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Abstract: Cardiovascular disease (CVD) is the leading cause of mortality in 

developing countries. CVD studies that involve the recording of two or more 

distinct and well-defined myocardial infarctions (MI) occurring over time in the 

same patient give rise to recurrent event data. In recent years a variety of fruitful 

statistical methods have been proposed for the analysis of recurrent events in 

medical areas. The present article is concerned with the estimation of the survival 

time of CVD patients, in the presence of recurrent myocardial infarctions 

followed by a terminal event death, under three different possibilities, i.e., the 

inter-event times between heart attacks follow gamma distribution, the number of 

heart attacks for an individual occur with time independent constant intensity λ , 

which is varying across individuals, and the hazard rates for the recurrent heart 

attacks vary from different attacks for the same individual. Cox’s proportional 

hazard model has also been applied to study the effect of age at the time of first 

MI and the number of MI’s experienced by the patient, on the survival time of 

CVD patients. Prior to that proportionality assumption has been tested. The 

methods are applied to a CVD patients data set obtained from Dr. Ram Manohar 

Lohia (R.M.L) Hospital, Delhi. The major advantage of developing models for 

estimating the survival time of CVD patients is that the treatment comparisons 

can be designed so that the expected survival time of new CVD patients can be 

predicted and improved after the first MI. Also it can be used as a baseline for 

further studies. 
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1. Introduction 
 

Despite improved clinical care, heightened public awareness, and widespread use of health 

innovations CVD remains the leading cause of death in India  and  other developing countries 

[16,17]. Developing countries are undergoing a rapid epidemiological  transition – from 

infectious  diseases such as diarrhea and pneumonia to chronic ones such as heart  disease – that 

threatens  to  overwhelm  their  strapped  health systems and cripple their fragile economies 

[Heidi Worley, January 2006]. Acute MI causes death or disability in many who are still in 

active years  of  life. Its  personal and social costs  are profound, both for patients and families 

involved  and for the  countries in which it is common [WHO Prevention of Coronary Heart 

Disease, TRS No. 678, 1982]. Cardiovascular diseases are manifested by the incidence of 

recurrent clinical events such as myocardial infarctions (MI). Often, the recurrence of these MI’s, 

is interrupted by a terminating event, death during  the  course  of the study.  

A steady decline in the mortality rate from acute MI has been observed across several population 

groups since 1960. Although,  its developing is still  a   fatal   event   in   approximately  one – 

third  of  patients [8]. A wide variety of approaches has been considered earlier for the analysis 

of recurrent event data including methods based on the inter-event times, marginal methods 

based on multivariate failure time data, general intensity based modeling, and methods based on 

event-counts [5]. In this  paper, the research interest is focused on the generation of methods for 

estimating the survival time of CVD patients who had experienced at least one MI . This 

estimation can be used to predict the  future  lifetime  of  new  CVD  patients   and   thus   helps   

in   developing  treatment comparison designs [3].  

The remainder of the paper is organized as follows. In section 2 developments of the models is 

discussed.  It further consists of four parts.  In the first part, we have estimated the survival time 

by taking the inter-event times between MI’s to follow gamma distribution which has been 

verified to be a good fit to the data. In the second part we  have  estimated  the  survival  time  

when N, the number of MI’s , is a random variable and the intensity  of  MI’s  is constant  for  

each  interval  but varying across individuals. In the third part we have estimated the survival 

time when MI’s  occur with varying intensities for the same individual. In the fourth part Cox’s 

proportional hazard model [1,4,10] has been applied to study the effect of age at the time of first 

MI and the number of MI’s experienced by the patient, on the survival time of CVD patients. 

Prior to that proportionality assumption has been tested. Section 3 applies the models to a data 

set of recurrent MI’s in CVD patients obtained from R.M.L Hospital, Delhi, India.  Although 

much work has been done for the analysis of recurrent events in the presence of a terminal event 

but to the best of our knowledge there is no study that has systematically estimated the survival 

time of CVD patients under the four possibilities mentioned above. Some concluding remarks 

are made in section 4. 

 

 

2. Development of the model 
 

2.1 Part I: Estimation of survival time when the time between MI’s is a random variable 

following gamma distribution. 

