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Abstract: A mean function and a variance function are specified which 

interpolate given points in that the mean function intersects the points and the 

variance function is zero at the points.  The specification places simple and 

reasonable constraints on the form of these functions and on the form of their 

extrapolation. Using an elementary three-point problem, it is shown that the 

resulting variance function is unreasonably small over the point domain.  This 

excessive efficiency illustrates that too many constraints can yield unwarranted 

and overly-optimistic results in statistical interpolation. 
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1. Introduction 
 

Statistical interpolation, as considered here, specifies a mean function that intersects given points 

and a variance function that is zero at the points.  Such interpolation has an extensive literature; 

see, for example, [1]. The work reported here uses an elementary three-point problem to 

demonstrate a pitfall.  In particular, the specification places simple and reasonable constraints on 

the form of the mean and variance functions and on the form of their extrapolation. A 

consequence is that the resulting variance function is unreasonably small over the point domain.  

This excessive efficiency illustrates that too many constraints can yield unwarranted and overly-

optimistic results. 

As motivation, consider the following practical problem. A deep sea oil rig wellhead is leaking 

oil. To stop the flow of oil, it is crucial to know how the temperature at the well head has 

changed with time. Three temperature measurements were made ten minutes apart, and but 

additional measurements cannot be made for safety reasons. Before a promising technique to 

stop the flow can be tried, temperature values must be estimated every minute for the 20 minutes 
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between the first and last measurement. How can the 20 temperature values be estimated, and 

what is the accuracy of the estimates?  

 

 

2. Specification 
 

A mean function and a variance function are specified for the motivational problem as follows: 

 

1. Normalize the temperature versus time values by translating, scaling, and rotating so that 

the resulting points have zero mean and unit variance horizontally and vertically and so 

that the x axis is their least squares line.    Thus the points are (xi, yi), i = 1, 2, …, n,  

x1 < x2 < … < xn, where ∑xi = 0, ∑yi = 0, ∑xi
2
 = n, ∑yi

2
 = n, ∑xiyi = 0, and here  n = 3. 

 

2. Let the mean function intersect the points, where this function is a weighted sum of 

Gaussian kernels, each centered on a point and of the same width such that roughness is 

minimized.  Thus the mean function is 

 

µ(x) = ∑Ai exp[-(x – xi)
2
/(2s

2
)],       (1) 

 

where the Ai and s are such that  ∫-∞
∞
µ(x)″

2
dx is minimized subject to  µ(xi) = yi. 

 

3. Let the deviation function be zero at and only at the points, where this function is the 

positive square root of the quadratic variance function
1
 for the least squares line plus a 

weighted sum of Gaussian kernels, each centered on a point and of the same width such 

that the function squared has a maximum in the point domain.  Thus the deviation 

function is: 

 

σ(x) = (1 + 1/n + x
2
/n)

1/2
 + ∑Bi exp[-(x – x i)

2
/(2t

2
)],     (2) 

 

where the Bi and t are such that σ
2
(x) is maximized for x1 < x < xn subject to σ(x) = 0 if 

and only if x = xi. 

 

4. Let the mean of y at any x be µ(x), let its variance be σ
2
(x), and invert the normalization 

to obtain an estimated temperature and its variance for any time.   

 
1
 This well-known variance function (see, for example, [2]) is obtained for normalized points 

drawn from a Gaussian probability density with mean a + bx and unit variance, where the prior 

density of parameters a and b is Gaussian with large variance.  Thus the density of y given 

parameters a and b is proportional to exp[-(y – a – bx)
2
/2], and the density of the points given the 

parameters is proportional to exp[-∑(yi – a – ∑bxi)
2
/2].  By Bayes’ rule, the density of y given 

the points is proportional to ∫-∞
∞
 exp[-(y – a – bx)

2
/2] exp[-∑(yi – a – bxi)

2
/2]da db.  Analytical 

evaluation of this integral yields a Gaussian density with a zero mean function and a variance 

function 1 + 1/n + x
2
/n. 
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3. Results 
 

Since the measurement times are equally spaced, the three normalized points are (-p, -q), (0, 2q), 

(p, -q), where p = (3/2)
1/2

 and q = (1/2)
1/2

.   The mean function for these points has been reported 

previously [3].  Figure 1 shows the variance function, which is the square of Equation (2). Figure 

2 shows the maximum variance achieved in the point domain versus the parameter t in Equation 

(2), where the t values that satisfy the iff constraint are indicated. Note the following: 

 

1. The variance function is zero at the points, extrapolates to the quadratic for the least squares 

line, and between the points has the largest variance (i.e., the smallest efficiency) that its 

form allows.   

 

2. The maximum variance over the point domain is nearer the end points than the center point. 

 

3. Values of t that satisfy the iff constraint are irregularly located. 

 

4. The maximum variance is 0.0075, so the maximum standard deviation is 0.087.  Since the 

data points have unit variance, the precision (defined as the ratio of the estimated standard 

deviation to the standard deviation of the data) is better than 8.7 % in the point domain. Also, 

for x magnitudes less than 0.1 the precision is much better than 1%. 

 

 
Figure 1. The variance function σ

2
(x) for three normalized points, where σ(x) is given by Equation (2).  This 

function is zero at the points, extrapolates to the quadratic for the least squares line, and between the points 

has the largest variance (i.e., the smallest efficiency) that its form allows. The maximum variance over the 

point domain is nearer the end points than the center point, as is reasonable. The maximum variance is 

0.0075, so the maximum standard deviation is 0.087. Since the data points have unit variance, the precision 

(defined as the ratio of the estimated standard deviation to the standard deviation of the data) is better than 

8.7 % in the point domain. Also, for x magnitudes less than 0.1 the precision is much better than 1%.  As 

discussed in Section 4, these percentages are unreasonably small.  
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Figure 2. The maximum variance achieved in the point domain versus the parameter t in Equation (2), where 

the t values that satisfy the if-and-only-if constraint are indicated by circles.  As discussed in Section 3, these 

values are irregularly located. 

 

 

4. Discussion 
 

Result (1) is required by the specification.  Result (2) is reasonable since the variance should be 

larger at x values not surrounded by points.  Result (3) may seem strange because only simple 

quadratic and sum-of-Gaussian forms are employed in the solution.   However, the technical 

literature contains many examples of chaotic behavior arising from simple forms; see, for 

example, [4]. 

Result (4) indicates precision percentages that are unreasonably small, i.e., it is unreasonable to 

suppose, based data which consists of only three measurement points, that additional data can be 

estimated between the points with a precision of better (and in some regions much better) than 

8.7 %.  Note that this unwarranted and overly-optimistic precision is obtained even though the 

variance function is maximized over the point domain, and thus the percentages are as large or 

non-optimistic as the variance function specification permits. 

An explanation for the unreasonable precision is that the variance function, although it uses only 

simple quadratic and sum-of-Gaussian forms, has two constraints which force the variance 

function to be small.  The first constraint is that the variance at the points is zero so that the 

measurements at the points are without error.  This constraint is reasonable if the measurements 

are much more precise than the estimates (e.g., analog measurements with precisions of 0.01% or 

better are common).  The second constraint is that the variance function extrapolates to the 

quadratic function associated with the least squares line.  This constraint is reasonable if the 

measurements are known to extrapolate to a linear trend. 

A conclusion is that an excessive number of constraints on the form of the mean and variance 

functions and on the form of their extrapolation can lead to a variance function which is 

unreasonably small over the point domain. This conclusion applies even if each constraint is 

simple and reasonable. The resulting excessive efficiency illustrates that too many constraints 

can yield estimates with unwarranted and overly-optimistic precision. 
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