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Abstract: It is well known that the classical measures of skewness are not reliable 

and their sample distributions are not known for small samples. Therefore, we 

consider the modified measure of skewness that is defined in terms of cumulative 

probability function. The main adventage of this measure is that its sampling 

distribution is derived from sample data as the sum of dependent Bernoulli 

random variables. Moreover, it variance and confidence interval are obtained 

based on multiplicative binomial distribution. Comparison with classical 

measures using simulation and an application to actual data set are given.  

 

Keywords: dependence, multiplicative-binomial distribution, maximum likelihood, 

under-dispersion, symmetry. 
 

 

1. Introduction 
 

Many statistical models often assume symmetric distributions. For example the behavior of stock 

market returns does not agree with the frequently assumed normal distribution. This 

disagreement is often highlighted by showing the large departures of the normal distribution; see, 

for example, [3], [11]. The role of skewness has become increasingly important because the need 

for symmetry test. It is known that the classical measures  and 

are not reliable measures of skewness,  population mean and  sample 

standard deviation; see, for example, [16], [15], [9] and [2]. Many measures of skewness 

developed for continuous distributions follow a quantile pattern and letter values; see, for 

example, [10], [19], [5], and [12].  

However [18] introduced a measure of skewness in terms of logarithm of the cumulative 

probability function and its modified measure of skewness in terms of cumulative probability 
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function without giving any estimation or statistical inferences for these measures. The main 

purpose of this work is to estimate the modified measure of skewness from data and derives its 

sampling distribution. The simulation study is shown that the modified measure of skewness 

outperforms some good classical measures of skewness for a wide range of distributions. 

In Section 2 we review the population modified measure of skewness  and study its properties. 

An estimator, the sampling distribution and the variance estimation are derived in Section 3.  The 

confidence interval is obtained in Section 4. An application to data set is investigated in Section 

5. Comparisons with other methods are given in Section 6. 

 

2. Population modified measure of skewness 
 

Let a vector  of random variables, , from a continuous distribution with cumulative 

distribution function (cdf) FFxF X )( , density function , quantile function 

 and  is the mean of the distribution and  is normalized 

.  [18] defined the population modified measure of skewness about : 

 

 
 

as the twice the area to the left side from the mean minus one. Under the assumption of no ties 

between any  and , the measure  could be rewritten in the following two alternative forms: 

 

 
 

 and . This can be explained as the ratio of the difference between 

the probability of the  less than the mean and greater than the mean to their total. In terms of 

the conditional expectations as: 

  

 
 

This can be explained as the ratio of the difference between the conditional expectations of the 

deviation about mean given  and  to their total. These two expressions can be 

compared in their forms with the [4] measure:  

 

 
 

For symmetric distributions about  we have: 
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The measure  will reflect some degree of skewness or symmetry of the distribution about . 

Since the area under the curve ranges from  to , the nature symmetric point for this measure is 

. If the distribution is skewed to the left, the value of . If the distribution skewed to the 

right, the value of . The upper limit of  is  where  and the lower limit is 

 where  with -1≤K≤1. 

 

2.1 Properties of the measure K 

Groeneveld et al. [8] have suggested some properties that any reasonable measure of skewness 

should satisfy. The measure  has the following properties: 

 

1. The measure  is symmetric about .  

2. For any  and , .     

3. . 

4. The distribution  is more skewed to the right than the distribution  with interval 

support if . 

 

Example  

Table 1 gives some values of  from some known distributions. The Weibull distribution used 

with density: 

   

 
 

,  the scale parameter and  is the shape parameter. The value of  is:  

 

. 

 
Table 1. Values of K for some known distributions 

 

 

 

 

 

 

 

3. Estimation and the sampling distribution 
 

3.1 Estimation 

The estimate of K is: 

 

 

Distribution 
 

Weibull 
  

Uniform 0  0.50 0.514 

Normal 0  1 0.264 

Laplace 0  1.5 0.152 

Exponential 0.264  2.5 0.046 

Gumbel 0.140  3.5 -0.002 
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 and . Also, we assume that there is no tie between any  

and  i.e. ( , ). It is known that if the indicator variates,   are independent, 

then  has a Bernoulli distribution and  has a standard binomial distribution 

 

 
 

Since  is estimated from the sample and each  is influenced by the same sample mean, 

, are not independent. Therefore, we need to study the sampling distribution of 

 under dependence between . Different models for this dependence 

provide a wider range of models than are provided by the binomial distribution. Among these, 

[14] had derived the multiplicative binomial distribution of the sum of such variables from a log-

linear representation for the joint distribution of  binary-dependent variables introduced by [7] 

an alternative to Altham's multiplicative-binomial distribution [1]. 

