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Abstract
**

: This article presents a simple and efficient method to detect multiple 

outliers using a modification of the Akaike’s Information Criterion. The proposed 

method is exemplified using various examples and implemented in the statistical 

package R. The core features of the method are that it depends on simple 

computations, it does not depend on traditional p values, and it signals the 

absence of outliers. The proposed procedure is applicable to analyse data in all 

sciences. 

 

Keywords: Masking effect, outliers, AIC, Stirling’s formula. 

 

1. Introduction 
 

Detecting outliers (e.g., data from a different population, sampling error, etc.) is an important 

issue in data analysis and effective methods to deal with them are always in demand. There have 

already been proposed various statistical methods for the detection of outliers (e.g., Barnett & 

Lewis, 1994; Grubbs, 1969; Johnson, McGuire, & Milliken, 1978) but these methods present 

some problems. For example, the computations used when there is only one outlier are different 
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from those used when there are two outliers. Also, conclusions about the influence of outliers 

will be different depending on the level of significance adopted (e.g., 5%, 1%, etc).  

Similarly, masking effects, i.e., the effect of multiple outliers sustaining other outliers, need to be 

tackled too. To deal with multiple outliers Kitagawa (1979) proposed the application of the AIC 

method (Akaike’s Information Criterion) as mentioned in Beckman and Cook (1983).  The 

appeal of the AIC method is that it is not affected by the number of outliers and treats all outliers 

with a unified method; however, it requires complex computations. A simpler method for the 

detection of outliers is proposed in this paper and it is accompanied by some examples. 

 

2. Definition of statistics and simple detection method of outliers 
 

Kitagawa’s (1979) proposal consists of an application of the AIC to the detection of outliers. The 

simple detection statistic proposed in this paper is based on Kitagawa’s (1979) application, 

where AIC approximates: 

 

-2 (Normal observations’ value log likelihood) + 2 (number of parameters) 

 

Outliers are modelled using f as a density function of the normal distribution: 
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Thus, AIC becomes: 

 
ˆ2 log 2log ! 2AIC n n s          (1) 

 

Where n+s is the number of observations, ˆ  is the standard deviation
1
, and s is the number of 

outlier candidates (s= 0, 1, 2, 3,…). Table 1 shows the values for log n! and log n!/n with respect 

to n.  

Following Table 1, a rough approximation suggests that when , . Then 

using the right side of equation (1),  (the number of 

observations - ) =  - constant. Similar calculations yield approximations for  as 

given in Table 2 when n ranges from 10 to 2000. 

 

 

 

 

 

 

 

 

 

                                                 
1
 In the original article it is not said what sigma stands for. However by looking at the formula used in the Appendix 

is it becomes obvious that  is the standard deviation (see also footnote 5). 
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Table 1. Values for log n! and log n!/n with respect to n 

