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Abstract: In this paper, the problem of estimating the mode of a probability 

density function has been studied. Parzen (1962) proposed a kernel estimator of 

the mode depends on a single bandwidth. In this paper, the Parzen estimator has 

been improved by proposing a kernel estimator with variable bandwidth for the 

mode of the density function. Proceeding as in Parzen (1962), the consistency and 

asymptotic normality of the proposed estimator are shown. Moreover, the good  

performance of the proposed estimator is tested via simulation study and it is 

shown that the proposed estimator is more efficient than the Parzen estimator. 
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1. Introduction 
 

A mode of probability density function ( )f x  is a value of x which maximizes .f  Therefore, 

any method for estimating the mode must estimate the density function, either explicitly or 

implicitly.  

Here, attention is focused on the class of kernel estimators introduced by Rosenblatt (1956). Let 

1 2, ,..., nX X X  be a random sample from a distribution with density function ( )f x . Rosenblatt 

proposed estimating ( )f x  by: 

 

1

1 1ˆ( ) ,
n

i

i

x X
f x K

n h h
         (1) 
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where the kernel K is a bounded measurable function satisfying 
| |
lim ( ) 0,
x

K x  and the 

bandwidth 
nh h is a sequence of positive numbers satisfying lim 0.

n
h  This means that the 

observations which are far from x will have a little influence on ˆ( ).f x  

Parzen (1962) maximized the estimator in Equation (1) to propose a kernel estimator ˆ  of the 

mode , which is defined as: 

 
ˆˆ max ( ).

x
f x           (2) 

 

Parzen (1962, Theorem 3A) gave conditions under which ˆ  is a consistent estimator of . 

Nadarya (1965) derived stronger consistency results. Parzen (1962, Theorem 5A) gave 

conditions under which ˆ  has asymptotic normal distribution. Samanta (1973) has given 

multivariate versions of  Parzen's  results. 

The bandwidth in Equation (1) remains constant. This means that it depends neither on the 

location of x nor on  the data .iX  Such an estimator does not fully incorporate the information 

provided by the density function of the data points. Furthermore, a constant bandwidth is not 

flexible enough for estimating curves with a complicated shape. All these considerations lead to 

introduce new estimators of the density function that depend on different bandwidths.  

In this paper, a Kernel estimator with variable bandwidth for the mode of the density function is 

proposed. Proceeding as in Parzen (1962) the consistency and asymptotic normality of the 

proposed estimator are shown. Moreover, the performance of the proposed estimator is tested via 

simulation study. 

The paper is organized as follows. In the next section, the proposed mode estimator is presented. 

In Section 3, the conditions that are needed to derive the main results in the paper are stated. In 

Section 4, the main results of this paper are presented and proved, while in Section 5, the 

performance of the proposed estimator is investigated through simulation study. The last section 

draws some concluding remarks. 

 

2. Variable bandwidth kernel estimator of the mode 
 

Since the mode is a local feature of the shape of the density function, it is natural to use location 

adaptive bandwidths. Vieu (1996) used this idea and presented a mode estimator based on local 

kernel density estimation.  

A quite different idea from local kernel density estimation is that of variable kernel density 

estimation. In a variable kernel density estimation, the single bandwidth h is replaced by 

n different bandwidths depend on , 1,2,...,iX i n . The basic idea is to construct a kernel 

estimator consisting of kernels placed at the observed data points, but allows the bandwidth of 

the kernels to vary from point to another. 

The variable bandwidth kernel density estimator ( )nf x  of  ( )f x  is defined as: 
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1

1 1
( ) ,

n
i

n

i i i

x X
f x K

n h h
        (3) 

where ( ) , ( )i if X f x  is a pilot estimator that satisfies ( ) 0if X  for all  ,  0 1.i  

Abramson (1982) shows that taking 
1

2
 is a good choice since one can achieve a bias of order 

4h rather than 2 .h  For more details, see Silverman (1986, pp. 100-102), Wand and Jones (1995, 

pp. 40-43) and Fan and Gijbels (1992). 

