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Abstract: In simultaneous equations model, multicollinearity and status of 

identification of the equations have been observed to influence estimation of the 

model parameters. The error terms of each equation in the model are also 

expected to be correlated with each other. This study therefore examined the 

effect of multicollinearity, correlation between error terms and status of 

identification of equations on six methods of parameter estimation in a 

simultaneous equations model using Monte Carlo approach. A two equation 

model, with one equation exactly identified and the other over identified, was 

considered. The levels of multicollinearity among the exogeneous variables () 

and that of correlation between error terms () were considered positive and 

respectively specified as  = 0.3, 0.6, 0.8, 0.9, 0.99 and  = 0.3, 0.6, 0.9. A Monte 

Carlo experiment of 250 trials was carried out at three sample sizes (20, 50 and 

100). The six estimation methods; Ordinary Least Squares (OLS), Indirect Least 

Squares (ILS), Limited Information Maximum Likelihood (LIML), Two Stage 

Least Squares (2SLS), Full Information Maximum Likelihood (FIML) and Three 

Stage Least Squares (3SLS); were ranked according to their performances. Finite 

properties of estimators’ criteria namely bias, absolute bias, variance and mean 

squared error were used for comparing the methods. An estimator is best at a 

specified level of multicollinearity, correlation between error terms and sample 

size if it has minimum total rank over the model parameters and the criteria. 

Results show that the OLS estimator is best in estimating the parameters of the 

exactly identified equation at severe level of multicollinearity (1) at all 

sample sizes. At other levels of multicollinearity, the best estimator is FIML or 
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3SLS except when the correlation between error terms is low ( = 0.3). At this 

instance, the best estimators are LIML and 2SLS. The parameters of over 

identification model are best estimated with FIML or 3SLS at all levels of 

multicollinearity, correlation between error terms and sample sizes. 

 

Keywords: Equation identification status, exactly identified equation, over 

identified equation, multicollinearity, correlation between error terms, estimators. 

 

 

1. Introduction 
 

Simultaneous equations model was developed principally to solve the problem of correlation 

between explanatory variables and error terms in a single equation model. In this case, the 

function no longer belongs to a one way causation model but rather a wider system of 

simultaneous equations (multi-equation model) which describe the relationship among all the 

relevant variables. The dependent variable Y and independent variables now appear as 

endogenous variables as well as explanatory variables in other equation (s) of the model. Even 

with simultaneous equation models, the problem is still inevitable in that individual equations 

may still exhibit multicollinearity. When the usual techniques of a single equation model are 

applied, it may lead to an intolerable rise in the size of the model with the consequent depletion 

of some exogenous variables which may be very needful for the purpose of policy simulation 

[14]. 

Apart from this multicollinearity problem, two other problems that are common in econometric 

models are the problems of equation identification and correlation between the error terms of 

simultaneous equation model. Identification problem has several common features with 

multicollinearity. For instance, they both create estimation problems. Thus, identification and 

absence of strong multicollinearity become very fundamental prerequisites for model parameter 

estimation but not for theoretical validity of the system of equations. In both cases, there are too 

many relationships between the variables of the model which do not permit adequate 

independent variation of the variables. Consequently, some degree of multicollinearity may have 

to be allowed in the system of simultaneous equations [12]. The problem of correlation between 

error terms is precipitated on the involvement of more than one equation in the model. 

Equation identification of a system of simultaneous equations model becomes very essential in 

estimation of the model parameters. An equation is either identified or non-identified. If an 

equation is under identified it is not possible to estimate all its parameters with any of the 

econometric methods. An equation that is identified is either exactly or over-identified. If an 

equation is over-identified, it is not possible to obtain unique structural form parameters from the 

reduced form parameters. However, if an equation is identified it implies that its coefficients can 

be statistically estimated [12]. 

There are two basic rules for identification. They are the order condition and the rank condition.  

The order condition is a necessary but not sufficient condition whereas the rank condition is a 

sufficient condition. These two rules have been discussed [9, 11, 12]. 

