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The idea of weighted distributions is widely used in many fields, for ex-
ample: medicine, ecology and reliability. They are more significant for mod-
eling data when the base distributions are not proper or fit the data with
less competence. Length biased distributions are special cases of the weighted
distributions. In this paper, we propose a new generalization of Benrabia dis-
tribution, called the length-biased Benrabia distribution. The recommended
distribution’s various characteristics are deduced and thoroughly explored.
Some numerical studies are implemented, they demonstrate that the distri-
bution is skewed to the right with heavier tail than the normal distribu-
tion. To estimate the distribution’s parameters six methods of estimation
are employed. A simulation study is conducted shows that the estimators
are approximately unbiased and consistent. Three data sets applications are
performed, they show that the suggested distribution has the best fit for
these data sets comparing to some competence distributions.

keywords: Benrabia distribution, length biased, moments, reliability anal-
ysis, Rényi entropy, methods of estimation.

1 Introduction

The idea of a weighted distribution was initially introduced by Fisher (1934) and devel-
oped by Rao (1965). Recently, this idea has been employed frequently in many researches
related to reliability, ecology, analysis of family data, bio-medicine, and some other fields
for the improved performance of appropriate statistical models. It is defined by

PRI COV(C)

7E(w(x)) , x>0, (1.1)
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where w(z) is a non-negative weight function.

Let X be a random variable with the probability density function f(x), then the size-
biased distribution can be produced by using the weight function w(x) = X™. It was
first studied by Patil and Ord (1976). Thus, the resulting pdf

_ 2" f(z)

For m = 1, we get the length-biased distribution, which was first introduced by Cox
(1968); Zelen (1974). It is defined as

filz) = (1.3)

The idea of weighted distributions attracted many researchers. For example, War-

ren (1975) applied them in forestry and ecology in sampling wood cells. Kersey (2010)
proposed the weighted inverse Weibull distribution and beta-inverse Weibull distribu-
tion. Roman (2010) provided the theoretical properties and estimation in weighted
Weibull and related distributions. Shi et al. (2012) developed the theoretical properties
of Weighted Generalized Rayleigh and related distributions. Ye et al. (2012) displayed a
weighted generalized beta distribution of the second kind. Aleem et al. (2013) presented
a class of modified weighted Weibull distribution and its properties. Rashwan (2013)
gave the properties of the double-weighted Rayleigh distribution and its estimation. Bad-
mus et al. (2014) offered a Lehman Type IT weighted Weibull distribution. Bashir and
Rasul (2015) established the weighted Lindley distribution. Alqallaf et al. (2015) offered
a number of estimation methods to estimate the parameters of the weighted exponential
distribution. Asgharzadeh et al. (2016) established a new weighted Lindley distribution
with application in survival analysis. Fatima and Ahmad (2017) provided a description of
the weighted inverse Rayleigh distribution, including its characteristics and applications.
Jan et al. (2017) studied the weighted Ailamujia distribution and found its applications
in real data sets. Saghir et al. (2017a) reviewed some work of weighted distributions
and their applications. Alsmairan and Al-Omari (2020) suggested the weighted Suja
distribution, which was then applied to ball bearings data for safety engineering and
studied for its statistical features.
The length and area biased distributions are special types of weighted distributions as
mentioned above. In recent times, many authors are interested in studying these types
of distributions, such as Sharma et al. (2018) introduced length and area-biased Maxwell
distribution. Al-Omari et al. (2019) suggested power length-biased Suja distribution as
a new extension of the length-biased Suja distribution. Saghir et al. (2017b) studied a
new class of Maxwell length-biased distribution. Shen et al. (2009) used semi-parametric
transformations to model the length-biased data. Al-Omari and Alanzi (2021) suggested
and studied the properties of the one parameter inverse length biased Maxwell distri-
bution. Das and Roy (2011) suggested the Length-Biased form of weighted Weibull
distribution.
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2 Benrabia Distribution

Benrabia and Alzoubi (2022) suggested a new two parameters continuous distribution
known as Benrabia distribution (BrD) with probability density function given by

@ad) = L (a+Z Nt gs0astp50  (21)
gBr\T; Q, - Oé—{-ﬁ « F(a—]_) e €T , 5 .
and cumulative distribution function defined as
1
Gr(r;0,8) = (=) + BP(a—1,6r)] (2.2)

where P(a, x) = VIE?‘C’S) is the lower regularized gamma function, and y(a, z) = [ t* e~ dt

is the lower incomplete gamma function.
The r** moment and moment generating function of BrD are, respectively, given by

N 1 Fla+r—-1)1
E(X") = EREEY) [af(a—l—l)—i—ﬁr(a_l) },7"—1,2,...
_ I5} « AN
The first moment of BrD is
_ a-f+aB
E(X) = 30+ 5 (2.3)

3 Length-Biased Benrabia Distribution

This section displays the pdf and CDF of LBBD formulas along with their graphical
representations.