Assume that the probability density function ( )f x  is uniformly continuous and it has a unique 

mode  defined as: 

 

( ) max ( )
x

f f x . 

 

Since ( )nf x  is continuous and tends to 0 as x tends to , there is a random variable 
n

 such 

that: 

 

( ) max ( )n n n
x

f f x . 

 

n
 is the variable bandwidth kernel estimator of  the mode .  

 

3. Conditions 
 

The main results in the paper are derived under the following conditions.  

 

Condition 1. 

 

(i) The density function ( )f x  is uniformly continuous, 

(ii) lim ( ) 0
x

f x , 

(iii) ( )f x  has a continuous second derivative. 

 

Condition 2. ( )K x is a Borel function satisfying the conditions 

 

(i) ( )K x is twice differentiable, 

(ii) sup | ( ) |
x

K x , 

(iii) | ( ) |K x dx , 

(iv) lim | ( ) | 0
x

x K x , 

(v) ( ) 1K x dx . 
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Condition 3. The bandwidth 
nh h  is a function of n such that 

 

(i) lim 0
n

h , 

(ii) lim
n

nh , 

(iii) 2lim
n

nh , 

 

4. Main Results 

 
In this section, the main results are stated and proved. This section consists of two subsections. 

In the first subsection, the consistency of the proposed mode estimator 
n

is shown, while the 

asymptotic normality is  shown in the second subsection. 

 

4.1 Consistency 

 

Firstly, the following two lemmas are proved, because they play an important rule in proving  the 

consistency of the proposed mode estimator.  

 

Lemma 1. Under Conditions 1, 2 and  3, the following holds. 

 

x

lim sup | ( ) ( ) | 0 1n
n

P f x f x . 

 

Proof. First, we show: 

 

x

sup | ( ) ( ) | (1).nEf x f x o          (4) 

 

Let 
u x

y
h

, then by using Taylor expansion, we have: 

 
1 1 3 1

1 12 2 2 2

3 1 1

2 2 2

1 1 12 2
22 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ( ))

3
( ) ( ) ( ) ( ( ))

2

3 3
( ) ( ) ( ) ( ) ( ) ( ( ))

2 4 2

nEf x h f u K x u h f u f u du f x hy K y f x hy dy

f x hyf x f x K y f x hy dy

h y
f x f x f x f x o h K y f x hy dy
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3 1 1 1

2 2 2 2

1 1 12
22 2 2

3
( ) ( ( )) ( ) ( ) ( ( ))

2

3 3
( ) ( ) ( ) ( ) ( ( ))

2 4 2

f x K y f x hy dy hf x f x yK y f x hy dy

h
f x f x f x f x y K y f x hy dy

 

 

let 
1

2 ( )t yf x hy , and by using Taylor expansion of
1

2 ( )f x hy about x , we get: 

 
2( ) ( ) ( )nEf x f x o h . 

 

This implies that 2

x

sup | ( ) ( ) |nEf x f x Ch which implies that Equation (4) is satisfied. 

Now, let 
1

1
( ) ( ), ( ) 1 if and ( ) 0 if  

n

n i

i

F u I u X I x y x y I x y x y
n

. 

 

1 1 1 1
1 2 2 2 2

1 1

2 2

1

1 1 1
sup | ( ) ( ) | sup | ( ) |

( ) ( ) ( ) ( )

1
=sup | { ( ) ( )} |

( ) ( )

                          sup |

n
i

n n
x x i

i i

n
x

u

x X x u
f x Ef x K K f u du

n
f X h f X h f u h f u h

x u
K dF u dF u

f u h f u h

h F ( ) ( ) | ,  n u F u

where: 

 
1 1 1 1

1 1 1 1 1 12 2 2 2
1 1

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

h f u K x u h f u h K x u h f u h f u K x u h f u  

 

Now, for every ε>0, 

 
1

2

x x1 1

2 2
2

2
1

{sup | ( ) ( ) | } {sup ( ) | ( ) ( ) | }

2
. exp ,  since  .

n n

n n

n

h
P f x f x P f x F x F x

nh
C nh

 

 

Since sup | ( ) ( ) | sup | ( ) ( ) | sup | ( ) ( ) |n n n n
x x x

f x f x f x Ef x Ef x f x , then by an application 

of Borel-Cantelli lemma, see Pranab and Seng (1993, pp. 55),  in conjunction with Equation (4), 

the proof of the lemma is completed. 
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Now, define the following estimators of the first two derivatives of  ( )f x  as: 

 

2
1

1 1
( ) ,

( )

n
i

n

i i i

x X
f x K

n h h
 

 

3
1

1 1
( ) .