Several estimators of a system of simultaneous equation model have been given [5, 7, 8, 13, 15].  

These estimators include the Ordinary Least Squares (OLS), Indirect Least Squares (ILS), Two 

Stage Least Squares (2SLS), Limited Information Maximum Likelihood (LIML), Three Stage 
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Least Squares (3SLS) and Full Information Maximum Likelihood (FIML). These were classified 

into three approaches namely; the naïve, the limited information and the full information 

approach [7]. The OLS estimator is the naïve approach. It estimates the parameters of each 

equation as a single equation. The OLS estimator gives the Best Linear Unbiased Estimates 

(BLUE) under certain conditions but if the assumptions are weakened the estimates are not 

BLUE. In the Limited Information (LI) approach, parameter estimation of the whole system of 

simultaneous equation is just like that of the OLS (one equation is estimated at a time), but 

unlike OLS it differentiates between explanatory, endogenous variables and included exogenous 

variables. It does not require information on the specifications of the other equations in the 

system, especially the identifying restrictions on them. This class includes ILS, 2SLS and K-

class estimators like LIML. The Full Information (FI) approach estimates the parameters of the 

entire system simultaneously using all the information available on each of the equations of the 

system. 3SLS and FIML belong to this class. The 2SLS and 3SLS are extensions of the OLS 

while LIML and FIML are extensions of maximum likelihood methods to simultaneous 

equations estimations. Advantageously, some of these methods of estimation have also been 

incorporated into some econometric software including the Time Series Process (TSP).  

This study therefore examined the effect of multicollinearity (), correlation between the error 

terms () and equation identification status of the model on the performances of six methods of 

parameter estimation of a multi-equation model using the Monte Carlo approach. 

 

 

2. Materials and Methods 
 

A two-equation model of the form: 

 

1 2 11 1 12 2 1

2 22 2 23 3 2

( )

( )

t t t t t

t t t t

i y y x x u

ii y x x u

       

     
        (1) 

 

where: 

 

 y1t, y2t = the endogenous variables 

 x1t, x2t, x3t= exogenous variables 

 u1t and u2t  are assumed to be well behaved with a multivariate normal distribution 

(0,1)iu N , i=1,2. 

 12, 12, 22, 23= the structural parameters of the model, is considered. 

 

Equation (i) is exactly identified while equation (ii) is over identified by both order and rank 

condition. Equation (ii) does not include an endogenous variable so as to make it over identified. 

The reduced form of the equations is of the form: 

 

1 11 1 12 2 13 3 1

2 21 1 22 2 23 3 2

( )

( )

t t t t t

t t t t t

iii y x x x v

iv y x x x v

       

       
        (2) 
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Thus from Equation (i), the reduced form can be obtained by substituting Equation (ii) into 

Equation (i). This gives: 

 

 

 

1 22 2 23 3 2 11 1 12 2 1

1 11 1 22 12 2 23 3 2 1

t t t t t t t

t t t t t t

y x x u x x u

y x x x u u



  

          

          
     (3) 

 

Comparing Equation (iii) of (2) with (3): 

 

11 11 12 12 22 12 13 12 23, ,           , 

 

and 

 

1 12 2 1t t tv u u  , 

 

Comparing Equation (ii) of (1) with Equation (iv) of (2): 

 

21 22 22 23 230, ,        , 

 

and 

 

2 2t tv u , 

 

Therefore: 

 

11 11             (4) 

23 23             (5) 

22 22             (6) 

13 13
12

23 23

 


 
            (7) 

13 13 22
12 12 12 22 12 22 12

23 23

  
      

 
             (8) 

 

For the simulation study, the parameters of the model in equation (1) were fixed as 12 = 1.5, 

11 = 0.5, 12 = 0.8, 22 = 3.0, 23 = 2.3. The levels of multicollinearity among the exogeneous 

variables () and that of correlation between error terms () were considered positive and 

respectively specified as  = 0.3, 0.6, 0.8, 0.9, 0.99 and = 0.3, 0.6, 0.9.  The sample sizes (n) 

were taken to be 20 (small), 50 (moderate) and 100 (high). The fixed exogeneous variables were 

generated using the equation provided by Ayinde to generate normally distributed random 

variables with specified intercorrelations [3]. For three normally distributed random variables, 

the equations are: 

 



Johnson, T.L., Ayinde, K., Oyejola, B.A., Electron. J. App. Stat. Anal., Vol 3, Issue 2 (2010), 115 – 125. 

