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Abstract: A ranked set sample consists of independently distributed order 

statistics and can occur naturally in many experimental settings. The weighted 

least squares method is used to find linear estimators of unknown parameters 

from location-scale family of distributions which required the full matrix of all 

variances and covariances of order statistics of the sample size n which is 

difficult to obtain in large samples, finding the inverse of this matrix and the 

estimators can be computed numerically only for small sample sizes. Also, the 

weighted least squares can not be used when we have distribution which has 

more than two parameters, for example, generalized Pareto distribution. In this 

article, we are looking for method in the class of linear estimation which can be 

applied for any distribution under ranked set sample regardless of the number of 

the parameters and easy to use. The linear moment-L-moments- method does not 

require the full matrix of order statistics and easy to use. Also, we derive 

unbiased estimators of population L-moments using sample linear moments based 

on k  independent ranked set sample. We obtain distribution-free estimate for the 

sample mean from any distribution under ranked set sample in terms of sample 

variance and sample L-moments. We illustrate our method on the generalized 

Pareto distribution. 
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1. Introduction 
 

One of the keys to any statistical inference is to collect data via some sampling techniques. These 

data enable the experimenter to make valid judgments on the questions of interest. One of the 

most common sampling techniques for obtaining such data is that of a simple random sampling 

(SRS). Other more structured sampling designs, such as stratified sampling or cluster sampling 

are also possible to help data collector in finding a sample that has a good representation of the 

population of interest. Any such additional structure of this type revolves around how the sample 

data themselves should be collected in order to provide an informative image of the larger 

population. With any of these approaches, once the sample items have been chosen the desired 

measurements are collected from each of the selected items. 

The concept of ranked set sampling (RSS) is a recent development that enables one to provide 

more structure to the collected sample items. This approach to data collection was first 

introduced by [16] for situations where taking the actual measurements for sample observations 

is difficult (e.g. costly, time-consuming, destructive), but mechanisms for either informally or 

formally ranking a set of sample units is relatively easy and reliable. In particular, McIntyre was 

interested in improving the precision of RSS was first in estimation of average yield from large 

plots of arable crops without a substantial increase in the number of fields from which detailed 

expensive and tedious measurements need to collect. For discussions of some of the settings on 

ranked set sampling technique, see; [17], [3] and [2]. 

The method of generalized least squares, based on the Gauss-Markoff least-squares theorem, was 

developed by [15] and was used in ranked set sampling by [4], [14] and [1], among others.  

Using this method, best linear unbiased estimators (BLUE) of location and scale parameters;    

and    from distributions of the type      //1 xf , which employ order statistics in a 

systematic manner and have minimum variance in the class of linear unbiased estimators, can be 

obtained. The method of least squares required the full matrix of all variances and covariances of 

order statistics of the sample size n  which is difficult to obtain, finding the inverse of this matrix 

and the estimators can be computed numerically only for small sample sizes. Also, this method 

can be applied when we have location-scale family of distribution. This make this method is 

limited by such condition. 

Therefore, we are looking for method in the class of linear estimation which can be applied for 

any distribution regardless of the number of the parameters and easy to use. This method is the 

L-moments which is introduced recently by [13] and found many applications in such fields of 

applied research as civil engineering, meteorology and hydrology; see, for example, [10], [12], 

[9] and [19]. We study this method under ranked set sampling. Also, we define sample linear 

moments and show that they are unbiased estimators of the corresponding population quantities. 

The method is not intended to replace existing methods but rather to complement them especially 

in situations where we find difficult to find least squares estimators or the random variable does 

not belong to location-scale family. 
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2. Ranked Set Sampling 
 

When we select a simple random sample X1, X2,…,Xn from a fixed population of interest what 

makes resulting statistical inference procedures appropriate is not the fact that each individual 

measurement in the sample is likely to be representative of the population characteristics, such as 

mean or median, of interest. Rather it is through the concept of sampling distributions of the 

relevant statistics that we should obtain a set of sample observations that are representative of the 

entire population. However, in practice we obtain only a single random sample and the concept 

does not help much if the particular population items selected for our sample are, in fact, not 

really very representative of the entire population. We are simply bound by the statistical 

inferences for this particular sample that go with the concept unless we are willing to increase 

our sample size and expand the number of sample observations.  