( )

n
i

n

i i i

x X
f x K

n h h
 

 

Lemma 2. Under the conditions 1, 2 and 3 the following is true: 

 

(i) 
x

lim sup | ( ) ( ) | 0 1n
n

P f x f x . 

 

(ii) 
x

lim sup | ( ) ( ) | 0 1n
n

P f x f x . 

 

Proof. Following the same lines of the proof of Lemma1. Now, the consistency of the proposed 

mode estimator is verified in Theorem 1. 

 

Theorem 1. Under the conditions 1, 2 and 3 the following is true: 

 

n
, with probability 1. 

 

Proof. Let 0 , proceeding as in Parzen (1962), because f is uniformly continuous with 

unique mode , there is an ( ) 0  such that for every point ,x  

 

| | implies | ( ) - ( ) | ( ).x f x f        (5) 

 

On the other hand, we have: 

 

| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |

sup | ( ) ( ) | | sup ( ) sup ( ) |

2 sup | ( ) ( ) | .

n n n n n n

n n
x x x

n
x

f f f f f f

f x f x f x f x

f x f x
    (6) 

Now,  Equations (5) and (6) imply that: 

 

x

1
| | | ( ) ( ) | ( )| sup| ( ) ( ) | ( )|

2
n n nP P f f P f x f x . 
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Using Lemma 1 we obtain that: 

 

1 1

x1

| | | ( ) ( ) | ( )|

1
sup| ( ) ( ) | ( )| .

2

n n

n n

n

n

P P f f

P f x f x

 

 

Now, an application of Borel-Cantelli lemma implies that | | i.o. 0,nP  where i.o. 

stands for infinitely often. This completes the proof of the theorem. 

 

4.2 Asymptotic Normality 

 

Firstly, the asymptotic normality of  ( )nf x  is shown in Theorem 2. Then it is used to derive the 

asymptotic normality of the proposed mode estimator 
n

. 

 

Theorem 2. Under the conditions of Lemma 1, the following holds: 

 
1 5

3 22 2( ) { ( ) ( )} 0, ( ) ( )d

nnh f x f x N f x K u du . 

 

Proof. Let 
2

1

( )

i
ni

i i

x X
V K

h h
, then: 

 

2
1 1

1 1 1
( ) ,

( )

n n
i

n ni

i ii i

x X
f x K V

n h h n
      (7) 

 

where , 1,2,...,niV i n  are iid random variables and distributed as 
2

1

( )
n

x X
V K

h h
. 

 

Now, we want to show that the Liapounov condition is satisfied, that is for some 0 : 

 
2

22

| ( ) |
lim 0.

( )

n n

n

n

E V E V

n V

         (8) 
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1

2 2 1 22

2
1

2(2 ) 3 2 1 2

2
1

3 2 3 2 2

| | | ( ) ( ) ( ) | ( )

( ) ( ) ( )

( ) ( )

nE V h f u K x u h f u f u du

h f u K x u h f u du

h f x hy K yf x hy dy

 

 

let 
1

2 ( )t yf x hy , and by using Taylor expansion of
1

2 ( )f x hy and 3 2 ( )f x hy about x , 

we get: 

 
5

2 22 3 2 2| | ( ) ( ) .nE V h f x K t dt  

 

Then by putting 0 , we get that: 

 
5

3 22( ) ( ) ( ) .nVar V h f x K t dt         (9) 

 

This implies that 
2 3 2 2

3
3

2 3 2 22 2 2

| ( ) | ( ) | ( ) |
0,

( ) ( ) ( )

n n n n

n n

E V E V h E V E V

n V nh h V

 

 

since  

 
2

3 52 23
2 3 2 22 22( ) ( ) ( ) ( )n nh V h V f x K t dt ,  and nh . 