119 

1 1 1 1

2 2 12 2 1 22 2

23
3 3 13 3 1 2 33 3

22

X Z

X Z m Z

m
X Z Z n Z

m

 

  

  

 

  

   

       (9) 

 

where: 

 

 2 2 2 2

22 2 12 23 2 3 23 12 13 33 3 131 , , 1m m m                     

 
2

23
33 33

22

~ 0,1 1,2,3i

m
n m and Z N for i

m
    

 

In this study, we assume  ~ 0,1 1,2,3iX N for i   and the intercorrelations to be the same, 

i.e. 12 = 13 = 23 = . The two stochastic error terms, u1 and u2, assumed to be well behaved 

with a multivariate normal distribution  0,u NID   were also generated to exhibit correlation 

 using the technique of the equation provided and used by Ayinde and Oyejola [1, 2]. The error 

terms were thus generated with equation: 

 
2

1 1 1 1 2

2 2 2

1u z z

u z

 



   


         (10) 

 

such that (0,1)iu N  and (0,1)iz N  for i=1,2. 

With these specifications, the endogenous variable, y1t, was generated using (3) while that of y2t 

was generated using (ii) of (1). This Monte-Carlo experiment was performed 250 times (r = 

250). For each trial, all the six estimators namely, OLS, ILS, LIML, 2SLS, FIML and 3SLS were 

used to estimate the parameters of the model. The technique of the ILS method utilized the 

results of Equations 4-8.  

Preferences of estimators were based on bias (closest to zero), minimum absolute bias, minimum 

variance and minimum mean squared error.  

A computer program was written using Time Series Processor (TSP) software to estimate all the 

model parameters and to evaluate the criteria for each estimator.  Based on each estimate of the 

parameter, the estimators were ranked in order of their performances at each criterion. The 

evaluation of methods was done at two levels-using individual criterion and the totality of all the 

four criteria.  For the first level, the ranks based on each criterion were added over the parameters 

of the model for each method. The overall performances of the estimators were examined by 

further adding the ranks of the first level over the four criteria. An estimator is considered best if it 

has minimum total ranks. The best estimators are presented in Tables 1, 2, 3, 4, and 5 for the 

various levels of multicollinearity, correlation between errors and sample sizes for the two types of 

equations. 
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3. Results and Discussion 
 

3.1 Performances of the estimators on the basis of bias criterion 

From Table 1, for the exactly identified equation, LIML and 2SLS are the best estimators at all 

levels of multicollinearity and correlation between error terms for small and moderate sample 

sizes when the bias criterion is used. For large sample sizes, FIML and 3SLS estimators are 

preferred although the performances of LIML and 2SLS are not much worse. ILS also does fairly 

well when multicollinearity is high. OLS is not a reliable estimator with respect to bias. 

For the over identified equation, the best estimators are FIML and 3SLS when sample size is not 

large. However, when multicollinearity is very severe (1), only 3SLS is good. All the 

estimators have similar levels of bias when the sample size is large (n= 100) except when 

multicollinearity is high ( 0.9). ILS estimator is poor when ( 0.8). 3SLS is the preferred 

estimator for the over identified equation under all the conditions considered. 

