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Abstract. This paper introduces the idea of using the novel ranked set sampling 

scheme for estimating the Gini index from continuous distributions. A one 

dimensional integral estimation problem based on ranked samples was discussed. 

It is demonstrated by a simple Monte Carlo experiment that this approach 

provides an unbiased and more efficient Gini index estimators than the traditional 

estimators based on simple random sampling.  
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1. Introduction 
Gini index is the most common statistical index of diversity or inequality to measure the 
dispersion of a distribution in ecology and social sciences Allison (1978). Also, it is widely 
used in econometrics as a standard measure of inter-individual or inter-household inequality 
in income and wealth; Atkinson (1970), Sen (1973) and Anand (1983). 
The Gini index is a complex inequality measure and it is strictly linked to the representation 
of measurement inequality through the Lorenz Curve, Figure.1. Typically, a Lorenz Curve is 
defined on [0, 1], continuous, increasing and concave up, and passes through (0, 0) and (1, 1). 
Lorenz curve is the most common device for a full description of distribution of income in a 
population. 
To construct Lorenz curves, each measurement ranked from lowest to largest; then the 
cumulative distribution calculated and plotted against the cumulative proportion. 
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 Figure 1: Lorenz Curve 
 
 
 
 
Then, the Gini index (G) quantifies the area between the Lorenz curve and the line of perfect 
equality. Therefore, 
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It ranges from 0, when all measurements are equal; which represents perfect equality, to 

n
n 1  in which all measurements but one is 0; where n is a sample size, for large sample a 

theoretical maximum is 1 which represents maximum possible degree of inequality, a 
comprehensive surveys for Gini index can be found in Gini (1921) and  Bellu and Liberati 
(2006). 
The available information about the distributions is usually discrete; however, we are 
interested in this article in continuous distributions; noting that both cases can be unified. The 
remainder of this paper is organized as follows. In section 2, Gini index for continuous 
distributions is defined. Section 3 introduces the sample mean Monte Carlo method for 
integral estimation problems. In section 4, Gini index based on ranked set sampling. In 
section 5, a simple Monte Carlo experiment for estimating the Gini index is presented. The 
final section briefly summarizes some concluding remarks. 
 
 
2. Gini Index for Continuous Distributions 
 
Let X be a non negative random variable with cumulative distribution function F(x) = 
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)( , which is absolutely continuous with mean . Then, the Lorenz curve L(p) for the 

observed value x is defined by: 
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which represents, for example, the total income of the economy that received by the lowest 
100p of the population for all possible values of p. Then, the Gini index can be defined as: 
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Clearly, the Gini index given in (3) is not easy to be evaluated when we are dealing with 
complicated distribution functions. Alternatively, one can use integral approximation to find 
an estimator for such index. Traditionally, the Monte Carlo sample mean is the appropriate 
method used for integral estimation based on simulated simple random samples (SRS). To 
improve the integral estimation, we will propose on using simulated ranked set sampling 
(RSS).  
 
3.    Sample Mean Monte Carlo Method for Integral Estimation  
 
A defined integral, such as (3), which cannot be explicitly evaluated, can be obtained by a 
variety of numerical methods. Some of these methods were given in Rubinstein (1981). The 
integral given in (3) can be represented as expected value of some random variable. Let us 
rewrite the integral as: 
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Assuming that f(p) is a continuous probability density function such that f(p) > 0 and 0< p< 
1; then, 
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It is very clear that, p = F(x) is distributed uniformly over [0,1]. Therefore, an unbiased 
estimator of G based on SRS is given by 
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This is an unbiased estimator with variance 
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4. Gini Index Based on Ranked Set Sampling 
 
The balanced RSS (Chen et al., 2004) scheme involves of the following steps: 
 

Step 1. Draw randomly m sets of SRS each of size m from a population,  
Step 2. In each set rank the measurements with a cost free method. 
Step 3.Then, from the first set the element with the smallest rank is chosen for the actual 
measurement. From the second set the element with the second smallest rank is chosen. 
The process is continued by selecting the ith order statistics of the ith random sample until 
the element with the largest rank from the mth set is chosen.  

 
The scheme yields the following data:  
 

 miX mi ,...,2,1,]:[   
 
where ]:[ miX  is the ith order statistics of the ith random sample of size m, and it is denoted by 
the ith judgment order statistics. It can be noted that the selected elements are independent 
order statistics but not identically distributed.  
 