Let  (i=1,2,......,m; j=1,2,......,N)ijT be the time of the j
th

  MI for the i
th

 patient measured from time 

zero. The zero point represents the time of birth of the individual. An individual is observed to 
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undergo N illness events (MI’s), N = 1,2,…..The inter-event times from 
1ijT  until 

ijT  is denoted 

by ( 1,2,........ ;  j=1,2,........N)ijX i m [9, 11, 14] which are independently distributed random 

variables, each having gamma distribution with parameters, say 
ij  and 

( 1,2,....... ;  j=1,2,........N)ij i m .  

 

 
Figure 1. Representation of the History of a CVD patient who experienced at least one MI during 

the observed follow up. 

 

The probability function of the time interval between MI’s is given by: 
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Here the shape parameter ij  describes that the hazard of the MI increases with time. Then 
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For the sake of simplicity we have done calculations when the numbers of MI’s are 2 and 3 

respectively. Parameters have been estimated by the method of maximum likelihood, by solving 

the likelihood function [7, 10]. 
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where ( 1,2,......, )kt k m are the recorded survival times of m patients. It follows that: 
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The large sample variance-covariance matrix for ij and ij is given by: 
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Then the separate approximate 95% confidence interval for ij and ij  are 

1.96 var( )   and 1.96 var( )ij ij ij ij
, respectively; where var( ) and var( )ij ij  are the 

diagonal elements of the variance-covariance matrix (5). Numerical values are obtained by 

replacing the parameter values with their maximum likelihood estimators [7]. 

The expected survival time of the patients who received two MI’s and the corresponding 

estimated variance and confidence interval are given by: 

 

2 2 2
2 2 22

2 2

var( )
( )  , V(Y )  , E(Y ) 1.96i i

i i

Y
E Y

m
     (6) 

 

and the expected survival time of  the patients who received three MI’s and the corresponding 

estimated variance and confidence interval are given by: 

 

2 3 2 3 3
3 3 32 2

2 3 2 3

var( )
  , V(Y ) +  , E(Y ) 1.96i i i i

i i i i

Y
E Y

m
    (7) 

 

2.2 Part II: Estimation of Survival Time when the number of MI’s, and the hazard rate of 

MI’s, are random variables. 

As introduced in part I,  (i=1,2,......,m; j=1,2,......,N)ijT  is the time of the jth MI  and 

( 1,2,........ ;  j=1,2,........N)ijX i m is the time interval between these MI’s which are independent 

and identically distributed random variables, each having exponential distribution with 

parameter, say . 

 

( ) ; 1,2,....., ; 1,2,......, ; 0ijx

ijf x e i m j N       (8) 

 

Suppose that the number of MI’s, N, is a random variable following Geometric distribution with 

parameter, say p.  The probability function of N is given by 

 
1( ) ; 1,2,.....;0 1; 1NP N q p N p N        (9) 

 

where p is the probability of experiencing a fatal MI. Let Yi be the sum of time intervals between 

MI’s. 

 

Then 1 2 ........... ,i i i iNY X X X Gamma N      (10) 

 

In this part, we estimate the survival time of cardiac patients by assuming that the MI’s occur 

with hazard rate λ which is constant for each individual but is varying from individual to 

individual according to the following probability law: 
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1( ) ;0 ; , 0e  

 

Then the conditional distribution of survival time iY  given N, the number of MI’s and , the 

intensity with which an MI is experienced, for the i
th

 patient is given by: 

 

1

i, ;  N 1, y 0,  >0i

N
yN

i ig y N y e
N

      (11) 

 

Integrating equation (11) with respect to over the range 0 to , we get: 
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On integrating by parts we get: 

 

( )
( 1)

iE Y
p

 

 

which is the general form of estimated survival time for the i
th

 patient. But when α < 1 we get: 

 

( )
(1 )

iE Y
p

          (15) 

 

Parameters α and γ have been estimated separately for each patient by the method of moments 

and the probability p of a fatal MI, has been estimated by the method of maximum likelihood, 

which consists in maximizing the following log likelihood equation: 
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, using the software R. 

 

2.3. Part III: Estimation of survival times when MI’s occur with varying intensities for the 

same individual. 

