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Abstract: Let (X, Y) be a two dimensional random variable with a joint 

distribution function F(x.y). This paper studies the kernel estimation of the 

conditional quantiles of Y for a given value of X based on a random sample from 

the above distribution, which was proposed by [12]. In this paper, the joint 

asymptotic normality of the conditional quantile estimated at a finite number of 

distinct points is established under some regularity conditions. Moreover, the 

performance of the conditional quantile estimation in constructing prediction 

intervals is tested through two applications. The first application deals with 

simulated data set and the second deals with real life data set. 
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1. Introduction 
 

Although most investigation of the conditional distribution function ( | )F y x  of a response 

variable Y given values x of a predictor variable X are concerned with the conditional mean 

function, other aspects of the conditional distribution function are also often of interest. A new 

insight about the conditional distribution function can be gained by considering the conditional 

quantiles functions. Although some individual quantiles, such as the conditional median, are 

sometimes of interest in practice, but more often one  wishes to obtain a collection of conditional 

quantiles that can characterize the entire conditional distribution of  Y given X . Alternatively, 
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pairs of extreme conditional quantiles give a conditional prediction intervals within which one 

expects the majority of individuals points to lie. For more details,  see [1] and [15]. 

Because of their useful applications, estimation of the conditional quantiles has gained particular 

attention during the recent three decades. [5] used the idea of conditional quantile technique to 

study salary data. [6] were the first to introduce conditional quantiles and provide detailed 

background and motivation from econometrics.  

The asymptotic properties of nonparametric estimation of conditional quantiles, using kernel or 

nearest neighbor methods have been studied by [12], [14], [10] and [11]. Recently some new 

methods of estimating conditional quantiles have been proposed. The first, an approach using a 

check function is presented by [2], [15] and [16]. An alternative procedure is first to estimate the 

conditional distribution functions using the double kernel local linear technique, and then to 

invert it to produce an estimator of the conditional quantile, which is called Yu and Jones 

estimator. [4] discussed the Reweighted Nadaraya- Watson (RNW) estimator of the conditional 

distribution function. [1] inverted the RNW estimator of the conditional distribution function to 

drive a nonparametric estimator for the conditional quantiles of time series data. [1] established 

the asymptotic normality and weak consistency for the conditional distribution RNW estimator 

for  - mixing processes, at both boundary and interior points. It was shown that, to the first 

order, the RNW estimator enjoys the same convergence rates as those for the double kernel local 

linear estimator of [15]. A generalization of the work of Yu and Jones for a time series is found 

in [3]. 

Schuster [13] considered the problem of estimating the conditional regression function of [7] and 

established the joint asymptotic normality of the conditional regression function estimated at a 

finite number of distinct points. In this paper, we considered the conditional quantile functions. 

Following the same techniques of [13] and [12] and under some regularity conditions, the joint 

asymptotic normality of the conditional quantile estimated at two distinct conditional points is 

established.  

Moreover, the performance of the conditional quantile estimation in constructing prediction 

intervals is tested through two applications. The first application deals with simulated data set 

and the second deals with real life data set. 

The paper is organized as follows. In Section 2, some basic definitions are introduced. In Section 

3, the conditions that allow us to derive the main result are stated. Also, some preliminaries 

theorems and lemmas are presented. The main result, Theorem 6 is presented and proved in 

Section 4. In Section 5, the performance of the conditional quantile estimator is tested. The 

technical arguments and proofs are collected in the Appendix. 

 

 

2. Basic Definitions  
 

In this section, the basic definitions that are needed throughout this paper are introduced. Let 

1 1 2 2( , ), ( , ) , ( , )n nX Y X Y X Y  be i.i.d. two dimensional continuous random variables with a 

joint density function ( , )f x y  and a joint distribution function: 

 

( , ) ( , )

y x

F x y f u v du dv
 

   . 
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The marginal density function of X  is: 

 

( ) ( , )g x f x y dy





  . 