       
3 1.8 0.6  120 457.8 3.8 

4 3.2 0.8  130 506.1 3.9 

5 4.8 1.0  140 555.2 4.0 

6 6.6 1.1  150 605.0 4.0 

7 8.5 1.2  160 655.5 4.1 

8 10.6 1.3  170 706.6 4.2 

9 12.8 1.4  180 758.2 4.2 

10 15.1 1.5  190 810.5 4.3 

11 17.5 1.6  200 863.2 4.3 

12 20.0 1.7  250 1134.0 4.5 

13 22.5 1.7  300 1414.9 4.7 

14 25.2 1.8  350 1704.1 4.9 

15 27.9 1.9  400 2000.5 5.0 

16 30.7 1.9  450 2303.1 5.1 

17 33.5 2.0  500 2611.3 5.2 

18 36.4 2.0  550 2924.5 5.3 

19 39.3 2.1  600 3242.3 5.4 

20 42.3 2.1  650 3564.2 5.5 

21 45.4 2.2  700 3890.0 5.6 

22 48.5 2.2  750 4219.3 5.6 

23 51.6 2.2  800 4552.0 5.7 

24 54.8 2.3  850 4887.7 5.8 

25 58.0 2.3  900 5226.5 5.8 

26 61.3 2.4  950 5568.0 5.9 

27 64.6 2.4  1000 5912.1 5.9 

28 67.9 2.4  1050 6258.8 6.0 

29 71.3 2.5  1100 6607.8 6.0 

30 74.7 2.5  1150 6959.1 6.1 

31 78.1 2.5  1200 7312.6 6.1 

32 81.6 2.5  1250 7668.1 6.1 

33 85.1 2.6  1300 8025.7 6.2 

34 88.6 2.6  1350 8385.1 6.2 

35 92.1 2.6  1400 8746.5 6.2 

36 95.7 2.7  1450 9109.6 6.3 

37 99.3 2.7  1500 9474.4 6.3 

38 103.0 2.7  1550 9840.9 6.3 

39 106.6 2.7  1600 10209.0 6.4 

40 110.3 2.8  1650 10578.7 6.4 

50 148.5 3.0  1700 10949.9 6.4 

60 188.6 3.1  1750 11322.6 6.5 

70 230.4 3.3  1800 11696.6 6.5 

80 273.7 3.4  1850 12072.1 6.5 

90 318.2 3.5  1900 12449.0 6.6 

100 363.7 3.6  1950 12827.1 6.6 

110 410.3 3.7  2000 13206.5 6.6 
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Table 2. Approximate formulas with respect to size of n 

    
5 to 9 1 4s - constant  

10 to 28 2 6s - constant  
29 to 82 3 8s - constant  
83 to 230 4 10s - constant  
231 to 600 5 12s - constant  
601 to 1715 6 14s - constant  
1716 to 2000 7 16s - constant  

 

The values , ... in Table 2 are correction terms which depend on .  For example, when 

the number observations in a sample ( ) is 10, the correction term of AIC could be either 

 or  which is not good. To correct for this, it is proposed an approximation to the AIC using 

the formula,  , which depends on  and shows a smooth behaviour. Table 3 shows 

how this approximation performs regarding AIC; the results are similar. Accordingly, the outlier 

detection statistic  is defined as follows.  

 

1 log !
ˆlog 2

2
t

n
U AIC n s

n
        (2) 

 
Table 3. Approximate values for the correction term 

 s 

 Half value of correction term 

 

Formula for correction term 

  

n s =1 s =2 s =3 s=4 s =1 s =2 s =3 s=4 

10 2 4 6 8 2.1 4.3 6.4 8.5 

20 3 6 9 12 3.0 6.0 9.0 12.0 

50 4 8 12 16 4.2 8.4 12.6 16.8 

100 5 10 15 20 5.1 10.3 15.4 20.6 

150 5 10 15 20 5.7 11.4 17.1 22.8 

200 5 10 15 20 6.1 12.2 18.3 24.4 

300 6 12 18 24 6.7 13.3 20.0 26.7 

700 7 14 21 28 7.9 15.7 23.6 31.4 

1000 8 16 24 32 8.4 16.7 25.1 33.4 

2000 8 16 24 32 9.3 18.7 28.0 37.4 

 

In order to find outliers, all that is required is to determine a combination of data points that 

gives the smallest statistic . An example is useful to clarify this. Let’s assume there is a data set 

composed of the following observations, 5.71, 6.57, 7.29, 8.06, and 13.32 (taken from Takeuchi, 

1980). First, subtract the mean from each observation and divide it by the data set’s standard 

deviation (i.e., compute z scores).  The obtained values are - 0.828, - 0.541, - 0.300, - 0.043, and 

1.712 respectively. If no outlier is expected, then , and . In such case, 
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. However, if it is assumed that the last observation (13.32, which 

correspond to the z value of 1.712) is an outlier, then , and . In such case, 

. Computations of  for all possible combinations of potential 

outliers using Takeuchi’s data are shown in Table 4. According to Table 4, the only outlier 

is13.32 and its identification threw the lowest . Note that Takeuchi (1980) also used 13.32 as 

the only outlier in his data set. 

 
Table 4. Values of Ut when some observations are removed 

 Largest value removed 

Smallest value 

removed 

 

None 

 

13.32 

13.32 

8.06 

None -0.56 -3.83 -2.94 

5.71 0.63 -3.12 -2.86 

5.71 6.57 1.33 -2.72 -- 
Note. The minimum  obtained is underlined (Same approach is used in the following tables) 

 

3. Application example 
 

In the following examples,  is based on the value of the data divided by the standard deviation. 

 

3.1 Data 1 from Grubbs (1969) 

It can be seen from the data in the Table 5 that 2.02 and 2.22 could be potential outliers. 

According to Table 5, the minimum obtained is -1.77, which occurs when 2.02 and 2.22 are 

signalled as outliers.  Kitagawa (1979) also determined observations 2.02 and 2.22 as outliers. 

 
Table 5. Data 1 from Grubbs (1969) and Ut obtained. 