Definition 3.1 A random variable X is said to have a length biased Benrabia distribu-
tion with parameters o and 3, ( X ~ LBBD («, B) ) if its pdf is defined using (1.1),
(2.1) and (2.3) as:

(al'(a — 1)B%x 4 potiga—l)e b
(a=B+af)l(a—1)

filz;a, B) ,z>0,a>1, >0 (3.1)
Theorem 3.1 Let X be a random variable that follows the LBBD with parameters a
and B. The cumulative distribution function of X is defined by

al'(a — — (Bz e B a, fx
A oL ”8_%1$$}mfif“’ﬁ): 5.3

x>0,a>1,8>0,
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Proof 3.

Fi(z)

By using
I'e,0) =

fi(x)

Figure
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1 The CDF of the LBBD distribution can be obtained as

= p(X <)
_ /”“ (al (o — 1)B%t + potita—l)e=pt
o (a=B+ap)l(a—-1)

1

= ’ _ 2y, a+la—1_—p
T a-ftadl(a—1) Uo (o (o = 1)FPte™ + P e Wf}

_ 1 _ 2 * —pBt a+1 * a—1_-—pt :|
= @ Ftafla-1 [af(a 1),6’/0756 dt + /Ot e 7hdt

dt

the lower incomplete gamma function (o, ) = ff to=le~tdt and the facts
I'(a), v(a,2) =T'(a) = T'(c, z) We get

al(a —1)(1 — (Bz +1)e ) + By(a, Bz)
(a=f+af)l(a—-1)

Fi(z) =

! a-15B-=05
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Figure 1: The pdf and CDF of LBBD for different values of o and .

1 shows the plots of the pdf (left) of LBBD for the values of o of 1.5, 1.75,

and 2 with f = 0.5, 0.75 and 1. It shows the plot of the CDF (right) of LBBD for the

values of

a of 1.5, 2.5, and 3.5 with § = 3, 3.5, and 4. The figure shows that the LBBD

is skewed right.

4 Moments and Related Measures

This section presents some moments and related measures of the LBBD as well as tables
showing the mean, standard deviation, coefficient of variation, coefficient of skewness,

and excess kurtosis for a few chosen parameters.
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4.1 Moments

Theorem 4.1 Let X be a LBBD random variable with pdf defined in (3.1), then the
" moment of X is

al'(a—1DI(r+2)+ AT (r + «)
pria—B+af)l(a—1)

Proof 4.1 The " moment of the LBBD can be calculated as

N < [ (ol (a—1)px + potlget e
E(X") = /0 xfl(x)d:v—/o x< (a—F+afl(a1 >e dx

BE(X") r=1,2,.. (4.1)

1 )
— CEET O CE /0 (af(a — 1)B2xr+16—6m i ﬁa+1xr+a—1e_ﬁz> dae
= 1 af?T(a—HI(r+2) M + )
~ (a—B+ap)(a—1) [ gr2 + Gra ]

al(a = VT(r +2) + BT(r + )
fria—=pF+af)l(a—1)
For r =1, we get the first moment (mean) of the LBBD random variable. The second,

third, and fourth moments can be calculated by substituting » = 2, 3, and 4 in (4.1).
Thus, we have

200+ fa(a—1)

m=EX) = BBt ap) (42)
oy 6o+ Bala+1)(a—1)

P = B —5+ap) )

By - Betdae i 0o ”

B(XY) — 1200 + Ba(c;;j)_(aﬁ—:_i)k(ﬂo; +1)(a—1) (45)

4.2 Related measures

The variance of the random variable X that follows LBBD is defined by (4.2) and (4.3)
as

o2 = (B(X?) - )
(6a+5a(a+1)(a—1>)_<2a+/3a(a—1)>2
(o — B+ aB) Bla— B+ ap)

(o0 =122+ (@~ 1)((a ~3)a+6)3+20) )
B2 (a — B +ap)’
By using (4.6), the standard deviation of the LBBD is given by
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\/( a((a—1)28%+ (@ —1)((a — 3)a+ 6)8 + 2c) )
Bla—=p+ap)
The CV is defined using (4.2) and (4.7) as

o = Vo=

(4.7)

