMPLE COMPONENT ANALYSIS 

Optimality criterion  Corrected sum of variances  

Clustering procedure Median linkage  

Number of block-components 2 

Number of diff.-components 3 

 

Table 4. SCA components 

Dimensions Var. B1 B2 D3 D4 D5 Dimensions Var. B1 B2 D3 D4 D5 

Managing Hospitalization V1 1 0 13 0 0 

Organization 

V16 1 0 13 -6 -7 

Medical Assistance 

V2 1 0 13 5 0 V17 1 0 13 -6 -7 

V3 1 0 13 5 0 V18 1 0 13 -6 0 

V4 1 0 13 5 0 V19 1 0 13 -6 0 

V5 1 0 13 0 13 V20 1 0 -12 5 -7 

V6 1 0 13 0 0 V21 1 0 -12 5 -7 

V7 1 0 13 5 0 V22 1 0 -12 5 -7 

V8 1 0 13 5 0 V23 0 1 0 0 0 

V9 1 0 0 5 -7 V24 1 0 -12 5 -7 

Nursing 

V10 1 0 -12 -6 0 V25 0 1 0 0 0 

V11 1 0 -12 -6 -7 V26 1 0 -12 5 -7 

V12 1 0 0 -6 -7 

Tangible 

aspects and 

location 

V27 0 1 0 0 0 

V13 1 0 -12 -6 -7 V28 0 1 0 0 0 

V14 1 0 0 -6 -7 V29 1 0 0 0 13 

V15 1 0 0 -6 -7 V30 1 0 -12 0 13 

       V31 1 0 -12 0 13 

       V32 1 0 -12 0 13 

       V33 1 0 -12 0 13 

       V34 1 0 -12 0 13 

       V35 1 0 0 5 0 

        26% 6.% 8% 7% 5% 
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Table 5. Comparison of results 

ACP VARIMAX SCA 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 B1 B2 D1 D2 D3 