Data (sample size = 10): 2.02, 2.22, 3.04, 3.23, 3.59, 3.73, 3.94, 4.05, 4.11, 4.13 

     

 Largest value removed 

Smallest value 

removed 

 

 

None 

 

 

4.13 

 

4.13 

4.11 

4.13 

4.11 

4.05 

None  -0.53 1.49 3.13 4.35 

2.02 -0.28 1.70 3.25 4.33 

2.02, 2.22 -1.77 0.21 1.65 2.48 

2.02, 2.22, 3.04 -1.30 0.57 1.82 2.33 

 

3.2 Data 2 from Grubbs (1969) 

Data is shown in Table 6. According to Table 6, the minimum obtained is -2.50, which occurs 

when -1.40 and 1.01 are signalled as outliers. Kitagawa (1979) signalled -1.40, 1.01, and 0.63 as 

the first list of candidate outliers, his second candidate list was - 1.40 and 1.01.   
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Table 6. Data 2 from Grubbs (1969) and Ut obtained. 

Data (sample size = 15): -1.40, -0.44, -0.30, -0.24, -0.22, -0.15, -0.13, 0.06, 0.10, 0.18, 0.20, 

0.39, 0.48, 0.63, 1.01 

     

 Largest value removed 

Smallest value 

removed 

 

 

None 

 

 

1.01 

 

1.01 

0.63 

1.01 

0.63 

0.48 

None  -0.52 0.53 2.38 4.30 

-1.40 -2.30 -2.50 -1.38 -0.12 

-1.40, -0.44 -0.20 -0.62 0.31 1.35 

-1.40, -0.44, -0.30 2.04 1.49 2.28 3.15 

 

3.3 Data affected by masking 

Takeuchi and Ohashi (1981) reported a data set which exemplifies the effect of masking (see 

Table 7). According to the method proposed in this paper, observations -67 and -48 are the only 

outliers. Takeuchi and Ohashi (1981) also identified observations -67 and -48 as outliers. A 

closer look at Table 7 enables to identify the outliers even in cases in which data presents 

masking effects. 

 
Table 7. Data affected by masking and Ut obtained. 

Data (sample size = 15): -67, -48, 6, 8, 14, 16, 23, 24, 28, 29, 41, 49, 56, 60, 75 

     

 Largest value removed 

Smallest value 

removed 

 

 

None 

 

 

75 

 

75 

60 

75 

60 

56 

None  -0.52 1.35 3.46 5.37 

-67 -1.21 0.36 2.33 4.06 

-67, -48 -2.91 -2.19 -0.79 0.04 

-67, -48, 6 -0.58 0.003 1.26 1.92 

 

3.4 Cases in which there is no outlier 

The following example represents the case in which no outliers seem to be present (see Table 8). 

According to Table 8,  which is the minimum value obtained when no observation is 

signalled as outlier.  

 
Table 8. Situation in which no outlier is present and Ut obtained. 

Data (sample size = 10): 5.4, 5.4, 5.5, 5.7, 5.8, 5.9, 6.0, 6.1, 6.3, 6.4 

    

 Largest value removed 

Smallest value 

removed 

 

None 

 

6.4 

6.4 

6.3 

None  -0.53 0.45 1.02 

-67 1.03 1.88 2.31 

-67, -48 1.88 2.53 2.63 
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3.5 Data in which the number of samples is 65 and masking effects exist  

Table 9 shows a data set used by Washio and Ohashi (1989) to describe the length of skis. In this 

data set, minimum  is -2.18, when observations 160 and 161 are signalled as outliers. 

 
Table 9. Skis data and Ut o obtained. 

Data (sample size = 65): 160, 161, 170, 170, 170, 170, 175, 176, 180, 180, 180, 181, 182, 

183, 183, 185, 185, 188, 188, 188, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 

190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 190, 191, 191, 

191, 191, 191, 191, 191, 191, 194, 195, 195, 197, 200, 200, 201, 202, 202, 203 

     

 Largest value removed 

Smallest value 

removed 

 

 

 

None 

 

 

 

203 

 

 

203 

202 

 

203 

202 

202 

203 

202 

202 

201 

None  -0.50 2.96 6.50 9.91 13.41 

160 -0.98 2.35 5.76 9.03 12.40 

160, 161 -2.18 0.96 4.19 7.25 10.41 

160, 161, 170 -0.43 2.59 5.73 8.66 11.70 

160, 161, 170, 170 0.83 3.72 6.71 9.48 12.36 

 

3.6 Data set used in Rosner (1983) 

Table 10 shows the data set used in Rosner (1983). Both the present and Rosner’s method 

identify observations 6.01, 5.42, and 5.34 as outliers. 

 
Table 10. Rosner’s data set and  Ut obtained. 