In this part, we estimate the survival time of cardiac patient by assuming that the j
th

 MI occurs 

with intensity ( 1,2,........ ;  j=1,2,........N)ij i m . Then the density function of iY  given N, where 

iY  is the sum of the inter MI times (since the first MI) is given by [6]: 

 

1

1 1

1

( 1)

( )

( )

iij

NN
y N

ij
j j

i N

ij ik
k
k j

e

f y N ; 

 

which implies: 

 

1

1 1 1

1

1

( 1)

( ) .

( )

iij

NN
y N

ij
j j N

i N
N

ij ik
k
k j

e

g y pq        (17) 

 

Then using m.g.f property: 

 

1

1

. . ( )

( )

N

ij

j

N

ij

j

m g f y N

t

  

 

On differentiating w.r.t t and substituting t=1 we get: 
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which implies: 
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On changing summation we get: 

 

1 1

1 1

1 1
( ) N N

i

j N j jij ij

E Y pq q         (19) 

 

which is the estimated survival time for the i
th

 patient. The parameters 1 2 i3, ,  and pi i  have 

been estimated as follows: 

 

1

Number of MI's

Number of years survived 
i  

 

2

Number of MI's after the first MI

Number of years survived after first MI
i  

 

3

Number of MI's after the second MI

Number of years survived after second MI
i       (20) 

 

Number of deaths due to CVD 

Total number of CVD patients
p  

 

Student – t test has been used to ascertain the significance of differences between the observed 

and the estimated survival times obtained in part II and part III. 

 

2.4 Part IV: Cox’s proportional hazard model. 

In this part Cox’s proportional hazard model [1,4,10] has been applied on participants who have 

experienced MI’s, to assess the influence of two covariates, viz., age at the time of first MI 

(years) and the number of MI’s experienced by the patient, on the survival time of CVD patients 

[4]. Prior to that proportionality assumption has been tested graphically [2]. 

Here, we briefly describe the Cox’s proportional hazard model in the notations used by Collet 

(2003). We consider a Cox’s model of the form: 

 

1 1 2 2 0 0( ) exp( ........ ) ( ) exp( ' ) ( )i i i p pi ih t x x x h t x h t     (21) 

 

where ( ), 1,2,.....,ih t i n  denotes the hazard function for the i
th

  individual. The hazard of death 

at a particular time depends on the values 1 2, ,......., px x x of p explanatory variables, 

1 2, ,........, PX X X , which are represented by the vector x, so that 1, 2( ,....., ) 'px x x x . 0 ( )h t is the 

baseline hazard function for an individual for whom the values of all the explanatory variables 
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that make up the vector x are zero and  is the vector of coefficients of the explanatory 

variables 
1 2, ,......., px x x in the model.  

Suppose that data are available for n individuals, among whom there are r distinct death times 

and n-r right-censored survival times. The r ordered death times are denoted 

by
(1) (2) ( )....... rt t t , so that 

( )jt is the j
th

 ordered death time. The set of individuals who are at 

risk at time 
( )jt  are denoted by the risk set

( )( )jR t , so that 
( )( )jR t is the group of individuals who 

are alive and uncensored at a time just prior to
( )jt . The relevant likelihood function for the 

proportional hazards model in equation (21) is given by: 

 

( )

1

( )

exp( ' )
( )

exp( ' )
j

r
j

j l

l R t

x
L

x
       (22) 

 

in which 
j

x  is the vector of covariates for the individual who dies at the j
th

 ordered death time, 

( )jt . The maximum likelihood estimates of the -parameters in the proportional hazards model 

can be found by maximizing the log-likelihood function using numerical methods. The 

calculations in this paper have been carried out using the package SPSS. 

 

 

3. Application 
 

We now apply the methods developed in section 2 to CVD patients data obtained from 

Dr.R.M.L. Hospital, Delhi, India for the year 2005-2006. The records of patients admitted with 

diagnosis of CVD were reviewed. The CVD patients with co-morbidity like renal failure, 

pneumonia, obstructive respiratory disease, etc. were excluded from the study because their 

number was not sufficient to draw valid conclusion about these identities. Thus data records of 

295 cases was collected. Out of these 295 cases there were only 35 cases (uncensored) who died 

after experiencing at least one MI. The demographic and risk variables recorded were : hospital 

discharged status ( survived or died ), sex, time of MI, diabetes (Y/N), hypertension (Y/N) and 

smoking (Y/N). In addition to these, two other covariates at baseline were measured: number of 

MI’s experienced by the patient and age of the patient at the time of first MI (years).  

