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Abstract: Direct cardinal interpolation constructs a mean function that 

intersects given (x, y) points and a variance function that is zero at the points.  

These functions realize desirable extrapolation and efficiency properties for 

predicting y given x.  It is found that direct cardinal interpolation is be more 

efficient than a classic form of Gaussian process interpolation in that its variance 

is typically much less over the point domain. It is also found that direct cardinal 

interpolation is less efficient near the end points (points not surrounded by other 

points); this desirable property is not realized by Gaussian process interpolation.  

These findings are a consequence of the direct construction of the mean and 

variance functions so that they achieve desirable properties. 
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1. Introduction 
 

Given a set of (x, y) points generated by some process, interpolation, as considered here, 

specifies a mean function that intersects the points and a variance function that is zero at and 

only at the points. These functions have the following interpretation: if the process were to input 

the same x value and output a y value many times, then the mean function would give the mean 

of the y values and the variance function would give their variance. Thus interpolation generates 

a mean and a variance for the prediction of y given x, where for a point x value the point y value 

is predicted with zero error, i.e., the points are “noise free”. Without loss of generality, the points 

D= (xi, yi),  i = 1, 2, …, n, may be normalized so that their least squares line is the x axis and so 
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that they have zero mean and unit variance in both x and y. Thus the normalized points are such 

that Σxi= 0, Σyi = 0,  Σxiyi= 0, Σxi
2
= n, and Σyi

2
= n. 

 

2. The classic linear model probability density 
 

The classic linear model probability density p(y|x, S) of y given x and the set of independent 

points S= (xi, yi), i= 1, 2, …, n is derived by the following Bayesian analysis [4]. By 

marginalization: 

 

( | ,  ) ( | ,  ) ( | )  p y x S p y x w p w S dw



  ,       (1) 

 

where w is the vector (a b)T. Let: 

 
2 -1/ 2 2 2( | , )  (2 ) exp[-( - - ) /(2 )]p y x w y a bx  ,      (2) 

 

By Baye’s rule: 

 

( | ) ( | ) ( ) / ( )p w S p S w p w p S ,        (3) 

 

where from Equation (2):  

 

2 -1/ 2 2 2( | ) ( | , ) (2 ) exp - ( - - ) /(2 )i i i i
i

i

p S w p y x w y a bx 
 

    
 
 .   (4) 

 

Let the prior density p(w) be uninformative in that it is constant. Then, Equations (1), (2), (3), 

and (4) show that: 

 

2 2 2 2( | , ) exp[-( - - ) /(2 )]exp[- ( - - ) /(2 )]i i

i

p y x S K y a bx y a bx da db 




    ,  (5) 

 

where K is a normalization constant. Analytical evaluation of Equation (5) shows that p(y|x, S) is 

Gaussian with a mean that is the least squares line of the points and a variance that is the 

quadratic function σ
2
+ σ

2
/n+ (σ

2
/σx

2
) x

2
/n, where σx

2
 is the variance of the point x values.  For 

points that are normalized as indicated in Section 1, the quadratic function is 1+ 1/n+ x
2
/n. 

A classic constraint on the interpolation procedure is that the mean function and the variance 

function extrapolate to the mean and variance of the classic linear model density. As is 

intuitively reasonable, this constraint ensures that the least complex model, i.e., the linear model, 

applies for large magnitude x. 
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3. Gaussian process interpolation 
 

A classic method for obtaining a mean function and a variance function is through the use of a 

Gaussian process [4, 5] or other methods, e.g., a spline technique.  A Gaussian process supposes 

that the points S plus an additional point (x, y) sample a Gaussian probability density in 

n+1dimensions. If the process is zero mean, then it is specified by a covariance matrix: 

 

H= h(xj, xk),   j, k= 1, 2, …, n+1,        (6) 

 

where xn+1= x and h is a given covariance function. Here H, which must be positive semi-definite 

and thus must have real and non-negative eigenvalues, may be partitioned [2] so that: 

(1) The first n rows and columns form the matrix M, which must also be positive semi-definite. 

(2) The first n elements of the last column form the vector v. 

(3) The first n elements of the last row form v
T
, and the element in the last row and column form 

the scalar s. 

Standard linear algebra identities [4, 5] then show that p(y|x, S) is Gaussian with mean: 

 

μ(x)= v
T
M

-1
y           (7) 

 

and variance: 

 

σ
2
(x)= s – v

T
M

-1
v,          (8) 

 

where y is the vector with elements yi. 