 

Definition 1. The conditional density function and the conditional distribution function of 

Y given X x  are respectively denoted as ( | )f y x ,  ( | )F y x  and defined by: 

 

( , )
( | ) ,

( )

f x y
f y x

g x


( , )

( | ) ( | ) .
( )

y

y
f x u du

F y x f u x du
g x





 


  

 

Definition 2.  The  th order quantile of the conditional distribution function ( | )F y x  is 

denoted as ( )q x  and defined by the root of the equation ( | ) , 0 1F x     . 

 

Definition 3. The kernel estimators of the functions ( , ), ( ), ( | )f x y g x f y x  and ( | )F y x  are 

denoted as ( , ), ( ), ( | )n n nf x y g x f y x  and  ( | )nF y x  respectively, and defined by: 

 

 

2
1

1
( , ) ,

n
i i

n

in n n

x X y Y
f x y

n a a a
 



    
    

   
  

 

1

1
( ) ( , ) ,

n
i

n n

in n

x X
g x f x y dy

n a a






 
   

 
  

 

( , )
( | ) ,

( )

n
n

n

f x y
f y x

g x
  and 

( , )
( | ) ( | )

( )

y

n
n n

n

B x y
F y x f u x du

g x


  , 

 

where  is a probability density function,  na is a sequence of positive numbers converging to 

zero and 

 

1

1
( , ) , ( ) ( ) .

yn
i i

n

in n n

x X y Y
B x y y u du

n a a a
 

 

    
      

   
   

 

Definition 4.  The estimator of ( )q x  is denoted as , ( )nq x  and it is defined as the root of the 

equation ( | ) , 0 1nF x     . 
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3. Preliminaries Theorems and Lemmas 
 

In this section, some regularity conditions, notations and basic theorems that will be used in 

proving the lemmas and the main result are gathered together for easy reference. Also, four 

lemmas which are necessary to prove the main result in this paper are stated. The technical 

arguments and proofs are collected in the Appendix.   

Firstly, the following conditions from [12], which are needed to prove the lemmas and the main 

result in this paper, are considered. 

 

1. ( , ) ( , )
( , )

i j
i j

i j

F x y
F x y

x y




 
 exist and are bounded for ( , ) (1,2), (2,0), (2,1), (3,0).i j   

2. ( ) ( , )
( )

i
i

i

f x y
g x dy

x








 exist for 1,2.i   

3. Both 
( , )

( ) | |
f x y

h x dy
x








 and (2) ( )g x  are bounded. 

4. The conditional population quantiles ( )q x  are unique and defined by: 

(1,0) ( , ( ))
( ( ) | )

( )

F x q x
F q x x

g x


   . 

 

5. ( )u  is a function of bounded variation. 

6. ( ) 0.u u du




  

7. 2 ( ) .u u du




   

8. 
1 1

, .
5 4

na n      

 

Now, some notations, which are needed in the remaining of this paper, are introduced. Define for 

1,2,  for 1,2,..., ,i j n   the following: 

 

* *
( )1 1

( ) , ( ) ,
i j i j i j

nj i nj i

n n n n n

x X q x Y x X
U x V x

a a a a a


 

       
       

     
 

 

   
1 1

* * * *2 2( ) ( ) ( ) , ( ) ( ) ( ) ,nj i n nj i nj i nj i n nj i nj iU x a U x E U x V x a V x E V x      
   

 

 

1 1

( ) ( ), ( ) ( ),
n n

n i nj i n i nj i

j j

U x U x V x V x
 

    
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W nj

1

2

1

2

( )

( )
,

( )

( )

nj

nj

nj

nj

U x

U x

V x

V x

 
 
 
 
 
  

  
1

2n  Z
n

1

2

1

2

( )

( )
,

( )

( )

n

n

n

n

U x

U x

V x

V x

 
 
 
 
 
 

 

 

(1,0)( ) ( , ( )),i i iw x F x q x  
1

2n  Z *

n

*

1 1

1

*

2 21
1

2

*

1 1

1

*

2 2

1

( ) ( )

( ) ( )

.

( ) ( )

( ) ( )

n

nj

j

n

nj

j

n n

nj

j

n

nj

j

U x g x

U x g x

a

V x w x

V x w x









 
   

 
 

   
 
 

   
 
 
   
  









 

 

 

Now, we state Bochner Theorem, Liapounov's Theorem, Cramér-Wold Theorem and Slutsky 

Theorem, since they play an important role in this paper. 