In practice, the sample size m is kept small to ease the visual ranking, RSS literature 
suggested that m = 2, 3, 4, 5 or 6. Therefore, if a sample of larger size is needed, then the 
entire cycle may be repeated several times; say r times, to produce a RSS sample of size n = r 
m.  
 
 

 rjmiX jmi ,...,2,1,,...,2,1,]:[   
 
where jmiX ]:[  is the ith judgment order statistics in the jth cycle, which is the ith order statistics 
of the ith random sample of size m in the jth cycle. It should be noted that all of jmiX ]:[ 's are 
mutually independent. 
In order to plan sample mean Monte Carlo RSS design for the problem in (3), n RSS should 
be selected. Then the integral estimation has the following steps: 

Step 1. Generate a RSS of size n m r   from U(0,1) 
 rjmiU jmi ,...,2,1,,...,2,1,]:[   

Step 2. Compute g(U(i)j) 
Step 3. Find the ranked sample-mean estimator, 
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5. Simulation Study 
 
In order to illustrate the performance of the suggested estimator of the Gini index based on 
ranked data we considered the following Lorenz Curve which is used to measure the 
distribution of income among households in a given country: 
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10000 random samples each of size, 6, 8, 10, 12, 18, 24, 30, 36, 60, 60, 80, 100, 120, 1500, 
2000, 2500 and 3000 were generated to estimate the Gini index as given in (4) and (5), for p 
= 0.3, 0.5 and 1.0.  Noting that, for the simulated ranked set samples we set the set size m = 
3, 4, 5 and 6; and the number of repetitions equal to r = 2, 6, 20 and 500. A comparisons 
between the two estimators were made by computing the simulated mean, bias, mean squared 
error (MSE) and efficiency, where 
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The simulation results are given in Table.1 – Table.3. 
 
6.  Concluding Remarks 
 
In this paper, we consider using simulated ranked set sampling for estimation the Gini index 
when the underlying distribution is continuous. The performance of the proposed estimator is 
compared with a traditional estimator based on simple random sampling based on different 
sample sizes. All simple simulation experiments indicated that there is an improvement, 
superior results with more accurate and more efficient Gini index estimator when we are 
dealing with ranked set sampling.  
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Table.1 Comparisons between SRS and RSS in estimation Gini index with p = 0.5 
 

r m Method Mean Bias MSE Efficiency 
SRS 0.19436 0.09713 0.01069 3 
RSS 0.19444 0.09722 0.01011 

1.05666 

SRS 0.19441 0.09718 0.01039 4 RSS 0.19446 0.09723 0.00985 1.05490 

SRS 0.19435 0.09713 0.01018 5 RSS 0.19441 0.09719 0.00971 1.04767 

SRS 0.19454 0.09732 0.01009 

2 

6 RSS 0.19443 0.09721 0.00964 1.04721 

       
SRS 0.19459 0.09737 0.00990 3 
RSS 0.19441 0.09719 0.00966 

1.02419 

SRS 0.19443 0.09721 0.00976 4 RSS 0.19444 0.09722 0.00958 1.01874 

SRS 0.19445 0.09723 0.00970 5 RSS 0.19452 0.09730 0.00955 1.01553 

SRS 0.19439 0.09717 0.00965 

6 

6 RSS 0.19447 0.09725 0.00952 1.01378 

       
SRS 0.19441 0.09718 0.00957 3 RSS 0.19440 0.09718 0.00951 1.00629 

SRS 0.19442 0.09720 0.00954 4 RSS 0.19443 0.09721 0.00948 1.00571 

SRS 0.19450 0.09728 0.00953 5 RSS 0.19442 0.09719 0.00947 1.00688 

SRS 0.19439 0.09717 0.00951 

20 

6 RSS 0.19446 0.09724 0.00948 1.00322 

       
SRS 0.19445 0.09723 0.00946 3 RSS 0.19446 0.09723 0.00945 1.00017 

SRS 0.19445 0.09723 0.00946 4 RSS 0.19444 0.09722 0.00945 1.00039 

SRS 0.19445 0.09723 0.00946 5 RSS 0.19445 0.09723 0.00945 1.00026 

SRS 0.19444 0.09722 0.00945 

500 

6 RSS 0.19445 0.09723 0.00945 1.00005 
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Table.2 Comparisons between SRS and RSS in estimation Gini index with p = 0.3 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

r m Method Mean  Bias MSE Efficiency 
SRS 0.17634 0.13434 0.01917 3 
RSS 0.13986 0.09786 0.01000 