There are a number of ways to address the problems associated with obtaining a representative 

sample from a population. One method for dealing with this issue is to involve a more structured 

sampling scheme than simple random sampling. Such approaches include stratified sampling 

schemes, cluster sampling, proportional sampling and multistage sampling, among others; see, 

for example [5].  Note that this additional structure about which items to collect and measure is 

imposed on our data collection process prior to the actual decision, and, as such, is correctly 

viewed as sampling technique. 

On the other hand, the ranked set sampling utilizes the basic intuitive properties associated with 

simple random sampling but it is also takes advantage of additional information available in the 

population to provide an "artificially stratified" sample with more structure that enables us to 

direct our attention toward the actual measurement of more representative units in the 

population. The net result is a collection of measurements that are more likely to span the range 

of values in the population than can be guaranteed by virtue of a simple random sample. 

We describe how this additional structure is captured in a single ranked set sample of k  

measured observations. First, an initial simple random sample of  k  units from the population is 

selected and subjected to ordering on the attribute of interest via some ranking process. This 

judgment ranking can result from a variety of mechanisms, including expert opinion, visual 

comparisons, or the use of easy-to-obtain auxiliary variables, but it can not involve actual 

measurements of the attribute of interest on the sample units. Once this judgment ranking of the 

k  units in our initial random sample has been accomplished, the item judged to be the smallest is 

included as the first item in our ranked set sample and the attribute of interest will be formally 

measured on this unit. The remaining (k-1) unmeasured units in the first random sample are not 

considered further. We denote this measurement by Y[1], where a square bracket [1] is used 

instead of the usual round bracket )1(  for the smallest order statistics because Y[1] is only the 

smallest judgment ordered item. It may or may not actually have the smallest attribute 

measurement among our k  sampled units. Note that the remaining (other than Y[1]) units in our 

first random sample is not considered further in the selection of our ranked set sample or 

eventual inference about the population. The sole purpose of these other (k-1) units is to help 

select an item for measurement that represents the smaller attribute values in the population. 

Following selection of Y[1], a second independent random sample of size k is selected from the 

population and judgment ranked without formal measurement on the attribute of interest. This 

time we selected the items judged to be the second smallest of the  k units in this second random 

sample and include it in our ranked set sample for measurement of the attribute of the interest, 
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this second measured observation is denoted by Y[2]. we select the unit judgment ranked to be the 

third smallest, Y[3], for measurement and inclusion in the ranked set sample. This process is 

continued until we have selected the unit judgment ranked to be the largest of the k units in the 

k
th

 random sample, denoted by Y[k], for measurement and inclusion in our ranked set sample. 

This entire process is referred to as a cycle and the number of observations in each random 

sample, k  in our example, is called the set size. Thus to complete a single ranked set cycle, we 

need to judgment rank k  independent random samples of size k  involving a total of k
2
 sample 

units in order to obtain k  measured observations Y[1],Y[2],…,Y[k]. These k observations represent a 

balanced ranked set sample with set size k, where the word balance denote to the fact that  we 

have collected one judgment order statistics for each of the ranks ki ,...2,1 . In order to obtain a 

ranked set sample with desired total number of measured observations km , we repeat the entire 

cycle process m independent time, yielding the data jkjj YYY ][]2[]1[ ,...,,  for mj ,...,2,1 ; see, for 

example, [22]. 