 
Table 1. Best estimator (s) based on bias criterion 

 

Equation identification 

  ----------------------------------------------------------------------------------------------------------- 

         Exactly      Over 

  ----------------------------------------------------------             ----------------------------------- 

    n ≤ 50  n = 100  n ≤ 50  n = 100 

  0.3 0.3 LIML 2SLS FIML    FIML 3SLS All 

   0.6 LIML 2SLS FIML 3SLS  FIML 3SLS 3SLS 

   0.9 LIML 2SLS FIML 3SLS  FIML 3SLS All 

  0.6 0.3 LIML 2SLS FIML 3SLS  FIML 3SLS All 

   0.6 LIML 2SLS FIML 3SLS  FIML 3SLS All 

   0.9 LIML 2SLS FIML 3SLS  FIML 3SLS All 

  0.8 0.3 LIML 2SLS FIML 3SLS  FIML 3SLS All except ILS 

   0.6 LIML 2SLS FIML 3SLS  FIML 3SLS All except ILS 

   0.9 LIML 2SLS FIML 3SLS  FIML 3SLS All except ILS 

  0.9 0.3 3SLS   FIML 3SLS  FIML 3SLS FIML 3SLS 

   0.6 LIML 2SLS FIML 3SLS  FIML 3SLS FIML 3SLS 

   0.9 LIML 2SLS FIML 3SLS  FIML 3SLS FIML 3SLS 

  0.99 0.3 OLS   ILS ILS FIML             ILS    3SLS  

   0.6 ILS    LIML     OLS LIML  3SLS  3SLS  

    2SLS  2SLS 

              0.9        OLS           ILS LIML          3SLS           3SLS  
                          2SLS 

 

3.2 Performances of the estimators on the basis of absolute bias criterion 

Table 2 gives the summary of the performances of the estimators on the basis of absolute bias 

criterion. 

For the exactly identified equation, LIML and 2SLS estimators are best except for high level of 

correlation between error terms or for large sample sizes when FIML and 3SLS estimators are 



Johnson, T.L., Ayinde, K., Oyejola, B.A., Electron. J. App. Stat. Anal., Vol 3, Issue 2 (2010), 115 – 125. 

121 

preferred. However, when both the level of multicollinearity and correlation between the error 

terms are high, OLS estimator is preferred. 

For the over identified equation, the best estimators are FIML and 3SLS. However, when sample 

size is small and multicollinearity level is high (0.8), OLS is best. The performances of the 

other estimators are similar but are not as good as FIML or 3SLS. ILS is consistently a poor 

estimator. 

 
Table 2. Best estimator (s) based on absolute bias criterion  

Equation identification 
 --------------------------------------------------------------------------------------------------------------- 
                                            Exactly                       Over 
 --------------------------------------------------------------                ------------------------------------ 
    n ≤ 50          n = 100  n ≤ 50  n = 100 
 0.3  0.3 LIML 2SLS FIML 3SLS  FIML 3SLS FIML  3SLS  
   0.6 LIML 2SLS FIML 3SLS  FIML 3SLS FIML  3SLS 
    FIML 
   0.9 FIML 3SLS FIML 3SLS  FIML 3SLS FIML 3SLS 
 0.6  0.3 LIML 2SLS FIML 3SLS  FIML 3SLS FIML 3SLS  
   0.6 LIML 2SLS FIML 3SLS  FIML 3SLS FIML 3SLS  
   0.9 FIML 3SLS FIML 3SLS  FIML 3SLS FIML 3SLS  
 0.8  0.3 LIML 2SLS FIML 3SLS  FIML 3SLS FIML 3SLS  
   0.6 LIML 2SLS FIML 3SLS  FIML 3SLS FIML 3SLS  
   0.9 FIML 3SLS FIML 3SLS  LIML 2SLS FIML 3SLS 
         3SLS 
 0.9  0.3 LIML 2SLS FIML 3SLS  FIML 3SLS FIML 3SLS 
   0.6 LIML 2SLS FIML 3SLS  LIML 2SLS FIML 3SLS 
    3SLS 
   0.9 FIML 3SLS FIML 3SLS  LIML2SLS FIML 3SLS 
         3SLS 
 0.99 0.3 FIML OLS OLS    FIML/3SLS 3SLS 
    ILS 
   0.6 OLS  OLS   FIML/3SLS 3SLS 
   0.9 OLS  OLS   3SLS  3SLS 

 

3.3 Performances of the estimators on the basis of variance criterion 

Table 3 gives the summary of the best estimators based on the variance criterion. For the exactly 

identified equation, FIML and 3SLS estimators have least variances irrespective of sample size, 

except when multicollinearity is high. Even then, FIML is still a good estimator. When 

multicollinearity is severe (1), the best estimators are OLS and FIML. FIML therefore 

appears to be a good estimator in terms of low variance for the exactly identified equations under 

various levels of multicollinearity and correlation between error terms. 