 

Theorem 1 ( Bochner Theorem). Suppose ( )K y is a Borel function satisfying the following 

conditions: 

 

i. 
- <y<

sup | ( ) | .K y
 

   

ii. | ( ) | .K y dy





   

iii. lim | ( ) | 0.
y

y K y dy


  

Let ( )g y  satisfying  | ( ) |g y dy





  , and let na  be a sequence of positive constants satisfying 

lim 0.n
n

a


  

 

Define 
1

( ) ( ) .n

n n

y
g x K g x y dy

a a





 
  

 
  Then, at every point x of continuity of ( )g  , 

lim ( ) ( ) ( ) .n
n

g x g x K y dy






   

 

Proof. This theorem is Theorem 1A in [8]. 
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Theorem 2 ( Liapounov's Theorem). Let , 1kX k  , be independent random variables such 

that k kEX   and 2

k kVarX  , and for some 0 1  , ( ) 2

2 | | , 1k

k kE X k

  

     . 

Also, let 2 2

1 1 1

, , , ( ) /
n n n

n k n n k n n k n n n n

k k k

T X ET s VarT Z T s   
  

          and 

(2 ) ( )

2

1

.
n

k

n n

k

s 

  





   Then, if lim 0,n
n




  we have (0,1)D

nZ N . 

Proof. This theorem is Theorem 3.3.2 in [9, p. 108]. 

 

Theorem 3 (Cramér-Wold Theorem). Let X, X 1 , X 2 ,… be random vectors in R p ; then 

X
D

n X  if and only if, for every fixed c  R p , we have  cT X
D

n   cT X. 

Proof.  This theorem is Theorem 3.2.4 in [9, pp. 106]. 

 

Theorem 4 (Slutsky Theorem). Let { X n } and { Y n } be sequences of random p  vectors such 

that X D

n X and Y p

n  0; also let { W n }be a sequence of random  w p  matrices such 

that tr{( W n -W)T ( W n -W)} p0, where W is a nonstochastic matrix. Then 

(i) X n   Y n

D  X, 

(ii) W n  X n

D  W X.      

Proof. This theorem is Theorem 3.4.3 in [9, pp. 130]. 

 

Theorem 5. Let { T n } be a sequence of random p -vectors such that (n  T n - ) (N 0,  ) 

and consider a vector –valued function g: R p  R q such that  G( ) = /  xT g (x)| x   exists. 

Then n { g(T n )-g( )} (D N 0, G( )G( )T ). 

Proof.  This theorem is Theorem 3.4.6 in [9, pp. 136]. 

 

To prove our main result, the following four lemmas are needed: 

 

Lemma 1.  Under the conditions 1, 2, 3, 5, 6, 7 and 8, the following hold: 

 

i.  2 2lim ( ) ( ) ( ) , 1,2.nj i i
n

E U x g x u du i





   

ii.  2 2lim ( ) ( ) ( ) , 1,2.nj i i
n

E V x w x u du i





   

iii.  
2( ) ( ) , 1,2;

lim ( ) ( )

0, , 1,2, 1,2.

i

nj i nj s
n

w x u du i s
E U x V x

i s i s







 

 


  

  

iv.  lim ( ) ( ) 0, , 1,2, 1,2.nj i nj s
n

E V x V x i s i s


     
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Lemma 2. Under the conditions 1, 2, 3,5, 6,7 and 8, Z
n

 as n   converges in distribution to a 

four dimensional random variable with zero mean vector and a covariance matrix,  A, where 

 

A

1 1

2 22

1 1

2 2

( ) 0 ( ) 0

0 ( ) 0 ( )
( ) . .

( ) 0 ( ) 0

0 ( ) 0 ( )

g x w x

g x w x
u du

w x w x

w x w x






 
 
 
 
 
 

  

 

Now, the definition of the notation (1)po  is given, since it is needed in Lemma 3 and Lemma 4. 