A classic form for a covariance function which requires that the mean function intersect the 

points and that the variance function be zero at the points is exp[-(xj– xk)
2
/(2r

2
)], where r is an 

adjustable parameter. If this form is multiplied by (1+ 1/n + x
2
/n), then, since v is zero for large 

magnitude x, the Gaussian process mean extrapolates to zero and the Gaussian process variance 

extrapolates to s= 1+ 1/n+ x
2
/n, which for the normalized points is the variance of the classic 

linear model density. Note that for this classic covariance function, the Gaussian process mean 

and variance functions depend only on the width parameter r. 

 

 

4. Direct cardinal interpolation 
 

Direct cardinal interpolation explicitly constructs a mean function and a variance function that 

realize desirable extrapolation, smoothness, and efficiency properties. In the following, for two 

different mean functions, a classic meaning is that the smoothest function has the least roughness 

defined as integrated squared second derivative. Also, for two different variance functions, a 

classic meaning is that the most efficient function at a given x has the least variance. 

For direct cardinal interpolation both the mean and the deviation functions have a classic form:  a 

function which extrapolates linearly plus a weighted sum of Gaussian basis functions, each with 

its mean at a point x value and each with the same basis width. Here the deviation function is 

such that its square is the variance function, and thus deviation can be negative, unlike standard 
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deviation defined as the positive square root of variance. Deviation rather than variance is used 

since it extrapolates linearly and is not restricted to non-negative values. 

The parameters in the form for the mean function are determined such that the function intersects 

the points, extrapolates to their least squares line, and has maximum smoothness. In particular, 

for direct cardinal interpolation applied to the normalized points, the mean function has the form: 

 

μ(x) = ΣAi exp[-(x– xi)
2
/(2s

2
)]        (9) 

 

Here the Ai are such that the points are interpolated, i.e., μ(xi)= yi, and they are determined by 

solving n linear equations in n unknowns. The basis width s is then determined such that the 

mean function is maximally smooth, i.e., its roughness ∫-∞
∞ 

μ(x)″
2
 dx is minimized. 

The parameters in the form for the deviation function are determined such that the function is 

zero at the points, extrapolates to the deviation of the classic linear model, and has the minimum 

basis variance such that there are zeros only at the points. This minimum basis variance yields 

the minimum efficiency over the point domain (i.e., the x values between x1 and xn). Thus the 

deviation function is maximally “conservative”. In particular, the variance function is σ
2
(x), 

where σ(x) has the form: 

 

σ(x)= (1+ 1/n+ x
2
/n)

1/2
+ ΣBi exp[-(x– xi)

2
/(2t

2
)].      (10) 

 

Here the Bi are such that the variance is zero at the points, i.e., σ(xi)= 0, and they are determined 

by solving n linear equations in n unknowns.  The basis extent t (which is not the same as the 

basis width s in Equation 9) is then determined as the smallest value such that the variance 

function is zero only at the points. This determination is equivalent to minimizing efficiency or 

to maximizing the variance function in the point domain, i.e., t is determined so as to maximize 

σ
2
(x) for any x1≤ x≤ xn. Note that for t smaller than this value the deviation function (and thus the 

variance function) has zeros not only at the xi but also at other x. This outcome is not permitted 

since interpolation, as considered here, has zero variance only at the xi. 

Direct cardinal interpolation differs from cardinal interpolation [2], which finds the mean and 

variance functions using an infinite ensemble of basis functions, from robust cardinal 

interpolation [3], which requires each basis function in the infinite ensemble to be maximally 

smooth, and from fast cardinal interpolation [1], which uses the minimum possible number (four) 

of maximally smooth basis functions. Direct cardinal interpolation optimizes only two functions 

and is thus less computationally intensive. Most significantly, as the findings below indicate, 

direct cardinal interpolation can realize significantly greater efficiency over the point domain 

compared to a classic form of Gaussian process interpolation. 

 

 

5. Comparison of direct cardinal and Gaussian process interpolation 
 

The captions for four figures describe comparisons. Figure 1 compares direct cardinal 

interpolation with a classic form of Gaussian process interpolation for three normalized points.  

Figure 2 is similar to Figure 1 but for eight normalized points. Figure 3 compares the direct 

cardinal deviation function with the Gaussian process deviation function for the three points in 

Figure 1. Figure 4 is similar to Figure 3 but for the eight points in Figure 2. Note that maximum 
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likelihood (i.e., maximizing the probability of obtaining the given points as samples from the 

Gaussian density) is a classic method for determining the hyperparameter r for the Gaussian 

process. However, for comparison with the direct cardinal mean function, for which the basis 

width s is chosen such that the mean function has minimal roughness, the value of r is chosen 

such that the Gaussian process mean function has minimal roughness. 