\/( o (o = 1?2+ (0~ 1)((a — 3)a+6)5 + 20) )
- 200+ Ba(a — 1)

cvV =

= =9

Using (4.2), (4.3), (4.4) and (4.7) the skewness is defined as

E(X?) = 3uB(X?) + 243
3
g

< a(4a? 4+ 2(a — 1383 = (a — 1)2((or — 5)(a — 4 v )

Sk(X) =

—24)82 + (o — (o — 2) (e — 1) + 12)8)

3
<\/( a((a — 1282 + (a — 1)((a — 3)a + 6)3 + 20) ))
The kurtosis is defined using (4.2), (4.3), (4.4), (4.5) and (4.7)as

a(=3a3((a — 1)B + 2)* + 6a(af
+a—B)((a® = 1)B+6)((a — 1)8 +2)?
—da(af +a—B)*((a = 1)(a+1)(a
+2)8+24)((a = 1)B+2) + (aB +a
—B)3((a — 1)(a + 1)(a + 2)(r + 3)8 + 120))

((all@ - 1282 + (a— (@~ 3)a+6)5+20) )

Kur(X) =

Table 1 displays the values of the mean, standard deviation, skewness, excess kurtosis,
and the coefficient of variation of the LBBD distribution for values of a of 3.5-7(step 0.5)
and values of 3 of 4-6(step 0.5). It demonstrates that the distribution is right-skewed
despite the values of a and 3. The excess kurtosis values are all positive showing that
the distribution’s tails are heavier than the normal distribution tails.

4.3 Moment generating function

Theorem 4.2 The moment generating function of the LBBD is given by

B 1 aB? (o — 1)50“H N
R B L A ) L R
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Table 1: Related moments measures for LBBD for different values of o and (8
@ B I o Sk eKur cv @ Ié] I o Sk eKur cv

3.5 4.0 | 0.778 | 0.471 | 1.081 | 1.705 | 60.504 || 5.5 | 4.0 | 1.170 | 0.656 | 0.658 | 0.543 | 56.024
3.5 4.5 | 0.699 | 0.419 | 1.074 | 1.692 | 59.938 || 5.5 | 4.5 | 1.056 | 0.580 | 0.650 | 0.565 | 54.911
3.5 | 5.0 0.634 | 0.377 | 1.069 | 1.683 | 59.455 || 5.5 | 5.0 | 0.963 | 0.519 | 0.646 | 0.588 | 53.970
3.5 | 5.5 | 0.581 | 0.343 | 1.066 | 1.678 | 59.039 || 5.5 | 5.5 | 0.884 | 0.470 | 0.644 | 0.610 | 53.164
3.5 | 6.0 0.536 | 0.315 | 1.063 | 1.673 | 58.676 || 5.5 | 6.0 | 0.818 | 0.429 | 0.644 | 0.632 | 52.466
4.0 | 4.0 | 0.875 | 0.515 | 0.970 | 1.349 | 58.902 || 6.0 | 4.0 | 1.269 | 0.703 | 0.564 | 0.352 | 55.422
4.0 | 4.5 | 0.787 | 0.458 | 0.963 | 1.344 | 58.176 || 6.0 | 4.5 | 1.146 | 0.621 | 0.555 | 0.382 | 54.207
4.0 | 5.0 | 0.716 | 0.412 | 0.959 | 1.342 | 57.560 || 6.0 | 5.0 | 1.045 | 0.556 | 0.551 | 0.413 | 53.180
4.0 | 5.5 | 0.656 | 0.374 | 0.956 | 1.343 | 57.030 || 6.0 | 5.5 | 0.961 | 0.502 | 0.549 | 0.442 | 52.300
4.0 | 6.0 | 0.606 | 0.343 | 0.954 | 1.345 | 56.569 || 6.0 | 6.0 | 0.889 | 0.458 | 0.549 | 0.470 | 51.539
4.5 | 4.0 | 0.973 | 0.561 | 0.862 | 1.038 | 57.697 || 6.5 | 4.0 | 1.368 | 0.752 | 0.475 | 0.191 | 54.926
4.5 | 4.5 | 0.877 | 0.498 | 0.855 | 1.042 | 56.829 || 6.5 | 4.5 | 1.236 | 0.663 | 0.466 | 0.231 | 53.617
4.5 | 5.0 | 0.798 | 0.447 | 0.851 | 1.048 | 56.092 || 6.5 | 5.0 | 1.128 | 0.592 | 0.461 | 0.268 | 52.513
4.5 | 5.5 | 0.732 | 0.406 | 0.848 | 1.056 | 55.459 || 6.5 | 5.5 | 1.037 | 0.535 | 0.459 | 0.304 | 51.568
4.5 | 6.0 | 0.676 | 0.371 | 0.847 | 1.064 | 54.910 || 6.5 | 6.0 | 0.960 | 0.487 | 0.459 | 0.337 | 50.749
5.0 | 4.0 | 1.071 | 0.608 | 0.757 | 0.770 | 56.765 || 7.0 | 4.0 | 1.468 | 0.800 | 0.393 | 0.058 | 54.509
5.0 | 4.5 | 0.966 | 0.539 | 0.750 | 0.783 | 55.767 || 7.0 | 4.5 | 1.327 | 0.705 | 0.382 | 0.105 | 53.118
5.0 | 5.0 | 0.880 | 0.483 | 0.746 | 0.798 | 54.923 || 7.0 | 5.0 | 1.211 | 0.629 | 0.376 | 0.150 | 51.943
5.0 | 5.5 | 0.808 | 0.438 | 0.744 | 0.813 | 54.199 || 7.0 | 5.5 | 1.114 | 0.567 | 0.374 | 0.191 | 50.939
5.0 | 6.0 | 0.747 | 0.400 | 0.743 | 0.828 | 53.571 || 7.0 | 6.0 | 1.031 | 0.516 | 0.374 | 0.230 | 50.069