 

Definition 5. For a sequence  nX  of random variables, if for every 0, 0,    there exists a 

positive integer ( , )n   , such that 

 

 | | , ( , ),nP X n n       

 

then we say that (1)n pX o . In order words,  (1)n pX o  is equivalent to saying that 0nX   in 

probability.  The definition extends directly to the vector case by adapting the Euclidean norm. 

Here, we write X n po (1), see [9,  pp. 37]. 

 

Lemma 3. Under the conditions 1, 2, 3, 5, 6, 7 and 8, Z n

  as n   converges in distribution to 

a four dimensional normal random variable with zero mean vector  and  a covariance matrix, A.  

 

Lemma 4. Under the conditions 1-5, 7 and 8 if ( ) 0ig x   then as n   

( | ) ( ( ) | ) (1), 1,2.n i i i i pf x f q x x o i     

 

 

4. Main Result 
 

In this section, the main theorem in this paper is presented and proved.  

Theorem 6. Under the conditions 1-8, if ( ) 0ig x   and  ( , ( )) 0, 1,2,i if x q x i     

then 
1

2
, 1 , 2( ) ( ( ), ( ))T

n n nna q x q x 



is asymptotically normally distributed with mean vector 

1 2( ( ), ( ))Tq x q x  and a diagonal covariance matrix 

 

B
22

1 1 1

2

2 2 2

(1 ) 0

( ) ( ( ) | )( ) .(1 )

( ) ( ( ) | )0

g x f q x xu du

g x f q x x





 

  




 
  
 
  

  
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Proof. Let :H R 4R 2 , defined by: 

 

(H y) 3 4

1 2

, ,

T

y y

y y

 
  
 

y 1 2 3 4( , , , )y y y y . 

 

Then the matrix of partial derivatives of H is given by: 

 

H (y)/ y

3

2

1 1

4

2

2 2

1
0 0

.
1

0 0

y

y y

y

y y

 
 
 
 

 
 

       (1) 

 

Let  1 2 1 2( ), ( ), ( ), ( ) ,
T

g x g x w x w x  T  1 2 3 4, , , ,
T

n n n n nT T T T  

 

where: 

 

*

1

*

1

1
( ), 1,2;

1
( ), 3,4.

n

nj i

j

ni n

nj i

j

U x i
n

T

V x i
n









 
 





 

 

This implies that: 

 

1 2

1 2

( ) ( )
( ) , .

( ) ( )

T

w x w x
H

g x g x


 
  
 

 

 

Let D denotes the matrix of partial derivatives of H , evaluated at  . Then as in Equation (1), 

we obtain that: 

 

D

1

2

1 1

2

2

2 2

( ) 1
0 0

( ) ( )
.

( ) 1
0 0

( ) ( )

w x

g x g x

w x

g x g x

 
 
 

 
 
 

 

Now, Z *

n  can be written as: 

 

 Z
*

n =
1

2( ) (nna T )n  . 

 

Therefore, by an application of Lemma 3 and Theorem 5, we conclude that: 
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1

2( ) { (nna H T
n

) - ( )}H 
1

1 1 1 12

2 2 2 2

( ( ) | ) ( ( ) | )
( )

( ( ) | ) ( ( ) | )

n

n

n

F q x x F q x x
na

F q x x F q x x

 

 

 
  

 
X

n

DX, 

 

where X is a bivariate normal random variable with zero mean vector  and a covariance matrix, 

DADT , where: 

 

DADT =

1

2

1 1

2

2

2 2

( ) 1
0 0

( ) ( )
.

( ) 1
0 0

( ) ( )

w x

g x g x

w x

g x g x

 
 
 

 
 
 

 

1 1

2 22

1 1

2 2

( ) 0 ( ) 0

0 ( ) 0 ( )
( ) .

( ) 0 ( ) 0

0 ( ) 0 ( )

g x w x

g x w x
u du

w x w x

w x w x






 
 
 
 
 
 



1

2

1

2

2

2

1

2

( )
0

( )

( )
0

( )
.