0,57 -0,25 0,07 -0,01 -0,08 0,52 0,19 0,17 0,04 0,29 1 0 13 0 0 

0,55 -0,36 0,35 -0,08 0,13 0,73 0,08 -0,01 0,19 0,13 1 0 13 5 0 

0,62 -0,41 0,40 -0,12 -0,02 0,85 0,11 0,10 0,07 0,03 1 0 13 5 0 

0,62 -0,36 0,40 -0,02 0,02 0,83 0,15 0,06 0,09 0,02 1 0 13 5 0 

0,56 -0,25 0,13 0,13 -0,21 0,54 0,18 0,19 -0,12 0,23 1 0 13 0 13 

0,62 -0,33 0,19 0,09 -0,10 0,67 0,24 0,11 -0,06 0,16 1 0 13 0 0 

0,46 -0,31 0,38 -0,11 -0,01 0,66 0,03 0,12 -0,03 -0,06 1 0 13 5 0 

0,58 -0,37 0,27 -0,08 0,06 0,70 0,19 0,07 -0,02 0,03 1 0 13 5 0 

0,49 -0,16 0,17 -0,15 0,21 0,41 0,15 0,11 0,06 0,03 1 0 0 5 -7 

0,68 0,14 -0,34 0,01 0,07 0,13 0,69 0,30 0,04 0,15 1 0 -12 -6 0 

0,68 0,11 -0,38 0,02 0,14 0,16 0,78 0,20 0,09 0,14 1 0 -12 -6 -7 

0,68 0,12 -0,36 0,14 0,13 0,16 0,80 0,17 0,04 0,12 1 0 0 -6 -7 

0,67 0,12 -0,36 -0,05 0,35 0,16 0,82 0,10 0,21 0,04 1 0 -12 -6 -7 

0,70 0,08 -0,33 0,09 0,22 0,21 0,80 0,11 0,12 0,12 1 0 0 -6 -7 

0,57 0,00 -0,22 0,02 0,22 0,16 0,50 0,13 -0,02 0,17 1 0 0 -6 -7 

0,72 -0,15 -0,11 0,18 0,10 0,46 0,56 0,06 0,06 0,28 1 0 13 -6 -7 

0,66 -0,17 -0,19 0,18 0,12 0,35 0,46 0,04 0,08 0,46 1 0 13 -6 -7 

0,57 -0,21 -0,34 0,36 -0,16 0,20 0,25 0,10 -0,03 0,90 1 0 13 -6 0 

0,57 -0,21 -0,34 0,36 -0,16 0,20 0,25 0,10 -0,03 0,90 1 0 13 -6 0 

0,39 0,45 0,14 -0,26 0,21 0,09 0,25 0,23 0,68 -0,08 1 0 -12 5 -7 

0,39 0,49 0,24 -0,12 0,34 0,10 0,19 0,13 0,76 -0,02 1 0 -12 5 -7 

0,25 0,51 0,31 -0,07 0,32 0,00 0,00 0,09 0,74 0,01 1 0 -12 5 -7 

0,19 0,33 0,31 0,32 -0,04 0,10 0,08 0,04 0,21 -0,09 0 1 0 0 0 

0,16 0,31 0,29 -0,04 0,41 0,00 0,03 -0,10 0,46 -0,08 1 0 -12 5 -7 

0,15 0,26 0,20 0,13 -0,21 0,02 -0,01 0,14 0,16 0,07 0 1 0 0 0 

0,32 0,26 0,09 -0,08 0,29 0,06 0,05 0,13 0,51 0,19 1 0 -12 5 -7 

0,22 0,42 0,32 0,71 -0,14 0,03 0,05 0,05 0,09 0,08 0 1 0 0 0 

0,19 0,41 0,32 0,71 -0,14 0,00 0,03 0,05 0,05 0,06 0 1 0 0 0 

0,42 0,06 0,11 -0,03 -0,22 0,23 0,06 0,32 0,04 0,19 1 0 0 0 13 

0,53 0,37 -0,03 -0,25 -0,45 0,08 0,19 0,79 0,04 0,03 1 0 -12 0 13 

0,59 0,29 -0,04 -0,32 -0,50 0,19 0,18 0,83 0,07 0,09 1 0 -12 0 13 

0,55 0,16 -0,06 -0,31 -0,13 0,25 0,25 0,52 0,26 0,09 1 0 -12 0 13 

0,59 0,30 -0,13 -0,20 -0,25 0,14 0,29 0,64 0,22 0,17 1 0 -12 0 13 

0,45 0,37 0,03 -0,32 -0,48 0,10 0,10 0,79 0,11 -0,02 1 0 -12 0 13 

0,56 -0,09 0,28 -0,09 0,04 0,52 0,10 0,17 0,24 0,14 1 0 0 5 0 

 27.8% 8.6% 6.9% 

 

5.9% 

 

5.3% 14.6% 12.8 % 9.2% 7.1% 6.8% 26.1% 6.0% 7.6% 6.8% 4.8% 

 

It may be observed that there is no significant difference between the first components extracted 

with either PCA or SCA. However, an interesting contribution comes from the information 

matrix of the simple difference-components (D3, D4, D5), showing strengths and weaknesses on 

which the hospital management should take action to improve the service.  
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These aspects are summarized in the following tables. 
 

Table 6. Comparison of results for Difference component 2 (D2) 

Positive   Negative 

Managing Hospitalization Reception

Competence of doctors

Information about the disease and treatments

Regularity and frequency of medical

Regularity and frequency of medical

Medical care

Information on the risks of therapy

Information received about surgery and / or diagnostic

Availability staff Mealtimes

Staff ability to offer customized services Choice menu

Food Quality Personalized menus

Food Quantity Visiting

Common Areas

Quality spaces

Competence of nursing

Availability of nurses

Readiness of the nursing staff

Comfort of beds

Clean linen

Clean Rooms

Therapy in post-resignation

Dietary recommendations for post-resignation

AREAS
Evaluation by D2

Medical Assistance

Organization

Nursing

Tangible aspects and location

 
 

Table 7. Comparison of results for Difference component 3 (D3) 

Positive   Negative 

Managing Hospitalization

Competence of doctors

Information about the disease and treatments

Regularity and frequency of medical

Information on the risks of therapy

Information received about surgery and/or diagnostic

Privacy by doctors

Mealtimes Availability staff

Choice menu Staff ability to offer customized services

Personalized menus Food Quality

Visiting Food Quantity

Quality spaces

Competence of nursing

Availability of nurses

Regularity and frequency of nursing care

Readiness of the nursing staff

Ability to calm

Privacy by nurses

Tangible aspects and location Physical activity for post-resignation

AREAS
Evaluation by D3

Medical Assistance

Organization

Nursing

 



Milone, G. (2010). EJASA:DSS, Vol 1, Issue 1, 2 – 15. 

13 

Table 8. Comparison of results for Difference component 4 (D4) 

Positive   Negative 

Managing 

Hospitalization

Competence of doctors

Information about the disease and treatments

Regularity and frequency of medical

Information on the risks of therapy

Information received about surgery and / or diagnostic

Privacy by doctors

Mealtimes Availability staff

Choice menu Staff ability to offer customized services

Personalized menus Food Quality

Visiting Food Quantity

Quality spaces

Competence of nursing

Availability of nurses

Regularity and frequency of nursing care

Readiness of the nursing staff

Ability to calm

Privacy by nurses

Tangible aspects 

and location
Physical activity for post-resignation

AREAS
Evaluation by D4

Medical Assistance

Organization

Nursing

 
 

 

5. Conclusion 
 

The critical analysis of the techniques useful for the exploratory assessment of Customer 

Satisfaction leads to consider the SCA to be a valid alternative to the traditional tools of analysis 

(PCA and rotation criteria): despite to their pseudo optimal performance, they make the 

interpretation of results easier and not trivial. This work is accompanied by an application on real 

data, collected from a hospital in Naples, of the techniques here discussed (PCA, rotation criteria 

and SCA), providing a useful comparison and allowing an enrichment of the exploratory phase. 