Proof 4.2 The moment generating function of the lbbd can be obtained by using (3.1)
as follows:

B 0 . - e’} . O[P(Oé—l),@2$—|—ﬁa+lxa_l _Ba
wxo) = [T e = [ (SO )

1 af? (o —1)BoH1
(a=B+ap) [(B—1) (B —t)>

5 Reliability Analysis

Reliability is the probability that a component will survive for a specific period without
failure. This section will define some reliability analysis functions statistically. The
reliability function is defined using (3.2) as:

e Pt(—Belly(a, Bt) + al'(a — 1)
+aftl(a — 1) — fT(a — 1)ePt
+afT (o — 1)eft)
(a—fF+af)l(a—1)

The hazard rate function of LBBD is calculated using (3.1) and (5.1):

R(t) = 1-F()=

h(t) = fi®) _ ol (o — 1)5275 4 patla-l
1— F(t) —BePty(a, Bt) + ol (a — 1) + aftl(a — 1)

—Bl(a — 1)ePt + afT (o — 1)l
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The cumulative hazard rate function of LBBD is defined (5.1) as:

_ - —BePly(a, Bt) + al(a — 1) + aftl (o — 1)
H(t) = —In(l1-F(t) =-In ( _BT(a — 1)ePt + aBT(a — 1)t )

+Bt +in((a — B+ af)l(a—1))
The reversed hazard rate function of LBBD is defined using (3.1) and (3.2) by:

() (aT(a — 1)@ + e e
RH(t) = =
! it ( al(a = 1)(1 = (Bt + 1)e™) + By(a, ft) )

Whereas, the odds rate function of LBBD is determined by (3.2), as:

F(t)  al(a—1)(1—(Bt+1)e™) + By(a, 5)

O(t)

1-F(t) e Pt(—pePty(a, Bt) + al'(a — 1) + aftl (o — 1)
—BT (o — 1)ePt + afT (a — 1)ef?)

Figure 2: The reliability analysis functions plots of LBBD distribution for different values
of o and S.

Figure 2 shows the plot of the reliability function (top left) of LBBD for o = 1.5, 1.75
and 2 and 8 = 0.5, 0.75 and 1 and the plot of the hazard rate function (top right) of
LBBD for a = 3,4 and 5 and 8 = 3, 3.5 and 5. The cumulative hazard rate function
for the LBBD is presented bottom left, in this plot we have used the values of o = 3,
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4 and 5 and § = 3, 3.5 and 5. It also shows the reversed hazard rate function (bottom
middle) for the LBBD with the values of a= 5, 6, 7 and § = 3, 4, 5. The odds rate plot
(bottom right) for LBBD with o = 3, 4 and 5 and § = 3, 3.5 and 4.