1
0

( )

1
0

( )

w x

g x

w x

g x

g x

g x

 
 
 

 
 
 
 
 
 
 
 
 

 

           

1 1

2

1 1 1 2 2

2 2 2

2

1

2

0( ) ( )1
. 1

( ) ( ) ( ) ( ) ( ) ( )1
. 1

( ) ( ) ( )0

(1 ) 0

( )( ) ,(1 )

( )0

w x w x

u du g x g x g x w x w x

g x g x g x

g xu du

g x



 

  









  
  

        

 
  
 
  





 

 

since by Condition 4, we have: 

 
(1,0) ( , ( ))( )

, 1,2.
( ) ( )

i ii

i i

F x q xw x
i

g x g x

     

 

Now, using Taylor expansion of ,( ( ) | )n n i iF q x x around ( ), 1,2iq x i  , the following holds  

 

, ,( ( ) | ) ( ( ) | ) ( ( ) | ) ( ( ) ( )) ( | ),i i n n i i n i i n i i n i iF q x x F q x x F q x x q x q x f x          

 

where i is some random point between , ( )n iq x and ( )iq x , 1,2i  . 
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,

( ( ) | ) ( ( ) | )
( ) ( ) , 1,2.

( | )

i i n i i
n i i

n i i

F q x x F q x x
q x q x i

f x

 
 




    

 

Therefore, 

 

 
1

1 2
,2

,

( ) ( ( ) | ) ( ( ) | )
( ) ( ( ) ( )) .

( | )

n n i i n i i

n n i i

n i i

na F q x x F q x x
na q x q x

f x

 

 



     (2) 

 

Equation (2) implies that: 

 

1 1 , 1 1

1 1
, 1 1 1 12 2

, 2 2 2 2 , 2 2

2 2

( ( ) | ) ( ( ) | )

( ) ( ) ( | )
( ) ( )

( ) ( ) ( ( ) | ) ( ( ) | )

( | )

n n

n n

n n

n n n

n

F q x x F q x x

q x q x f x
na na

q x q x F q x x F q x x

f x

 

 

   





 
          
 
 

 W n  X n , 

 

where: 

 

W n =
1 1

2 2

1
0

( | )

1
0

( | )

n

n

f x

f x





 
 
 
 
 
 

. 

 

Now, let: 

 

 W =
1 1

2 2

1
0

( | )

1
0

( | )

f x

f x





 
 
 
 
 
 

. 

 

Then by Lemma 4, we get that tr{( W n -W)T ( W n -W)} 
p0.  

 

Next, an application of Slutsky Theorem implies that: 

 

   
1

, 1 12

, 2 2

( ) ( )
( )

( ) ( )

n

n

n

q x q x
na

q x q x

 

 

 
 

 
= W n  X n

DW X, 

 

which completes the proof of the theorem. 
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5. Applications 
 

In this section, the performance of the conditional quantile estimator in constructing prediction 

intervals is tested upon two applications. The first application deals with simulated data set and 

the second deals with real life data set. 

 

5.1 A simulation study 

A sample of size 300 from the model 2sin 2 (1 ) ,y x     where (0,1)N  and  

[0,1]x Uniform  is simulated. A scatter plot of the simulated data is shown in Figure1. Then the 

first 295 observation were used to construct a 90% and 95% prediction 

intervals 0.05, 0.95,( ( ), ( ))n i n iq x q x and 0.025, 0.975,( ( ), ( ))n i n iq x q x , respectively, 296, ,300i  , for 

the last five values of the response variable y . 

The results are recorded in Table 1. We note that all the prediction intervals contain the 

corresponding true values. Moreover, to test the good performance of the conditional quantile 

estimator, the average lengths of the prediction intervals were calculated, and they were 3.66 and 

4.77 respectively, which are %48.4 and %56.5 of the range of the original data. 