 

3.2 Sampling distribution  

Lovison [14] introduced the multiplicative binomial distribution as the sum of dependent 

Bernoulli random variables. Let  be a binary response, which measures whether some event of 

interest is present 'success' or absent 'failure' for sample units, , and  denote the 

sample frequency of successes. [14] studied the Cox's log-linear model: 

 

 
 

to accommodate for the possible dependence between  he introduced the log-linear 

representation: 

 

 
 

, and is a normalizing constant. This representation is introduced under the 

assumption that the units are exchangeable i.e., they have the same  and  order interaction 

parameters ( , ), and all interactions of order higher than  are zeros. Under the 

above log-linear representation Lovison had derived the distribution of  as: 

 

 
 

 and  are the parameters. This distribution provides a wider range of distributions than are 

provided by the binomial distribution. The binomial distribution is obtained for  with 

 and . For  and , the 

distribution of  for different values of   is given in Figures 1 and 2. When , the 

distribution is unimodal. 
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Figure 1. The distribution of Yn for different values of ω, ψ=0.5 and n=10. 

 

While for the values of , the distribution could take U, bimodal and unimodal shapes. 

 

 
Figure 2. The distribution of Yn for different values of ω, ψ=0.5 and n=10. 
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The expected value and the variance of this distribution are given by: 

 

 

 
 

Where: 

 

 
 

and 

 

 
 

The expected value and variance of  is nonlinearly on both  and . The nonlinear in the 

variance of  is depicted in Figure 3 for some chosen values of . For example, when , 

we have overdispersion for the values of  and underdispersion for the values of . 

 

 
Figure 3. Variance of Yn for various values of ω at each value of ψ  and n=25.  

 

The parameter  is explained as a measure of intra-units association inversely related to the 

condition cross-product ratio (CPR): 
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where the conditional cross-product ratio of any two units given all others is given by: 

 

 
 

This gives the  the meaning of a measure of conditional pair-wise association between units and 

shows that . Also,  can be written as 

   

 
 

; see, [14]. Then  can be thought as the probability of a particular outcome in other 

words the weighted probability of success that would be governing the binary response of the  

units. This weighted probability of success becomes the probability of success when the binary 

responses are independent, i.e.   and .  

 Under multiplicative binomial distribution we obtain 

  

 
 

and  

 

 
 

3.3 Estimation of the parameters 

We could estimate the parameters  and  as follows. In view of exchangeability and absence of 

second and higher order interaction results to be the same for all pairs of units and for any 

combination of categories taken by the other units and by noticing that in a vector of binary 

responses   there are  pairs of responses and if the order is irrelevant three type of 

pairs are distinguishable: there are  pairs of ,  

pairs of , and  pairs of , or , for 

 and . Therefore, the estimate of  is   

 

 
 

and  
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provided  and . To find estimate, ,  of  we could use the maximum 

likelihood method for  as: 

 

 
 

 . We looking for the value of  which maximize  in the range ( ). This value is 

the solution of the function : 

 

 
 

and . Then, we have: 

 

 
 

and  

 

 
 

where 

 

 
 

and 

 

 
 

Note that, if  or  are zero,  will be undefined. In this case, we may adjust the 

estimate by adding 0.5 to each cell count; see, [13]. 

 

Example: 

In this example we find an estimation of , ,  and  from simulated data from beta 

distribution with shape parameters 1, 1 of size .  

Simulated data from beta distribution with shape parameters 1, 1 and n=10. 

 xi: 0.156, 0.569, 0.976, 0.136, 0.162, 0.997, 0.793, 0.174, 0.124, 0.559 

 x  = 0.465, therefore the values of  are: 
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o  1, 0, 0, 1, 1, 0, 0, 1, 1, 0. Then n=10, y=5 , and 

o . Hence, , 

, and the maximum likelihood estimate from figure 4 is . 

 

Therefore, ,      , and  if we use the binomial distribution we have  

, and  10 which has more variance than . 

 

To find estimate of  we use 

 

 
 

From Figure 4 we find that . 

 

 
Figure 4. The likelihood function L(ψ) with n=10, y=5 and ω =1.249. 

 

 

4. The confidence interval 
 

The multiplicative binomial distribution is used to construct a two-sided confidence interval at 

the 100(1 - )% confidence level for  given ,  and  from the sample rather than the normal 

approximation. we first find the confidence interval for  and then obtain the confidence interval 

of   as follows. Following [6] method, the desired upper 

limit  so that if  was observed we would just barely reject  when testing  

against  using level of significant . However "just barely reject " translates to 
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. But the  for the left tail is given by . Therefore, by solving 

the equation: 

 

 
 

for , we obtain an upper limit for  then . 