For the over identified equation, all the methods except ILS perform well when multicolinearity 

is not high ( 0.6). However, when multicollinearity is high, FIML or 3SLS estimators are 

preferred though at very high multicollinearity (1) and at least moderate sample size, 3SLS is 

preferred. 
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Table 3. Best estimator (s) based on variance  

Equation identification 

 ------------------------------------------------------------------------------------------------------------------- 

                                             Exactly      Over 

 ---------------------------------------------------------------  ------------------------------------- 

    n ≤ 50             n = 100  n ≤ 50  n = 100 

 0.3  0.3 FIML 3SLS FIML 3SLS  FIML 3SLS All except ILS 

   0.6 FIML 3SLS FIML 3SLS  FIML 3SLS 3SLS 

   0.9 FIML 3SLS FIML 3SLS  FIML 3SLS All except ILS 

 0.6  0.3 FIML 3SLS FIML 3SLS  FIML 3SLS All except ILS 

   0.6 FIML 3SLS FIML 3SLS  FIML 3SLS All except ILS 

   0.9 FIML 3SLS FIML 3SLS  All except All except ILS 

         ILS 

 0.8  0.3 LIML 2SLS FIML 3SLS  All except FIML 3SLS 

    3SLS     ILS 

   0.6 FIML 3SLS FIML 3SLS  FIML 3SLS  FIML 3SLS 

   0.9 FIML 3SLS FIML 3SLS  All except FIML 3SLS 

         ILS 

 0.9  0.3 FIML  FIML 3SLS  FIML 3SLS FIML 3SLS 

   0.6 FIML/3SLS FIML 3SLS  OLS LIML FIML 3SLS 

         2SLS 3SLS 

   0.9 FIML/3SLS FIML 3SLS  OLS LIML FIML 3SLS 

         2SLS 3SLS 

 0.99 0.3 OLS FIML OLS FIML  All except 3SLS 

         ILS 

   0.6 OLS FIML OLS FIML  All except 3SLS 

         ILS 

   0.9 OLS FIML OLS FIML  All except 3SLS 

         ILS 

 

3.4 Performances of the estimators on the basis of mean square error criterion 

Table 4 gives the summary of the performances of the estimators at the various levels of 

multicollinearity, correlation between the error terms and sample on the basis of mean square 

error criterion. The OLS estimator is best though FIML competes well with it. When correlation 

between error terms is low (0.6) and multicollinearity is not severe then LIML and 2SLS are 

the best.  

For the over identified equation, all the estimators except ILS perform well. ILS had high mean 

square errors. However, FIML and 3SLS performed better at high levels of multicollinearity and 

correlation between error terms. Generally, 3SLS is the preferred estimator. 
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Table 4. Best estimator (s) based on mean square error  

Equation identification 

 ---------------------------------------------------------------------------------------------------------------- 

             Exactly      Over 

 --------------------------------------------------------------            ------------------------------------- 