Data (sample size = 54): -0.25, 0.68, 0.94, 1.15, 1.20, 1.26, 1.26, 1.34, 1.38, 1.43, 1.49, 1.49, 

1.55, 1.56, 1.58, 1.65, 1.69, 1.70, 1.76, 1.77, 1.81, 1.91, 1.94, 1.96, 1.99, 2.06, 2.09, 2.10, 

2.14, 2.15, 2.23, 2.24, 2.26, 2.35, 2.37, 2.40, 2.47, 2.54, 2.62, 2.64, 2.90, 2.92, 2.92, 2.93, 

3.21, 3.26, 3.30, 3.59, 3.68, 4.30, 4.64, 5.34, 5.42, 6.01 

     

 Largest value removed 

Smallest value 

removed 

 

 

 

None 

 

 

 

6.01 

 

 

6.01 

5.42 

 

6.01 

5.42 

5.34 

6.01 

5.42 

5.34 

4.64 

None  -0.50 -1.21 -1.22 -2.12 -1.61 

-0.25 1.76 0.71 0.34 -1.12 -1.10 

-0.25, 0.68 5.38 4.23 3.75 2.10 1.94 

-0.25, 0.68, 0.94 9.23 8.03 7.48 5.72 5.45 

-0.25, 0.68, 0.94, 1.15 13.23 12.01 11.43 9.61 9.27 

 

3.7 Situation when outliers are added to a normal distribution  

A normally distributed data set composed of 100 random observations with a mean of 0 and a 

standard deviation of 1 was generated. Then 5 outliers were added. The added outliers are -4.00, 

3.60, 4.10, 5.20, and 5.70. Table 11 presents the contaminated data set. 
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Table 11. Generated data and Ut obtained. 

Data (sample size = 105): -4.00, -2.83, -2.79, -2.42, -2.40, -2.83, -2.12, -1.93, -1.60, -1.51, -1.27, 

-1.26, -1.20, -1.19, -1.11, -1.08, -1.06, -1.05, -1.03, -1.01, -0.99, -0.98, -0.93, -0.93, -0.91, -0.90, 

-0.86, -0.82, -0.78, -0.77, -0.75, -0.71, -0.71, -0.60, -0.59, -0.58, -0.57, -0.43, -0.41, -0.38, -0.36, 

-0.36, -0.35, -0.33, -0.32, -0.31, -0.29, -0.29, -0.27, -0.24, -0.24, -0.14, -0.12, -0.11, -0.09, -0.08, 

-0.02, 0.00, 0.05, 0.06, 0.06, 0.06, 0.10, 0.10, 0.13, 0.14, 0.26, 0.29, 0.34, 0.36, 0.36, 0.37, 0.38, 

0.41, 0.45, 0.45, 0.52, 0.55, 0.56, 0.62, 0.64, 0.65, 0.65, 0.68, 0.71, 0.75, 0.80, 0.81, 0.82, 0.85, 

0.86, 0.95, 1.08, 1.08, 1.10, 1.16, 1.22, 1.37, 1.43, 1.44, 2.38, 3.60, 4.10, 5.20, 5.70 

     

 Largest value removed 

Smallest value removed  

 

 

 

None 

 

 

 

 

5.70 

 

 

 

5.70 

5.20 

 

 

5.70 

5.20 

4.10 

 

5.70 

5.20 

4.10 

3.60 

5.70 

5.20 

4.10 

3.60 

2.38 

None  -0.50 -4.15 -7.85 -9.15 -9.70 -2.74 

-4.00 1.06 -3.20 -7.65 -9.58 -10.80 -4.27 

-4.00, -2.83 4.56 0.02 -4.80 -7.06 -8.62 -2.33 

-4.00, -2.83, -2.79 7.99 3.14 -2.09 -4.71 -6.67 -0.65 

-4.00, -2.83, -2.79, -2.42 11.88 6.80 1.26 -1.65 -3.92 1.87 

 

3.8 Situation when a large normally distributed data set is used 

A normally distributed large data set composed on 500 random observations with a mean of 0 

and a standard deviation of 1 was generated. No outliers were added. The proposed procedure 

indicated that no outlier was present. Table 12 shows the results. 

 
Table 12. Generated data and Ut obtained. 