 

 
Figure 1. Scatter plot of the simulation data. 
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Table 1. %90 and %95 prediction intervals for the simulation data. 

i  
ix  iy  0.05, 0.95,( ( ), ( ))n i n iq x q x  0.025, 0.975,( ( ), ( ))n i n iq x q x  

296 

297 

298 

299 

300 

0.52 

0.43 

0.90 

0.24 

0.29 

0.67 

0.66 

-0.39 

0.39 

0.67 

(-1.66, 2.02) 

(-1.63, 2.05) 

(-1.49, 2.37) 

(-1.09, 2.45) 

(-1.54, 2.02) 

(-1.97, 2.34) 

(-1.97, 2.45) 

(-1.62, 2.66) 

(-1.51, 2.66) 

(-1.84, 2.34) 

 

5.2 Real Data 

In this subsection, the air pollution data which is built in S-Plus 6.1 program data is considered. 

It consists of 111 observations, and we interest in the regression of the ozone concentration on 

the temperature. A scatter plot of ozone against temperature is shown in Figure 2. From the 

scatter plot, we hypothesize a linear relationship between temperature and ozone concentration. 

As in Subsection 5.1, the first 106 observation from the data were used to construct 90% and 

95% prediction intervals for the last five values of the ozone. 

The results are recorded in Table 2. We note that all the prediction intervals contain the 

corresponding true values. The average lengths of the prediction intervals were 2.05 and 2.39 

respectively, which are 46.0% and 52.0% of the range of the original data. 

 

 
Figure 2. Scatter plot of the ozone against the temperature. 

 

Table 2. %90 and %95 prediction intervals for the ozone data 

i  
ix  iy  0.05, 0.95,( ( ), ( ))n i n iq x q x  0.025, 0.975,( ( ), ( ))n i n iq x q x  

107 

108 

109 

110 

111 

63 

70 

75 

76 

68 

2.41 

3.11 

2.41 

2.62 

2.71 

(1.27, 3.45) 

(1.71, 3.61) 

(1.79, 3.88) 

(1.84, 4.06) 

(1.74, 3.62) 

(1.03, 3.64) 

(1.59, 3.77) 

(1.69, 4.11) 

(1.73, 4.33) 

(1.60, 3.76) 

 

 



Salha, R.B., Electron. J. App. Stat. Anal. (2011), Vol 4, Issue 1, 39 – 55. 

51 

6. Conclusion 
 

In this paper, we studied the conditional quantile estimator which was proposed by [12]. Under 

some regularity conditions, the joint asymptotic normality of the conditional quantile estimated 

at a finite number of distinct points is established. Moreover, the good performance of the 

conditional quantile estimation in constructing prediction intervals is tested upon two 

applications.  
 

 

7. Appendix  
 

Here, just the details of the proof of the four lemmas from Section 3 will be given. 

 

Proof of Lemma 1.  The proof of this lemma is obtained by using Bochner Theorem. 

 

i.  
2

2 2

2

1 1
( ) ( ) ( ) .i i

nj i n

n n n n

x u x u
EU x a g u du g u du

a a a a
 

 

 

      
             

   

 
2

2 2

2 2

1 1
lim ( ) lim ( ) lim ( )

( ) ( ) 0 ( ) ( ) ,

i i
nj i n

n n n
n n n n

i i

x u x u
EU x g u du a g u du

a a a a

g x u du g x u du

 

 

 

  
 

 

 

     
       

    

  

 

 

 

By an application of Bochner Theorem. 

 

ii. Using the definition of ( )nj iV x  and Bochner Theorem, we obtain 

 

 

 

2 2 2

2

2 2

2

2 2

2

( )1
lim ( ) lim ( , )

( )1
lim ( | ) ( )

( )1
( ) . lim ( | )

i i
nj i

n n
n n n

i
i n i n

n
n n

i
i i n

n
n n

q x v x u
EV x f u v du dv

a a a

q x v
f v x a u dv u g x a u du

a a

q x v
g x u du f v x a u d

a a













 

 
 

 


 

 


 

    
     

   

 
    

 

 
   

 

 

 

  v

 

 

 

( )

2

2

( ) . ( | )

( ) ( ( ) | ) .

iq x

i i

i i i

g x u du f v x dv

g x F q x x u du











 









 



                   

 

iii. Similarly as in Part (ii), we have 
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  2

2

2

( )1
lim ( ) ( ) lim ( , )

( ) ( ( ) | ) ( ) .

i i
n nj i nj i

n n
n n n

i i i

q x v x u
a E U x V x f u v du dv

a a a

g x F q x x u du









 

 
 





    
    

   



 



 

 

On the other hand, 

 

  2

( )1
lim ( ) ( ) lim ( , ) 0,i si

n nj i nj s
n n

n n n n

q x v x ux u
a E U x V x f u v du dv

a a a a

  
 

 
 

      
       

     
   

 

since 

 

1
lim ( ) 0.si

n
n n n

x ux u
g u du

a a a
 






   
   

   
  

 

iv. Similarly as part (iii). 