    n ≤ 50             n = 100  n ≤ 50  n = 100 

 0.3  0.3 LIML 2SLS FIML 3SLS  FIML 3SLS All except ILS 

   0.6 FIML 3SLS FIML 3SLS  FIML 3SLS All except ILS  

   0.9 FIML 3SLS FIML 3SLS  FIML 3SLS All except ILS  

 0.6  0.3 LIML 2SLS FIML 3SLS  All except All except ILS 

                                                 ILS 

   0.6 FIML 3SLS FIML 3SLS  All except All except ILS 

         ILS 

   0.9 FIML 3SLS FIML 3SLS  All except All except ILS  

         ILS 

 0.8  0.3 LIML 2SLS FIML 3SLS  FIML 3SLS FIML 3SLS 

   0.6 FIML 3SLS FIML 3SLS  FIML 3SLS FIML 3SLS 

   0.9 FIML 3SLS FIML 3SLS  FIML 3SLS 3SLS 

 0.9   0.3 LIML 2SLS  FIML 3SLS  FIML 3SLS FIML 3SLS 

   0.6 LIML 2SLS FIML 3SLS  3SLS  FIML   3SLS 

    FIML 

   0.9 FIML 3SLS FIML 3SLS  3SLS  FIML 3SLS 

 0.99 0.3 OLS   OLS FIML  All except 3SLS 

         ILS 

   0.6 OLS  OLS FIML  FIML/3SLS 3SLS 

   0.9 OLS FIML OLS FIML  OLS LIML 3SLS 

         2SLS 3SLS 

 

3.5 Overall performances of the estimators on the basis of all the criteria 

Table 5 reveals that for estimating the parameters of exactly identified equation, the LIML and 

2SLS are the best estimators when multicollinearity is not severe (0.9) and sample size is not 

large. When sample size is large, FIML and 3SLS are the best. OLS is preferred when 

multicollinearity is high.  

For the over identified equation, 3SLS is always one of the best estimators. Sometimes FIML is 

also good. 
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Table 5. Best estimator (s) based on all criteria  

Equation identification 

  ----------------------------------------------------------------------------------------------------------- 

                                            Exactly            Over 

  ----------------------------------------------------------  ------------------------------------- 

    n ≤ 50          n = 100  n ≤ 50             n = 100 

 0.3  0.3 LIML 2SLS FIML   FIML 3SLS FIML 3SLS 

    FIML 

   0.6 FIML 3SLS FIML 3SLS  3SLS               3SLS  

   0.9 FIML 3SLS FIML 3SLS  FIML 3SLS 3SLS 

 0.6  0.3 LIML 2SLS FIML 3SLS  FIML 3SLS 3SLS 

   0.6 FIML  FIML 3SLS  FIML 3SLS FIML 3SLS 

   0.9 FIML 3SLS FIML 3SLS  FIML 3SLS 3SLS 

 0.8  0.3 LIML 2SLS FIML 3SLS  FIML 3SLS FIML 3SLS 

   0.6 FIML 3SLS FIML 3SLS  FIML 3SLS FIML 3SLS 

   0.9 FIML 3SLS FIML 3SLS  3SLS  FIML   3SLS 

 0.9  0.3 LIML 2SLS FIML 3SLS  3SLS  FIML   3SLS 

   0.6 LIML 2SLS FIML 3SLS  3SLS  FIML   3SLS 

   0.9 LIML 2SLS FIML 3SLS  3SLS  FIML   3SLS 

 0.99 0.3 OLS  OLS FIML  3SLS             3SLS 

   0.6 OLS  OLS   3SLS             3SLS 

   0.9 OLS  OLS   3SLS             3SLS 

 

 

4. Conclusions 
In this study, we have examined the performances of the six estimators in estimating parameters 

of the structural equations. Criteria considered are bias, absolute bias, variance and mean square 

error. In recommending appropriate estimators, we have considered mainly bias and mean square 

error of the estimators. 

FIML and 3SLS but particularly 3SLS were observed to be the appropriate methods of 

estimation of the parameters of the over identified equations at all levels of positive correlation 

between errors and multicollinearity and sample sizes. 

FIML and 3SLS are also the best estimators of the structural equations of the exactly identified 

equations when the sample size is large except when multicollinearity is severe. OLS is a better 

estimator when multicollinearity is severe for whatever sample size. A similar result from 

various studies with respect to performance of OLS in the presence of multicollinearity has been 

reported [12]. When the sample size is small and multicollinearity is not severe, LIML or 2SLS 

are the best estimators for estimating the structural parameters of the exactly identified equations.  

Further study is being carried out to compare these results with the results in the presence of 

negative correlations.  
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