PCA is a useful tool when the number of observed variables is very large. Furthermore, in case 

of variables with high levels of correlation, PCA doesn’t produce fully interpretable results. In 

order to overcome this problem of interpretability, SCA focuses on simplicity and seeks optimal 

simple components. It introduces the aspect of simplicity leading to a sufficiently large number 

of block components in the system and to a simple weighting scheme. 

A lot of vectorial correlation coefficients proposed in the literature do not respect all the cited 

properties [1]. Several proposals in the literature considered the use of RV coefficients for 

variable selection, like, for example, the selection of subsets of variables in the context of PCA 

[4],[15]. A comparative study of the performance effects of several correlation matrices within 

SCA is under investigation. 
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Another interesting application of this technique is related to the methods of the adaptive 

modeling procedures (e.g., partial least squares, discriminant analysis, canonical correlation 

analysis, etc.) where the generated linear combinations of variables are often not easily 

interpretable. 

 

References  
 

[1]. Amenta, P. (1993). Il coefficiente di correlazione lineare tra matrici di dati nel contesto 

multivariato. In Proceeding of XVII Convegno A.M.A.S.E.S., Ischia. 

[2]. Basilevsky, A. (1994). Statistical Factor Analysis and Related Methods, New York: John 

Wiley. 

[3]. Babakus, E., Mangold, G. (1992).Adapting the Servqual scale to hospital services: an 

empirical investigation. Health Services Research, 26(6), 767–786. 

[4]. Bonifas, I., Escoufier, Y., Gonzalez, P., Sabatier, R. (1984). Choix de variables en analyse 

en composantes principales. Revue de Statistique Appliquée, 23, 5–15. 

[5]. Choulakian, H.A., D’Ambra, L., Simonetti, B. (2005). Hausman principal component 

analysis. In Proceeding of 29
th

 Annual International Conference of the German 

Classification Society (GfKl 2005), Magdeburg : Germany. 

[6]. Ciavolino, E., Dahlgaard J.J. (2009). Simultaneous equation model based on generalized 

maximum entropy for studying the effect of the management’s factors on the enterprise 

performances. Journal of Applied Statistics, 36 (7), 801–815. 

[7]. Gallo, M., Amenta, P., D'Ambra, L. (2006). Simple component analysis based on RV 

Coefficient. In Data Analysis, Classification and the Forward Search, 1, 93–102, eds. 

Zani, S., Cerioli, A., Riani, M., Vichi, M.. Berlin: Springer. 

[8]. Hausman, R.E. (1982). Constrained multivariate analysis. In Optimization in Statistics, eds. 

Zanckis, S.H. and Rustagi, J.S.. Amsterdam: North Holland. 

[9]. Jolliffe, I.T. (1989). Rotation of ill-defined principal components. Applied Statistics, 38, 

139 – 147. 

[10]. Jolliffe, I.T., Uddin, M. (2003). A modified principal component technique based on the 

Lasso. Journal of Computation and Graphical Statistics, 12, 531 – 547. 

[11]. Jolliffe, I.T. (1995). Rotation of principal components: choice of normalization constraints. 

J. Appl. Statist., 22, 29–35. 

[12]. Jolliffe, I.T. (2002). Principal Component Analysis (2nd ed.), New York: Springer. 

[13]. Jolliffe, I.T., Uddin, M. (2000). The simplified component technique: An alternative to 

rotated principal components. J. Comput. Graph. Statist., 9, 689–71. 

[14]. Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis. 

Psychometrika, 23, 187–20. 

[15]. Mori, Y., Iizuka, M., Tarumi, T., Tanaka, Y. (1999). Variable selection in principal 

component analysis based on a subset of variables. Bulletin of the International Statistical 

Institute 52
nd

 Session, volume Contributed Papers Book 2, 333–334. 

[16]. Morrison, D.F. (1976) .Multivariate Statistical Methods, New York: McGraw-Hill. 

[17]. Ramsay, J., Ten Berge, J., Styan, G. (1984). Matrix correlation. Psychometrika, 49, 403–

423. 

[18]. Robert, P., Escoufier, Y. (1976). A unifying tool for linear multivariate statistical 

methods:the rv-coefficient. Applied Statistics, 25, 257–265. 



Milone, G. (2010). EJASA:DSS, Vol 1, Issue 1, 2 – 15. 

15 

[19]. Rousson, V., Gassen, T. (2003). Some case studies of simple component analysis. 

Manuscript on http://www.unizh.ch/biostat/Manuscripts. 

[20]. Rousson, V., Gasser, Th. (2003). Simple Component Analysis. Appl. Stat., 53, part 4, 539-

555. 

[21]. Vines, S.K. (2000). Simple principal components. Appl. Stat., 49, 441–451. 

[22]. Zanella, A. (2001). Measures and models of customer satisfaction: the underlying 

conceptual construct and a comparison of different approaches, Six
th

 TQM World 

Congress, Saint Petersburg. 