The motivation of our model development was to estimate the survival time of CVD patients 

under various conditions. In the first part we have taken the inter-event times between MI’s to 

follow gamma distribution. Under this condition the estimated survival time of the patients who 

received two and three MI’s are given in Table 1 and Table 2 respectively along with the 

estimated parameters, their standard errors and confidence limits [7]. 

 

 

 

 

 

 



On the estimation of survival time of cardio-vascular disease patients with random number of myocardial infarctions using parametric 

and semi-parametric methods 

10 

Table 1. Parameter estimates and mean survival time (years) of patients who experienced 2 myocardial 

infarctions (MI’s), with corresponding standard errors and 95% confidence intervals 

Parameter Number of MI’s experienced - 2 

Estimate Standard Error 95% Confidence Limits 

Shape 
5.2585337 2.281000394 0.78777292; 9.72929446 

Scale 
2.6292669 1.196747279 0.28364218; 4.97489151 

Mean survival time(years) 2.0000015 0.275802161 1.45942926; 2.54057374 

 
Table 2. Parameter estimates and mean survival time (years) of patients who experienced 3 Myocardial 

infarctions (MI’s), with corresponding standard errors and 95% confidence intervals. 

Parameter Number of MI’s experienced -3 

Estimate Standard Error 95% Confidence Limits 

Shape 

 

2.9108545 0.872903736 1.199963137; 4.621745783 

  4.8532587 1.484991627 1.942675114; 7.763842294 

Scale 

 

0.8820771 0.288675716 0.316272705; 0.499083112 

 

 

3.5950065 1.158936893 1.323490137; 5.866522757 

Mean survival time(years) 4.65 0.453689894 3.760767806; 5.539232194 

 

The estimated survival time of the patients who received 2 MI’s came out to be 2.0000015 years 

since birth and the observed survival time was 2 years. The estimated survival time of the 

patients who received 3 MI’s came out to be 4.65 years since birth and the observed survival 

time was also 4.65 years. Thus the estimated and the observed survival times in both the cases 

were found to be remarkably similar.  

Next, in part II, we have taken the number of MI’s N to be a random variable following 

geometric distribution with parameter p and also the MI’s occur with constant intensity λ which 

is varying across individuals. The parameter p as estimated by the method of maximum 

likelihood using the software R came out to be 0.3339609. The 95% confidence interval for the 

estimated mean survival time came out to be (3.154386, 4.4528543). The paired Student’s t 

statistic gave an observed value of 1.827 (p>0.05) on 25 degrees of freedom. Thus we conclude 

that there is not enough evidence to reject the hypothesis that there is no significant difference 

between the estimated and the observed survival times. 

Figure 2 shows the estimated and observed survival times (years) of patients (as obtained in part 

II) who received two and three MI’s. 

In part III, we have estimated the survival time when MI’s occur with varying intensities for the 

same individual. The parameter p is estimated to be 0.118644067. The 95% confidence interval 

[7] for the estimated mean survival time came out to be (2.610309184, 4.822947958). The paired 

Student’s t statistic gave an observed value of 1.835 (p>0.05) on 33 degrees of freedom. Thus we 

2i

2i

2i

3i

2i

3i
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conclude that there is not enough evidence to reject the hypothesis that there is no significant 

difference between the estimated and the observed survival times. Figure 3 shows the estimated 

and observed survival times (years) of CVD patients who received two and three MI’s (as 

obtained in part III). 
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Figure 2. Estimated and observed survival time of CVD patients when the number of MI’s, N, is a random 

variable and also the MI’s occur with constant intensity which is varying across individuals. 
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the same individual. 
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The fourth part in this paper is devoted to investigate the effect of the age at the time of first MI 

and number of MI’s experienced on the survival time of  CVD patients. In this study, the primary 

response variable is the time for first MI. The data, obtained from Dr. R.M.L. hospital, Delhi, 

India, relate to 105 patients, who were aged between 30 and 90 years. Some of these patients had 

not died by the time the study was terminated, and so these individuals contribute right-censored 

survival times. At the time of first MI, two covariates at baseline were measured for each patient: 

number of MI’s experienced by the patient and age of the patient at the time of first MI (years). 