Next, the desired lower limit  so that if  was observed we would just barely reject  

when testing  against  using level of significant . However "just 

barely reject " translates to . But the  for the right tail is given by 

. Therefore, by solving the equation: 

 

 
 

for , we obtain a lower limit for  then . These two equations can be 

easily solved using function "uniroot" in R-software given ,  and . Then a  

confidence interval for  is given by: 

 

 
 

Note that,  and  have one-to-one correspondence for given . Figure 5 shows the relation 

between  and  for specified values of . The relation is linear when  is . Note 

also, the interval  is random. 

 



Estimation of modified measure of skewness 

66 

 
Figure 5. The sampling distribution of Yn  with n=26, ˆ 0.97   and ˆ 1.139  . 

 

 

5. Application 
 

We consider a random sample of  measurements of the heat of sublimation of platinum from 

[17]. The  measurements are all attempts to measure the true heat of sublimation. Are these 

data symmetric? The data set is given in Table 2, also, the values of , , ,  and . 

 

Table 2. Heats of sublimation of platinum data and the estimation of ,  and . 

Data 

136.3 147.8 134.8 134.3 136.6 148.8 135.8 135.2 135.8 

134.8 135 135.4 135.2 133.7 134.7 134.9 134.4 135 

146.5 134.9 134.1 141.2 134.8 143.3 135.4 134.5  

,                    

 
1 0 1 1 1 0 1 1 1 

1 1 1 1 1 1 1 1 1 

0 1 1 0 1 0 1 1  

 

from the values of :  , 6154,  and  

 

The maximum likelihood function is: 
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The maximization of this function gives . Then, the estimated sampling distribution 

of  is: 

 

 
 

The graph of this distribution is depicted in Figure 6 and it seems almost symmetric about the 

value of success, . 

 

 
Figure 6. The relation between  ψ , ω and τ1=P(Zk=1) using n=25. 

 

 

The estimated mean and variance are: 

 

 and 118. 

 

To obtain the 0.95 confidence interval we solve: 

  

 
 

to give the upper limit , and solve the equation 
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to give the lower limit . Then, the 95% confidence interval for  is: 

 

 
 

Where  is not included in both intervals we could conclude that the data is not symmetric about 

mean. 

 

6. Comparisons with other methods 
 

We compare the measure of skewness  with two known measures of skewness. The Bowley's 

coefficient of skewness: 

 

 
 

This measure bounded by  and ; see, [12] and the measure which is given by [8]: 

 

 
 

bounded by and ,  is the sample mean, ,  and  are the third, second and first sample 

quartiles,  sample standard deviation, and  is the sample median. 

The simulation results in Table 3 are shown that 

1. The measure  has overall less bias and variance. 

2. The measure  has the largest variance among the three measures. 

3. The measure  is better than in terms of variance. 

4. The bias for the three measures decreases with increasing the sample size. 

 

 

 

 

 

 

 

 

 

 

 



Habib E.A,. Electron. J. App. Stat. Anal. (2011), Vol 4, Issue 1, 56 – 70. 

69 

Table 3: Simulated mean (Est.), variance (Var.) for , and  using  Weibull distribution with 

different values of , the number of replication is 10000. 

 
 

 

 

 

Exact Est. Var. Exact Est. Var. Exact Est. Var 

 

10 0.375 0.287 0.123 0.598 0.507 0.064 0.360 0.311 0.037 

20  0.328 0.072  0.556 0.032  0.337 0.020 

30  0.342 0.051  0.567 0.021  0.342 0.011 

50  0.348 0.031  0.581 0.013  0.354 0.007 

100  0.363 0.016  0.588 0.006  0.362 0.004 

 

10 0.261 0.201 0.121 0.443 0.372 0.065 0.264 0.236 0.037 

20  0.229 0.073  0.406 0.036  0.244 0.020 

30  0.236 0.053  0.423 0.026  0.251 0.012 

50  0.249 0.033  0.431 0.017  0.253 0.008 

100  0.251 0.017  0.438 0.008  0.265 0.004 

 

10 0.037 0.031 0.121 0.077 0.062 0.068 0.046 0.041 0.035 

20  0.034 0.074  0.072 0.039  0.044 0.017 

30  0.033 0.056  0.070 0.027  0.044 0.011 

50  0.035 0.034  0.077 0.017  0.047 0.007 

100  0.037 0.017  0.073 0.008  0.045 0.003 

 

 

7. Conclusion 
 

We have studied modified measure of skewness about  for the continuous distributions in terms 

of the incomplete density function. We have provided simple nonparametric estimator for 

computing the measure. The main advantage of this measure is the availability of its sampling 

distribution under a sum of dependent Bernoulli random variables for small and large sample 

sizes. Also, we used the maximum likelihood method to obtain an estimate to multiplicative 

binomial distribution parameters. Moreover, we have derived its confidence interval using 

multiplicative binomial distribution.  
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