 

 
Figure 1. Shown are (1) three points normalized so that their least squares line is the x axis and 

so that they have zero mean and unit variance in both x and y, (2) the direct cardinal interpolation 

mean function (center solid curve), and this mean function plus and minus its deviation function 

(top and bottom solid curves), and (3) a classic Gaussian process mean function (center dotted 

curve) and this mean function plus and minus its deviation function (top and bottom dotted 

curves). As required for interpolation, both mean functions intersect the points and extrapolate to 

y= 0, and both deviation functions are zero at the points and extrapolate to (4/3 + x
2
/3)

1/2
. The 

Gaussian process mean function has a basis width of r= 1.19, which is the value that minimizes 

its roughness at 32.5. The direct cardinal mean function has a basis width of s= 1.39, which is the 

value that minimizes its roughness at 31.2, and the deviation function has a basis width of t= 

0.62, which is the value that realizes the least efficiency for any x in the point domain (the range 

of x that encompasses the points). Note that both interpolation methods have minimally rough 

mean functions and are comparably smooth.  However, the direct cardinal deviation function has 

significantly greater efficiency over the point domain than the Gaussian process deviation 

function. This greater efficiency is indicated by the significantly greater closeness of the direct 

cardinal deviation function to its mean function over the point domain compared to the Gaussian 

process deviation function. 
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Figure 2. As in Figure 1, but for eight points with uniformly spaced x values and random y 

values normalized so that their least squares line is the x axis and so that they have zero mean 

and unit variance in both x and y. Here both deviation functions extrapolate to (9/8 + x
2
/8)

1/2
. The 

Gaussian process mean function has a basis width of r= 0.31, which is the value that minimizes 

its roughness at 1600. The direct cardinal mean function has a basis width of s= 0.31, which is 

the value that minimizes its roughness at 1610, and the deviation function has a basis width of t= 

0.27, which is the value that realizes the least efficiency for any x in the point domain. 

 

 

 

 

 

 

 

 

 

 



Direct cardinal interpolation. 

132 

 
Figure 3. Shown for comparison are the direct cardinal deviation function (solid curve) and a 

classic Gaussian process deviation function (dotted curve) for the three points of Figure 1. Note 

that efficiency, as indicated by smaller variance and thus smaller deviation, is significantly 

greater over the point domain for direct cardinal interpolation. Note also that the direct cardinal 

deviation function, unlike the Gaussian process deviation function, indicates less efficiency near 

the end point x values than near other point x values---this result is intuitively reasonable. 

 

 
Figure 4. As in Figure 3, but for the eight points of Figure 2. 
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Appendix 
 

Theorem  

There is a zero mean Gaussian process which generates any mean function μ(x) and any variance 

function σ
2
(x) chosen to model given points (xi, yi), where i= 1,2,…, n and -∞< x< ∞. 

 

Proof 

As shown in Section 3 and in references [4, 5], a zero mean Gaussian process yields a mean 

function given by Equation (7) and a variance function  give by Equation (8), where, as defined 

in Section 3, these equations are in terms of the matrix M, the vectors v and y, and the scalar s 

which partition the matrix H. 

Without loss of generality, normalize the points so that yn= 1. Let M be the n by n identity 

matrix, let v have zero elements except for μ(x) as the n
th

 element, and let s be μ
2
(x)+ σ

2
(x). Then 

Equations (7) and (8) are satisfied.  

Furthermore, M has all unity eigenvalues and so is positive definite, as required. Finally, H has 

n-1 eigenvalues that are unity and two eigenvalues: 

 

2
-1

[1 + μ
2
(x) + σ

2
(x)] 

+
-  2

-1
{[1 – σ

2
(x) – μ

2
(x)]

2
 + 4μ

2
(x)}

1/2
, 

 

which accordingly are real and non-negative, so H is positive semi-definite, as required. Thus H 

satisfies all requirements defined in Section 3, and accordingly there is a covariance matrix and 

thus a Gaussian process that generates any μ(x) and σ
2
(x). QED. 

 

Remarks 

Here H is obviously not unique. The form used above is “simple” in that only three of its 

elements are other than zero or one. However, it is “complicated” in that it is defined piecewise 

in terms of M, v, and s, and it does not correspond to any “classic” form. Note that normalization 

of the points so that yn= 1 is not required if H is permitted to depend on yn and yn is not zero. 

Also note that additional normalization, such as Σxi= 0, Σyi= 0, Σxiyi= 0, and Σxi
2
= n, is 

permitted. 

 