 

Proof of Lemma 2. Let c 1 2 3 4( , , , ) ,Tc c c c c 0. For 1,2,..., ,j n  define 

2

nj Var {cT W nj }, 
3

nj = E|
1

2n


{cT W nj }| 3 . 

2 2 3 3

1 1

1
, .

n n

n nj n nj

j jn
   

 

    

Note that A is a positive definite matrix whenever ( ) 0ig x   and  ( ) 0, 1,2.iw x i   

Using Lemma 1, we obtain for 1,2,...,j n  

 

 

 

2

1 1 2 2 3 1 4 2

2 2 2 2 2

1 1 1 3 1 2 2 2 4 2 3 1 4 2

lim lim  Var ( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( ) 2 ( ) ( ) ( )

nj nj nj nj nj
n n

c U x c U x c V x c V x

u du c g x c c w x c g x c c w x c w x c w x





 





   

     
 

1 1 1

2 2 22

1 2 3 4

1 1 3

2 2 4

( ) 0 ( ) 0

0 ( ) 0 ( )
( , , , ) ( ) .

( ) 0 ( ) 0

0 ( ) 0 ( )

g x w x c

g x w x c
c c c c u du

w x w x c

w x w x c






   
   
   
   
   
   

  

             = cT A c 0,   

since cT
A c is a quadratic form associated with the positive definite matrix A. 

 

Therefore by the definition of 2

n , the following holds 
2lim n

n



  c

T
A c 0.           (3) 
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Now, using computations similar to those in Lemma 1 implies that: 

 
1 1

3 32 2
1 1| ( ) | ( ), | ( ) | ( ), 1,2.n i n n i nE U x O a E V x O a i

 

    

 

This implies that: 

 
1

3 2|nj E n


 cT W
3| |nj   cT

3

3 2| |n E


 W
3|nj  

3

24 |  cT  
3

3 3 32
1 1| max | ( ) | , | ( ) | , 1,2 .n i n in E U x E V x i



   

 

Therefore, from the definition of 3

n , the following holds: 

 
3

3 24 |n n   cT  
3 1

3 3 32 2
1 1| max | ( ) | , | ( ) | , 1,2 (( ) ).n i n i nn E U x E V x i O n a

 

   

 

Now, an application of Condition (8), implies that: 

 
3lim 0.n

n



            (4) 

 

Thus, a combination of Equation 3 and Equation (4) implies that 

 
3

3
lim 0.n

n
n




 

Next, an application of Liapounov's Theorem,  implies  that cT Z n

1

2

1

n

j

n




  cT W nj converges in 

distribution to a univariate normal random variable with zero mean  and variance cT A c.  

 

Let Z be a four dimensional  random variable with zero mean vector and  a covariance matrix A. 

Then cT Z is a univariate normal random variable with zero mean  and variance cT A c. From 

above, we have that  cT
Z n

D  c
T

Z in distribution. Now, an application of the Cramér-Wold 

Theorem implies that  Z n

DZ  in distribution. This completes the proof of the lemma. 

 

Proof of Lemma 3. Let: 
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 
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By Taylor expansion and conditions 6 and 7, we get that: 
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Similarly, for the other. 

 

From the above and Conditions (8), the following holds: 
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5 2
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Now, from the definitions of Z *

n  and Z n , we obtain 

Z *

n = Z n + (Z *

n - Z n ) = Z n + 
1

2( )nna C n . 

 

This implies that Z *

n - Z n po (1). 

 

Proof of Lemma 4. This lemma is Lemma 6 in [12]. 
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