The age of a patient at the time of first MI has been classified according to whether the patient is 

≤ 60 years or > 60 years. Also, the number of MI has been classified according to whether the 

patient experiences 1, 2 or 3 MI’s. Here we are considering three models for these data 

depending on whether hazard function is related to neither, one or both of these factors [4]. 

Checking of the model’s assumption of proportional hazards is done graphically using log minus 

log hazard plot as shown in figure 4 and figure 5. The graphs revealed that the hazards for 

patients with ≤ 60 years of age and with > 60 years of age are proportional. Also, the hazards for 

patients who experienced 1, 2 and 3 MI’s are also found to be proportional [2, 4].  

First we consider a model (Model I) where only the number of MI’s are assumed to influence the 

survival time of the patient and we define the time-independent covariates as: 

 

 Z1= 1 if the individual experienced one MI and zero otherwise. 

 Z2= 1 if the individual experienced two MI’s and zero otherwise. 

 

The proportional hazard model for the i
th  

individual is then: 

 

hi(t)= exp(β1 Z1 +  β2 Z2) h0(t)        (23) 

 

where h0(t) is the baseline hazard function that corresponds to the hazard of death at time t for an 

individual who experienced three MI’s.  

The value of 2log L  for the null model is 481.868. The reduction in 2log L  on adding the 

effect due to number of MI’s is 10.101 on 2 degrees of freedom which is significant at 5% level 

of significance (p = 0.006). Thus we conclude that the hazard function does depend on the 

number of MI’s experienced by the patient. The estimates for Model I are given in table 3. The 

hazard ratio given in table 3 suggests that the hazard of death at any given time is greatest for 

patients who experienced only one MI, but there is little difference in the hazard functions for 

patients who experienced two and three MI’s respectively. 

Second we consider a model (Model II) where only the age of the patient at the time of first MI 

is assumed to influence the survival time of the patient and we define the time-independent 

covariate as: 

 

Z3= 1 if the patient is ≤ 60 years and zero otherwise. 

 

The proportional hazard model for the i
th  

individual is then: 

 

hi(t)= exp(β3 Z3) h0(t)          (24) 
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where h0(t) is the baseline hazard function that corresponds to the hazard of death at time t for an 

individual aged > 60 years. 

 

 
Figure 4. Goodness-of-fit plot for age when scored 1 for age less than or equal to 60 years and 2 for age 

greater than 60 years. 

 

 
Figure 5. Goodness-of-fit plot for number of MI’s when scored 1 for number of MI =1, 2 for number of MI’s 

= 2 and 3 for number of MI’s = 3.  
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Table 3. Cox’s proportional hazard model when only the number of myocardial infarctions (MI’s) are 

assumed to influence the survival time of the CVD patients. 

Number of MI’s B Standard Error Wald d.f. Sig. Exp(B) 

1 1.515 0.516 8.619 1 0.003 4.548 

2 0.984 0.451 4.758 1 0.029 2.676 

 

The reduction in 2log L  on adding the effect due to the age of the patient at the time of first MI 

is 7.323 on 1 degree of freedom which is significant at 5% level of significance (p = 0.007). Thus 

we conclude that the hazard function does depend on which age group the patient is in. The 

estimates for Model II are given in table 4. The negative sign of the regression coefficient 

indicates that there is a decreased relative risk for the patients  ≤ 60 years of age. The hazard of 

dying for patients ≤ 60 years of age is about 49% less than that of the hazard of dying for patients 

> 60 years of age when no other covariates are considered. 

 
Table 4. Cox’s proportional hazard model when only the age of the patient at the time of first myocardial 

infarction (MI) is assumed to influence the survival time of the CVD patients. 

 B Standard Error Wald d.f. Sig. Exp(B) 

Age  -0.708 0.259 7.466 1 0.006 0.493 

 

Third we consider a model (Model III) where both the age of the patient at the time of first MI 

and the numbers of MI’s experienced are assumed to influence the survival time of the patient. 