Data (sample size = 500):  

Seven smallest values 

-3.53, -2.65, -2.53, -2.40, -2.39, -2.32, -2.26, … 

Seven largest values 

…, 2.44, 2.53, 2.55, 2.56, 2.63, 2.73, 2.79 

     

 Largest value removed 

Smallest value removed  

 

 

None 

 

 

 

2.79 

 

 

2.79 

2.73 

 

2.79 

2.73 

2.63 

2.79 

2.73 

2.63 

2.56 

None  -0.50 3.75 8.10 12.64 17.31 

-3.53 1.78 5.97 10.27 14.77 19.39 

-3.53, -2.65 6.46 10.63 14.90 19.37 23.97 

-3.53, -2.65, -2.53 11.38 15.53 19.77 24.22 28.80 

-3.53, -2.65, -2.53, -2.40 16.56 20.69 24.91 29.34 33.90 
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4. Conclusions 
 

A simple method for the detection of outliers is proposed in this paper and its performance is 

compared to other techniques already proposed. Future work should test the proposed method 

employing real data. However, it is expected that the method will perform efficaciously. 

The advantages of the simple method are that i) it is easy to calculate, ii) it does not require 

determining the number of potential outliers in advance, iii) it does not depend on tables or 

charts, iv) it effectively signals the absence of outliers, and v) it can be used with large sample 

sizes. Given these benefits, the present method can be easily implemented in current statistical 

software and be used as an “automatic outlier detection procedure” (see Appendix).  

The present procedure can be useful in the study of residual values in regression analysis. This 

line of research is still to be advanced. Also, future work could systematically study the 

performance of this procedure via intensive computer simulations (e.g., Monte Carlo studies). 
2
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2
 In the original article, under the title of “acknowledgments”, the author adds that at first Ut (when n is 

approximately 10, ) was intuitively derived without any formal evidence and vaguely defined. 

However, thanks to the author’s advisor, the rationale for such formula could be formally defined and tested. 

Likewise, reviewers’ feedback led the author to re-formulate the correction term in relation to sample size. Those 

suggestions enabled Ueda to furnish an appropriate formula for the correction term.  
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Appendix3
 

 

 The Stirling Formula is used to compute log n!  

> stirling = function(x) 

{ 

1/2*log(2*pi)+(1/2+x)*log(x)-x 

} 

 Ut function implemented in S programming language and its example:  

> outlier = function(x, s) 

{ 

# x = data; s = number of outliers 

 n = length(x) 

 sigma = sqrt(sum((x-mean(x))^2)/n) ###### see footnote 4 

 ut = n*log(sigma)+(sqrt(2)*stirling(n))/n*s 

 list(Ut=ut) 

} 

 Example. Takeuchi’s (1980) data 

> takeuchi = c(5.71, 6.57, 7.29, 8.06, 13.32) 

> scale(takeuchi) 

# the function “scale” scale is generic function whose default method centres and/or  

# scales the columns of a numeric matrix. In other words, it gives the z score for each  

# observation. Also, “scale” function outputs the mean and standard deviation of the data  

# set. The output should look like this 

[,1] 

[1,] -0.82760285 

[2,] -0.54061154 

[3,] -0.30033974 

[4,] -0.04338241 

[5,]  1.71193653 

attr(,"scaled:center") 

[1] 8.19 

attr(,"scaled:scale") 

[1] 2.996606 ###### see footnote 5 

> outlier(scale(takeuchi)[1:5],0) 

# This line of code outputs the case when no outliers are expected, i.e., n = 5 and s = 0 

# the output should look like this 

$Ut 

[1] -0.5578589 

> outlier(scale(takeuchi)[1:4],1) 

# This line of code outputs the case when one outlier is expected, i.e., n = 4 and s = 1 

# the output should look like this 

$Ut 

[1] -3.834097 

 

                                                 
3
 In the original article the code was implemented in S programming language. Note that this code can be also 

implemented in R programming language. Minor typo changes and re-arrangement of functions were made on the 

original code so that it can be easily implemented and run in R environment. Some comments are added for clarity.  
4
 In current versions of R the function “sd” could be use to replace “sigma = …”. However, the “sd” function uses 

by default the degrees of freedom adjustment. In terms of the formula used originally by Ueda, the “sd” function 

would be “sigma = sqrt(sum((x-mean(x))^2)/(n-1))”. This could be an issue to bear in mind for future work using 

Ueda’s method. In addition, further investigation could aim to check the performance of Ueda’s method when some 

terms are replaced by robust estimators of location and scale, e.g. median and median average deviation. 
5
 The value for the standard deviation given by the function “scale” includes the degrees of freedom correction (see 

footnote 4). If the formula for sigma proposed by Ueda to calculate the standard deviation (i.e., “sigma = 

sqrt(sum((x-mean(x))^2)/n)”) were used to compute the sigma of Takeuchi’s data set, it would be 2.680246. 