6 Order Statistics

In this section, we introduce the pdfs of first, nt" and k' order statistics of LBBD. Let
X1y, X(2)s s X(n) be the order statistics of the random sample X1, X3, ..., X;, obtained

from LBBD. The pdf of the k' order statistics is obtained by using (3.1) and (3.2).
Thus, we get

B k—1
n) [ozF(oz —1)(1 = (Bz + 1)e 5 + By(a, 5:0)] [(af‘(a Y BaHxO‘_I) e‘ﬁm]

fy(x) = k(k ((a =B+ af)T(a—1))"

e P (—BePry(a, Bz) + al'(a — 1) ok

X +apfzl(a—1) — BT (a — 1)ef* (6.1)
+afT(a — 1)eb®)

By substituting k = 1 and & = n in (6.1), respectively, the minimum and maximum order
statistics of LBBD can be determined. Consequently, we have

e P (—BePry(a, fz) + ol (a — 1) et

+apal(a —1) — BT (a — 1)eb”
+afl(a —1)ehT)

n (ol (a — 1)z + potlze—1) e=Fe]
((a=B+af)l(a—1))"

fay ()

- nlelle— D= (Br+ Den) 4 By(on )] el s
fml®) = ((a =B+ af)l(a—1)" [al(o =)+ 6 Je]

Figure 3 shows the plot of the pdf of the k' order statistics for n = 10 for all values of k = 1 to
10.

7 Stochastic Ordering

This section discusses how to compare two LBBD random variables using stochastic ordering.

Theorem 7.1 Let X ~ fx(z;0,08), Y ~ fy(x;0,n), and if 0 < B and n < «, then for the
LBBD distribution, we have X <pro Y, X <gro Y, X <yrro Y and X <gspo Y.

Proof 7.1 Consider

v - Ix@ap)
fY(xaevn)
[ar(a—l)ﬁzxw““z“} —Bz
r - (a—p+ap)l(a—1) | °

T (0—1)n2z+nf+igf—1
O—n+omT(0—1)

_ [ella=1)Bx+ a2 ] T (0 —n+TO-1) | (5.
~ - Dpe+ T | [(a—B+aBT(a—1))°

Jer
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Figure 3: The plot of the pdfs of the order statistics.

Therefore,

w0 = ([ g (= oo —n) )

_ o [el(e—1)B% + pottaet (0 —n+ 0O — 1)
= { 0T(0 — 1)n2x + nf+1zf—1 ] in [(a — B+ af)T(a— 1)} —(B-—n)
= In(al(a —1)g% + o129 ) —in(00(0 — 1)n’x + nf+1af71)
(0 —n+0onl(6-1)
i [(aﬂJrOzﬁ)F(a — 1)} —(B-ma

Deriving with respect to x, we get:

on(Y) _ alle-1)F+(a—-1)p* a2 0T0 - 1)n* + (6 - 1)nf+1gf-2 G-
Ox B al'(a — 1)B2z + gotlge—l OT(0 — 1)n2x + nftigd-1 g

Mgi(zT) <0iff< 5, n<a. Thus, X <rro Y, X <gro Y, X <yprroY and X <go Y.

8 Bonferroni and Lorenz Curves

Assume that the random variable X has a cumulative distribution function F'(z) that is contin-
uous and twice differentiable, and that the random variable X is non-negative. The Bonferroni
and Lorenz curves of the LBBD are provided in Theorem 8.1.

Theorem 8.1 The Bonferroni and Lorenz curves of the LBBD are, respectively, provided by

(T - 1)(eP1(~52¢> — 260 — 2) +2) + fy(a +1,50) )
p(2a + Ba(a — 1))T'(a —1)
(oT(a—1)(eP(=p? — 289 — 2) +2) + fr(a+1,8q) )
(2a+ Ba(a—1))I'(a—1)
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Proof 8.1 In order to find the Bonferroni and Lorenz Curves of LBBD, we need

/Oq zfi(z)dr = /Oq x <(a1“(oz(a i)gtﬂ ;ﬁﬂ)‘;:;lei)eﬂm) dr
1

= ! _ 2.2 a+1_ .o\, —Bx
- (a—ﬁ+a6)r(a—1)/o(o‘r(°‘ 1B + B a®)e™ M da

B (=B + alﬂ)F(Oé -1 {041“(04 —1)p? /0‘1 w2e Py + ot /Oq x“e—ﬁﬂdx}
[T (o — 1)3? (HEGERAEE (a1, o))
(a—B+ap)l(a-1)
_ al'(a — 1)(e7P1(—32¢> — 2B8q — 2) +2) + By(a + 1, 8q) ®.1)
Bla— B+ aB)T(a—1)

Thus, the Bonferroni and Lorenz curves are defined using (8.1) as:

(aT(a—1)(e (-5 — 280~ 2) +2) + By(a + 1, 5q) )

B(p) = p2a+ fafa — 1))l (a - 1)
((al(a = 11— ~ 280 - 2) + 2) + By(a + 1.50) )
Lip) = (2a + o —1))0(e — 1)
9 Entropy

Entropy is the average amount of uncertainty that is essential for possible outcomes of a random
variable. This section presents the Shannon, Rényi and Tsallis entropies of the LBBD.