The impact of number of MI’s on the hazard is independent of the age group of the patient. The 

proportional hazard model for the i
th

 individual is then: 

 

hi(t)= exp(β1 Z1 +  β2 Z2 + β3 Z3) h0(t)       (25) 

 

The change in the value of -2log L  when the effect due to the age of the patient at the time of 

first MI is included in the model that contains the effect due to the number of MI’s is 8.286 on 1 

degree of freedom. This is significant at 5 % level of significance and so there is some evidence 

that effect due to the age of the patient at the time of first MI is needed in a model that contains 

the effect due to the number of MI’s. The estimates for model III are given in table 5.  

The change in the value of -2log L  when the effect due to the number of MI’s is included in the 

model that contains the effect due to the age at the time of first MI is 5.286 on 2 degrees of 

freedom. Thus the test statistic is significant and so there is some evidence that effect due to the 

number of MI’s is needed in a model that contains the effect due to the age of the patient at the 

time of first MI. Thus putting these two results together we conclude that the hazard function 

depends on both the patient’s age group at the time of first MI and the number of MI’s 

experienced by the patient. The hazard ratio given in table 7 suggests that the hazard of death at 

any given time is greatest for patients who have experienced one MI. Also the number of MI’s 

(2) is found to be no longer significantly related to the survival time of the CVD patients. Here 

again the negative sign of the regression coefficient indicates that there is a decreased relative 

risk for the patients ≤ 60 years of age. The hazard of dying for patients ≤ 60 years of age is about 
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53% less than that of the hazard of dying for patients > 60 years of age, when the effect due to 

the number of shocks experienced by the patient is also considered. 

 
Table 5. Cox’s proportional hazard model when both the age of the patient at the time of first myocardial 

infarction and the number of myocardial infarctions (MI’s) experienced are assumed to influence the survival 

time of the patients. 

 B Standard Error Wald d.f. Sig. Exp(B) 

Age -0.628 0.267 5.532 1 0.019 0.534 

No. of M I’s     7.809 2 0.02   

No. of M I’s (1) 1.418 0.528 7.205 1 0.007 4.13 

No. of M I’s (2) 0.771 0.468 2.717 1 0.099 2.162 

 

 

4. Discussion 
 

The aim of this study is to estimate the survival time of CVD patients under three different 

conditions. The major use of estimating the survival time of CVD patients is that the current as 

well as the future life time of new CVD patients can be predicted. Also it can be used as a 

baseline for further studies. It may also allow one to gain a deeper insight into the various 

differences that may exist between the treatments given to CVD patients. 

In the first part we have assumed that the times between recurrent events for subject i follow 

gamma distribution. In the second part the hazard rate λ of the recurrent events is assumed to be 

constant for each individual but is varying from individual to individual. Also the recurrent 

events for subject i follow geometric distribution with parameter p, which is the probability of 

getting a fatal MI. For the sake of simplicity we have considered the probability of developing an 

MI to be a constant but in many applications this probability is impacted by covariates. This 

concept is suggested for further studies. In the third part we have assumed that the recurrent 

events occur with intensities ij (i = 1,…., m ; j = 1, 2,…,N) for the i
th

 patient. In all the above 

three models we have considered only uncensored cases. Clearly, considering only uncensored 

cases will increase the mean of the survival time. Also there are many potential applications in 

which this assumption might be questionable [13]. For example, if the occurrence of an event 

causes some physiological damage to an individual and this effect is cumulative, the occurrence 

of several events might in fact be prognostic for death (which will be considered as a censoring 

because we focus on the recurrent events process). This feature will induce dependence between 

censoring and the event process [13]. In the analysis of  recurrent event process the investigators 

are often interested in estimating the frequency of recurrences over time as well as assessing the 

effects of covariates on the recurrence times [12].To deal with such complications it is essential 

to adopt more elaborate methods. Thus further modeling should be developed accordingly.  