 

 

3. Distribution of perfect balanced ranked set sample 
 

To understand what makes the ranked set sample (RSS) different from a simple random sample 

(SRS) of the same size, we consider the simple case of a single cycle ( 1m ) with set size k  and 

perfect judgment ranking. In this case, the ranked set sample observations are also the respective 

order statistics. Let  nXXX ,...,, 21  denote a simple random sample of size k  from a continuous 

population with probability density function  xf , cumulative distribution function  xF  and 

quantile function  Fx , 10  F  and let  kYYY ,...,, 21  be a perfect ranked set sample of size k   

obtained as in Section 2. 

In the case of a SRS the k  observations are independent and each of them is viewed as 

representing a typical value of the population. However, there is no additional structure imposed 

on their relationship to one another. Letting )()2()1( .... kXXX   be the order statistics 

associated with these SRS observations, we note that they are dependent random variables with 

joint probability density function (p.d.f) given by: 

 

   
)(

1
)()1( !,...., i

k

i
kSRS xfkxxg


   )()1( ... kxx     (1) 

 

For the RSS setting, additional information and structure has been provided through the 

judgment ranking process involving a total of 2k  sample units. The k measurements )()1( ,...., kYY  

are also order statistics but in this case they are independent but not identically distributed where 

each of them provides information about a different aspect of the population. The joint p.d.f. for 

RSS is given by: 

 

   
)(

1
)()1( ,...., i

k

i
kRSS yfyyg


    )()1( .... kyy     (2) 

 

Where: 
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 
   

     
( )

1!
1

1 ! !i

k ii

y

k
f y F y F y f y

i k i

     
     (3) 

 

is the probability density function for the i th order statistics for a SRS of size k . It is this extra 

structure provided by the judgment ranking and the independence of the resulting order statistics 

that enables procedures based on RSS data to be more efficient than comparable procedures 

based on SRS with the same number of measured observations. On the other hand, these same 

features also make the theoretical development of properties for RSS procedures more difficult 

than for their SRS counterparts. In the next section, we introduce the L-moments under ranked 

set sample. 

 

 

4. Linear Moments under Ranked Set Sample 
 

Linear moments are linear combinations of ranked observations that do not requiring squaring or 

cubing of the observations, as do product-moment estimators. As a result they work in the case 

of order data and therefore can be used in perfect ranked set sample. 

 

4.1 Population Linear Moments 

Let kkkk YYY :2:1 ,...,,  be a perfect ranked set sample of size k  from a continuous distribution with 

cumulative distribution function (.)YF , density function (.)Yf  and quantile function  Fy , 

10  F . [13] defined the rth  linear moments r  as: 

 

   
1

1

:

0

1
1

r
j

r r j r

j

r
r E Y

j









 
   

 
         (4) 

 

as the expectation of riY :  can be written as: 

 

 
 

   
   

 





1

0

1

: 1
1

1
dFFFFy

iri

r
YE

iri

ri

 
 

We may re-express (4) as: 

 

    













 







 


1

0

1

0

1 11
1

r

j

jjr
r dFF

j

kr

j

r
Fy       (5) 

 

It is straightforward to establish from (4) and (5) the following expressions for the first four L-

moments: 
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 

    

   
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

1

0

23
4:14:24:34:44

1

0

2
3:13:23:33

1

02:12:22

1

01:11

302033
4

1

166)(2
3

1

12
2

1

)(









 
 

Where 1  is a measure of location (population mean) and 2  is a measure of scale (population 

scale). The scale-free quantities 233    and 244    are measure of skewness and 

kurtosis which are less sensitive to the extreme tails of the distribution than 1  and 2 , the usual 

measures of skweness and kurtosis. For more details; see, for example, [21]. 