 

Now, from Liapounov condition (8), we obtain that , 1,2,...,niV i n are asymptotically normally 

distributed as 
nV . Therefore, from Lemma 2 (i), Equations (7) and (9), the proof of the theorem 

is completed. 

Consider a probability density function ( )f x with a unique mode at . If ( )f x  has a continuous 

second derivative, then ( ) 0, ( ) 0.f f  

If the kernel function ( )K x is chosen to be twice differentiable, then the estimated probability 

density function ( )nf x  is twice differentiable.  

If 
n

 is the mode of ( )nf x , then ( ) 0, ( ) 0.n n n nf f  By Taylor expansion,  

 

0 ( ) ( ) ( ) ( )n n n n n n nf f f , 
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for some random variable n  between 
n

and . This implies that: 

 

( )
, if ( ) 0.

( )

n
n n n

n n

f
f

f
        (10) 

 

Using Theorem 1, p

n  and by Lemma 2 (ii), the following holds 

 

( ) ( ).p

n nf f           (11) 

 

In the next theorem, the asymptotic normality of the sample mode 
n

is established. 

 

Theorem 3. Under Conditions 1, 2 and 3, the following holds. 

 
5

221

3 2
2

( ) ( )
( ) ( ) 0,

[ ( )]

d

n

f K t dt
nh N

f
. 

 

Proof. Using Theorem 2, we obtain that: 

 
1 5

3 22 2( ) ( ) 0, ( ) ( )d

nnh f N f K t dt       (12) 

 

Now, the proof  is completed by a combination of the Equations (10), (11) and (12). 

 

5. Simulation Study 

 
In this section, the performance of the variable bandwidth kernel mode estimator 

n
 is 

investigated and a finite sample comparison with Parzen estimator ˆ  is given. 

The behavior of the proposed mode estimator and Parzen estimator have been tested on 200 

samples of sizes 100, 300, 500, 700 and 900 realizations of  a standard  normal distribution. The 

Gaussian kernel is used. The bandwidth h  is computed using the following equation from 

Silverman (1986, pp.45-46): 

 
1

51.06 ,h s n           (13) 

 

where n  is the sample size and s  is the sample standard deviation. The pilot estimator that we 

need to compute 
i
in Equation (3) is computed using the "density" function in S-Plus program. 
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A comparison between the two estimators was made by computing over 200 samples for the two 

estimators the simulated standard deviation and the mean squared error (MSE). The results are 

summarized in Table 1.  

 

Table 1. A comparison between the proposed estimator 
n

 and Parzen estimator ˆ  

Sample Size  n
 ˆ  

100 
MSE 

Standard deviation 

0.01211 

0.01819 

0.01709 

0.02753 

300 
MSE 

Standard deviation 

0.00490 

0.00623 

0.00866 

0.01174 

500 
MSE 

Standard deviation 

0.003228 

0.00453 

0.00664 

0.01071 

700 
MSE 

Standard deviation 

0.00277 

0.00378 

0.00575 

0.01088 

900 
MSE 

Standard deviation 

0.00192 

0.00261 

0.00662 

0.01536 

 

As expected proposed estimator gives interesting results and it's behavior is better than that of  

Parzen estimator. Moreover, from Table 1, we note that the performance of the proposed 

estimator is improved as the sample size is increased because the variable bandwidth depends on 

the sample data. 

 

6. Conclusion 

 
In this paper, using  a kernel estimator with variable bandwidth for the estimating the mode of a 

density function is considered. The consistency and asymptotic normality of the proposed 

estimator are shown. Moreover, the performance of the proposed estimator is tested via a 

simulation study and compared with Parzen estimator. The simulation study indicated that the 

performance of the proposed estimator is more efficient than the Parzen estimator and it is 

improved as the sample size increased  
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