1.91670 

SRS 0.18083 0.13883 0.02013 4 RSS 0.14004 0.09804 0.00986 2.04137 

SRS 0.18350 0.14150 0.02072 5 RSS 0.13996 0.09796 0.00976 2.12170 

SRS 0.18542 0.14342 0.02116 

2 

6 RSS 0.14005 0.09805 0.00973 2.17311 

       
SRS 0.17636 0.13436 0.01842 3 
RSS 0.13994 0.09794 0.00973 

1.89277 

SRS 0.18102 0.13902 0.01961 4 RSS 0.14001 0.09801 0.00969 2.02428 

SRS 0.18356 0.14156 0.02027 5 RSS 0.13995 0.09795 0.00965 2.10057 

SRS 0.18535 0.14335 0.02074 

6 

6 RSS 0.13998 0.09798 0.00964 2.15214 

       
SRS 0.17626 0.13425 0.01813 3 RSS 0.13998 0.09798 0.00964 1.88100 

SRS 0.18082 0.13882 0.01936 4 RSS 0.14005 0.09805 0.00963 2.00833 

SRS 0.18355 0.14156 0.02010 5 RSS 0.14000 0.09801 0.00962 2.08988 

SRS 0.18536 0.14336 0.02061 

20 

6 RSS 0.14001 0.09801 0.00961 2.14286 

       
SRS 0.17630 0.13430 0.01804 3 RSS 0.14000 0.09800 0.00960 1.87809 

SRS 0.18082 0.13882 0.00002 4 RSS 0.14000 0.09800 0.00960 2.00686 

SRS 0.18354 0.14154 0.02003 5 RSS 0.13999 0.09799 0.00960 2.08634 

SRS 0.18536 0.14336 0.02055 

500 

6 RSS 0.13999 0.09800 0.00960 2.14033 
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Table.3 Comparisons between SRS and RSS in estimation Gini index with p = 1.0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

r m Method Mean Bias MSE Efficiency 
SRS 0.19479 0.00034 0.00124 3 
RSS 0.19435 -0.00008 0.00112 

1.10714 

SRS 0.19426 -0.00017 0.00094 4 RSS 0.19450 0.00005 0.00075 1.24922 

SRS 0.19438 -0.00006 0.00074 5 RSS 0.19451 0.00007 0.00054 1.37719 

SRS 0.19449 0.00005 0.00063 

2 

6 RSS 0.19439 -0.00005 0.00041 1.55606 

       
SRS 0.19450 0.00006 0.00042 3 
RSS 0.19442 -0.00002 0.00038 

1.11369 

SRS 0.19458 0.00013 0.00031 4 RSS 0.19459 0.00014 0.00025 1.25023 

SRS 0.19433 -0.00011 0.00025 5 RSS 0.19444 -0.000004 0.00018 1.40257 

SRS 0.19448 0.00004 0.00021 

6 

6 RSS 0.19445 0.00001 0.00013 1.58108 

       
SRS 0.19444 0.000004 0.00013 3 RSS 0.19447 0.00002 0.00011 1.10382 

SRS 0.19436 -0.00008 0.00009 4 RSS 0.19446 0.00002 0.00007 1.23885 

SRS 0.19448 0.00004 0.00008 5 RSS 0.19446 0.00002 0.00005 1.40063 

SRS 0.19449 0.00004 0.00006 

20 

6 RSS 0.19448 0.00004 0.00004 1.55864 

       
SRS 0.19445 0.00001 0.000005 3 RSS 0.19445 0.00001 0.000004 1.09834 

SRS 0.19444 0.000003 0.000004 4 RSS 0.19445 0.00001 0.000003 1.27188 

SRS 0.19445 0.000006 0.000003 5 RSS 0.19444 -0.0000002 0.000002 1.40112 

SRS 0.19444 0.000002 0.000003 

500 

6 RSS 0.19444 0.0000008 0.000002 1.55179 
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