 

4.2 Sample Linear Moments 

[13] defined the sample linear moments rl , corresponding to the population linear moments r  

given in (4) as follows: 

 

 
:

1 2

1
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r
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i i i k j
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l Y

r jr 


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    
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    
   

   , 1,2,...,r j     (6) 

 

For example, from (6) the first two sample moments corresponding to  1  and 2  are: 

 



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k

i
kiY

k
l

1
:1

1
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
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as [7] have pointed out, it is not necessary to iterate over all subsamples of size r when 

calculating rl , as it can be written as linear combination of order statistics as: 

 

 
1

:

0 1

1 11
1

1

r k
j

r i k

j i

r i k i
l Y

k j r j j
r

r



 

      
      

       
 
 

        (7) 

 

Where we find from [8] that: 

 

       
( ) ( )

: 1: 1

1

1 ! !
1

k
v u
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  
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note that )1)....(1()(  rnnnn r . Putting jrv 1  and ruv  1  we obtain: 

 

         
( 1) ( )

: :

1

1 1 ! !
n

r j j

i k r j j

i

k
i k i E Y r j j E Y

r

 





 
      

 
      (8) 

 

This equation gives us: 

 

 
:

1

:

1

1ˆ

k

i k

i

r j j

i k i
Y

r j j
E Y

k

r





   
  

   
 
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Substituting by this equation in (4) give us equation (7). Equation (7) allows us to re-express the 

first four sample linear moments in the readily computable forms: 
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

 

 

Standardized unit-free versions of the symmetry and kurtosis measures are 233 llt   and 

244 llt   corresponding to the population versions 233    and 244   . 

 

Theorem 1. rl  is an unbiased estimator of r  under ranked set sample. Hence: 

 

 r rE l   

 

Proof: 

From equation (7) we find that: 
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From equation (8) we obtain: 

 

 
 :

1

:

1

1

k

i k

i

r j j

i k i
E Y

r j j
E Y

k

r





   
  

   
 
 
 


 

 

This gives us: 
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jr
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  

 

Thus, rl  is nonparametric an unbiased estimator of r  under ranked set sample whatever the 

underlying distribution. 

 

 

5. Applications 
 

In this section, we study the properties of the sample mean under ranked set sampling using 

some of the properties of L-moments given by [6], [13] and [8]. Also, we estimate the 

parameters of generalized Pareto distribution under ranked set sample and give comparison with 

the same estimators under simple random sample.  

 

5.1 The sample mean in terms of sample L-moments 

Let 



k

i

iX
k

X
1

1
 and  




k

i

iY
k

lY
1

)(1

1
 be the SRS and RSS sample mean, respectively. It is 

well known that X  and  are unbiased estimators of the population mean 1   and it has 

variance
k

2
, where 

2  is the population variance. How does Y  compare with this estimator? 

First we note that the mutual independence of the )(iY , ki ,...,2,1 . This enables us to write: 
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k 
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And 

 

   ( )2
1

1
var var

k

i

i

Y Y
k 

           (10) 
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Since we have assumed perfect ranking, )(iY  is distributed as i th order statistics from a 

continuous distribution. Hence, from [8] we find that: 

 

       
( ) ( )

( ) 1: 1

1

1 ! !
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k
v u
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  
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When 0 uv  we find that: 

 

   ( ) 1:1

1

k

i

i

E Y kE Y


           (12) 

 

Substituting by (12) in (9) we obtain: 

 

       1:11:1

1
YEYkE

k
YE  

 

Thus, Y  is an unbiased estimator of  . 

Certainly, there is a difference between these unbiased estimator and unbiased estimator under 

SRS. The k components of the SRS are mutually independent and identically distributed and 

each is it self an unbiased estimator for  . While the k  components of the RSS average Y  are 

also mutually independent, they are not identically distributed and none of them are individually 

unbiased for   except for the middle order statistics when the distribution is symmetric about  . 

 

Theorem 2. If   1:1YE exists, we have: 
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Proof: 

Where )(iY  are independent, we have: 
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This can be written as: 
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         (14) 

 



Habib, E.A., Electron. J. App. Stat. Anal., Vol 3, Issue 2 (2010), 134 – 149. 