In the fourth part of the paper we have applied Cox’s proportional hazard model to assess the 

influence of two covariates, viz., age at the time of first MI (years) and the number of MI’s 

experienced by the patient, on the survival time of CVD patients. It is found that age at the time 

of first MI is significantly related to the survival time of the patient in the presence of the effect 

due to the number of MI’s. The estimated coefficient B for number of MI’s (2) has been found to 

be not significantly related to the survival time of the patient. But, since the contribution of any 
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one variable is determined in the context of the contribution of all other variables in the model 

[4], if other variables are included in the model, number of MI’s (2) might be found to make a 

significant contribution. 

 

Acknowledgement 

 

The authors are grateful to Prof. Asha.S.Kapadia, Division of Bio-Statistics, Division of 

Management Policy and Community Health, University of Texas and Ms. Nezhat Shakeri and 

Mrs Alka Sabharwal, Department of Statistics, University of Delhi, for useful suggestions while 

preparing the paper.  

 

References 
 

[1]. Andersen, P.K. and Gill, R.D. (1982). Cox’s regression model for counting processes : A 

large sample study. The annals of statistics, 10 (3), 1100-1120. 

[2]. Andersen, P.K., Borch-Johnsen, K., Deckert, T., Green, A., Hougaard, P., Keiding, N. 

and Kreiner, S. (1985). A Cox regression model for the relative mortality and its 

application to diabetes mellitus survival data. Biometrics, 41, 921-932. 

[3]. Barai, U. and Teoh, N. (1997). Multiple statistics for multiple events, with application to 

repeated infections in the growth factor studies. Statistics in medicine, 16, 941-949. 

[4].  Collett, D. (2003). Modeling survival data in medical research (2
nd

 edition). London: 

Chapman and Hall/CRC. 

[5]. Cook, R.J. and Lawless, J.F. (1997). Marginal analysis of recurrent events and a 

terminating event. Statistics in Medicine, 16, 911-924. 

[6].  Chiang, C.L. (1968). Introduction to Stochastic Processes in Bio-Statistics. New York: J. 

Wiley. 

[7]. Gross, J.A. and Clark, A.V. (1975). Survival distributions : Reliability applications in the 

biomedical sciences. , New York, London, Sydney, Toronto: John Wiley and Sons. 

[8]. Kakade, S.V., Tyagi, N.K., Kadam, R.N. (2006). Application of logistic regression to 

estimate prognosis in acute myocardial infarction. Indian journal of community medicine, 

31 (2), 69-72. 

[9]. Lambert, P., Collett, D., Kimber, A. and Johnson, R. (2004). Parametric Accelerated 

Failure Time Models with Random Effects and an Application to Kidney Transplant 

Survival. Statistics in Medicine, 23, 3177-3192. 

[10]. Lee, E.T., Wang, W.Y. (2003). Statistical Methods For Survival Data Analysis, Third 

Edition. New Jersey: John Wiley & Sons. 

[11]. Li, Q.H., Lagakos, S.W. (1997). Use of the Wei-Lin-Weissfeld Method for the Analysis 

of a Recurring and a Terminating Event. Statistics in Medicine, 16, 925-940. 

[12]. Lin, D.Y., Wei, L.J. and Ying, Z. (1998). Accelerated failure time models for counting 

processes. Biometrika, 85 (3), 605-618. 

[13]. Mahe, C., Chevret, S. (2001). Analysis of Recurrent Failure Times Data: Should the 

Baseline Hazard be Stratified?. Statistics in Medicine, 20, 3807-3815. 

[14]. Metcalfe, C., Thompson, S.G. (2006). The importance of varying the event generation 

process in simulation studies of statistical methods for recurrent events. Statistics in 

medicine, 25, 165-179. 



Grover G., Gadpayle A.K., Makhija N., Electron. J. App. Stat. Anal., Vol. 3, Issue 1 (2010), 1 – 17. 

17 

[15]. Moschopoulos, P.G. (1985). The distribution of the sum of independent gamma random 

variables. Ann. Inst. Statist. Math., 37, Part A, 541-544. 

[16]. Murray CJ. Lopez AD. (1997). Global Mortality, Disability, and the Contribution of Risk 

Factors; Global Burden of Disease Study. Lancet, 349, 1436-1442. 

[17]. Reddy KS.and Yusuf S. (1998). Emerging epidemic of Cardiovascular Disease in 

Developing Countries. Circulation, 97, 596-601. 