143 

From [20] and [6] we find that: 

 

 
   

   

1
2 2

( ) 1

1 0

! 1 ! 2 11

! 1 !

k k

i r

i r

k k k
E Y

k k r k r






 

 


  
         (15) 

 

and 

 

   2 2

( ) 1:1

1

1 k

i

i

E Y E Y
k 

           (16) 

 

Substituting by (15) and (16) in (14) we find that: 
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    
  

 

Where r  are the population L-moments. This completes the proof. Not that, we may write the 

variance of X  in terms of order statistics as: 

 

     2 2

1:1 1:1

1
Var X E Y E Y

k
  
 

 

 

Therefore, we can re-write equation (13) as: 

 

   
   

   

2
1

2

1

1

1 ! 2 1
var var

! 1 !

k

r

r

k r
Y X

k r k r








    
  

       (17) 

 

Since 02

1 r , we find that:    XY varvar   

 

Hence the variance of the sample mean under ranked set sample is always less than the variance 

of the sample mean under simple random sample. 

We can find distribution-free estimator of  Yvar  from the data given regardless of the 

underlying distribution for the data. From equation (17) we obtain: 

 

 
   

   

2
2 1
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1
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! 1 !
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r
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Y l

k k r k r







    
  

  

 

where 
2s  is the usual sample variance, rl  is the sample L-moments given in (7). The relative 

efficiency of the sample mean under simple random sample relative to the sample mean under 

ranked set sample is: 
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This equation has advantage that it could be estimated from the data as: 
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2s  and rl  as before. 

 

5.2 Generalized Pareto Distribution 
If we have the generalized Pareto distribution with density: 

 

   11 k z
f x e

   

 

Where: 

 

 1 log 1 ( ) /z x       for 0   and ( ) /z x     for 0   

 

 

The L-moments for the generalized Pareto distribution can be obtain as:  1 / 1       and 
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  

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

    
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Then the variance and relative efficiency is given by: 
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and 
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Table 1 below gives the relative efficiency for sample mean under RSS with respect to sample 

mean under SRS from uniform, exponential and generalized Pareto with different choices of the 

shape parameter  . 

 
Table 1. The exact relative efficiency of the sample mean under SRS relative to the sample mean under RSS 

from uniform distribution (Unif.), exponential distribution (Expo.) and generalized Pareto (G.Pareto) 

distribution using different values of β. 

           

Set    94.   45.  25.  001.0  25.0  5.0  

Size  Unif. Expo.    G.pareto   

 2 0.6667 0.7500 1 0.9583 0.8367 0.7497 0.7037 0.6800 

 3 0.5000 0.6111 1 0.9308 0.7382 0.6107 0.5476 0.5167 

k  4 0.4000 0.5208 1 0.9103 0.6699 0.5204 0.4503 0.4173 

 5 0.3333 0.4566 1 0.8940 0.6188 0.4562 0.3834 0.3502 

 6 0.2857 0.4083 1 0.8805 0.5784 0.4079 0.3345 0.3019 

 7 0.2500 0.3704 1 0.8691 0.5456 0.3699 0.2970 0.2654 

 8 0.2222 0.3397 1 0.8591 0.5181 0.3392 0.2673 0.2369 

 9 0.2000 0.3143 1 0.8503 0.4945 0.3139 0.2432 0.2139 

 10 0.1818 0.2928 1 0.8424 0.4741 0.2924 0.2232 0.1950 

 

The density of the generalized Pareto distribution from some ranges from 1,0    and 

49.  to 1,0    and 1  is shown in the graph 1 below. 
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Figure 1. Density function of the generalized Pareto distribution with ξ=0, α=1 and (a) β=-0.49, (b)  

β=-0.1, (c) β=0.1 and (d) β=1 



Linear moments study under ranked set sampling 

146 

Like the exponential distribution, the generalized Pareto distribution is often used to model the 

tails of another distribution; see, for example [12]. For example, you might have washers from a 

manufacturing process. If random influences in the process lead to differences in the sizes of the 

washers, a standard probability distribution, such as the normal, could be used to model those 

sizes. However, while the normal distribution might be a good model near its mode, it might not 

be a good fit to real data in the tails and a more complex model might be needed to describe the 

full range of the data. On the other hand, only recording the sizes of washers larger (or smaller) 

than a certain threshold means you can fit a separate model to those tail data, which are known as 

exceedences. You can use the generalized Pareto distribution in this way, to provide a good fit to 

extremes of complicated data. The generalized Pareto distribution allows a continuous range of 

possible shapes that includes both the exponential and Pareto distributions as special cases.  The 

generalized Pareto distribution has three basic forms, each corresponding to a limiting 

distribution of exceedence data from a different class of underlying distributions. 

 Distributions whose tails decrease exponentially, such as the normal, lead to a 

generalized Pareto shape parameter of zero. 

 Distributions whose tails decrease as a polynomial, such as Student's t, lead to a positive 

shape parameter. 

 Distributions whose tails are finite, such as the beta, lead to a negative shape parameter. 

The most realistic case of the generalized Pareto distribution which used in practice when ξ is 

known. Without loss of generality we assume that 0 . Where the population linear moments 

is defined in terms of the quantile function y(F), we find the quantile function for Pareto 

distribution as: 

 

 ( ) 1 1y F F




    
 

 for 0   and  ( ) log 1y F F     for 0   

 

Then: 

 

2/ 21    and 1)1(    

 

That shows that the parameters   and   are functions of population linear moments. This can 

be estimated as: 

 

2/ˆ
21  ll    and    1

ˆ1ˆ l   

 

Now we investigate the properties of these estimators under SRS with respect to RSS in Table 2.  

This table shows that the estimation under ranked set sampling is more efficient than simple 

random sampling. For example, the relative efficiency for ̂  is 0.43 at the sample size 6, also the 

relative efficiency is 0.33 for ̂  at the same sample size using RSS with respect to SRS. 
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Table 2. Variance and relative efficiency of the parameters of the generalized Pareto distribution using SRS 

with respect to RSS. 

 0001.    1    

k  var. 

RSS 

var. 

SRS 

R.eff var. 

RSS 

var 

SRS 

R.eff 

3 1.209 6.233 0.19 1.660 15.1 0.11 

4 0.629 1.972 0.32 0.841 2.48 0.33 

5 0.391 0.905 0.43 0.518 1.17 0.44 

6 0.270 0.634 0.43 0.356 1.07 0.33 

       

       

 var. 

RSS 

var. 

SRS 

R.eff var 

RSS 

var 

SRS 

R.eff 

3 1.137 16.34 0.07 2.057 7.59 0.27 

4 0.614 1.763 0.31 1.069 2.46 0.43 

5 0.394 0.730 0.53 0.674 1.30 0.51 

6 0.278 0.500 0.57 0.472 .942 0.50 

 

We obtain these values by noting that the order statistics from generalized Pareto distribution 

are: 
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The variance of ̂  and ̂  can be obtained using the variance of  the ratio: 
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and 

 

     ˆ ˆˆ ˆ ˆvar var varE E        
     

 

See [18] and also the variances of  ̂  and ̂  in the case of simple random sample are given in 

[11]. 
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5. Conclusions 
 

In this article, we have study the L-moments under ranked set sampling in the perfect case and 

shows that the sample L-moments is an unbiased estimator for corresponding population L-

moments. We re-expressed the sample mean in terms of L-moments and obtained the 

distribution-free estimator for the sample mean in terms of sample variance and sample L-

moments. Moreover, we have used L-moments to estimate the parameters from generalized 

Pareto distribution where the generalized least square is not applicable. We showed that the 

estimate of the parameter under ranked set sampling is more efficient than the simple random 

sampling. The question which will be investigated in the future, what is the performance of L-

moments under imperfect order in the case of ranked set sampling? 
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