Theorem 9.1 Shannon, Rényi and Tsallis entropies of the random variable X such that X ~
LBBD(«, ) are defined using (3.1) as:

B * [af?T(a— Dz + otz 4, af’T(a— D 4 o a1 o)
S = ‘A [ m—ﬁ+amrm—1>}e lw<{ (@—B+afi{a—1) ]6 )dm

T—o (9)(al(a = 1)) B~V (alp — j) — p+2j +1)

R, = ! log[ —
1—0p po(p=0)=p+2i+1((a — B + af)[(a — 1))?
1 [1 oo ()l (a - 1)) (alp — j) — p+ 2) + 1)

p—1 jpa(p—j)—p+2j+1((a — B+ aB)(a—1))r

1,

Proof 9.1 The Shannon entropy is straightforward. To determine Rényi and Tsallis entropies
of LBBD, we need to find

LS Py — o0 (ar(()é—1)ﬂ2x+ﬁa+1xa71)6,5w p i
/0 (filz))Pde = /0 ( (a—B+af)T(a—1) ) d
j[“)§:§_0(E)Olr(a“1)521ﬁj(5“+1xa“)ﬂ—j
0 ((

e PPy

a—B+aB)l(a—1))r
_ X ()(al (e - 1)) getemtetd oo a(p—3)—p+25\ ,—pBa
B (=B +aB)l(a—1))r A (= Jorde
_o ()@l (a—1))1 8= DT(a(p — j) — p+2j + 1)

p(Pp=)=p+2i+1 (0 — B+ aB)[(a — 1))P
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Thus, Rényi and Tsallis entropies are defined as

J

LI f—o (?)(al(a = 1)) 82~V (a(p - j) — p+2j + 1)

R = 1-— pl p(p=3)=r+2i+1((a — B + af)[(a — 1))P
T v o () (al(e = 1)) BEP=I=VT(a(p — j) — p+2j + 1)
r E - pa(P*j)*PJer%*l((a _ ﬂ 4 Otﬂ)F(Oé — 1));7

Table 2: Numerical results for Shannon, Rényi and Tsallis entropies for LBBD using
different values of o and 8 with §=5.

o« | B8 RP 5P TP « | 8 RP 5P TP

1.5 | 0.5 | 0.397397 | 3.394330 | 0.250000 || 1.7 | 0.5 | 0.316355 | 3.615781 | 0.250000
1.5 | 0.6 | 0.505011 | 2.943372 | 0.249998 || 1.7 | 0.6 | 0.405589 | 3.160058 | 0.249999
1.5 | 0.7 | 0.610034 | 2.564902 | 0.249991 || 1.7 | 0.7 | 0.494290 | 2.776689 | 0.249996
1.5 | 0.8 | 0.709727 | 2.245314 | 0.249969 || 1.7 | 0.8 | 0.580215 | 2.446280 | 0.249986
1.5 | 0.9 | 0.801924 | 1.960771 | 0.249902 || 1.7 | 0.9 | 0.661527 | 2.172919 | 0.249958
1.5 | 1.0 | 0.884893 | 1.708012 | 0.249730 || 1.7 | 1.0 | 0.736706 | 1.915220 | 0.249882
1.5 | 1.1 | 0.957240 | 1.480913 | 0.249331 || 1.7 | 1.1 | 0.804477 | 1.683218 | 0.249702
1.5 | 1.2 | 1.017838 | 1.274950 | 0.248476 || 1.7 | 1.2 | 0.863770 | 1.472400 | 0.249308
1.5 | 1.3 | 1.065776 | 1.086687 | 0.246763 || 1.7 | 1.3 | 0.913671 | 1.279334 | 0.248502
1.5 | 1.4 | 1.100316 | 0.913457 | 0.243527 || 1.7 | 1.4 | 0.953402 | 1.101355 | 0.246947
1.5 | 1.5 | 1.120864 | 0.753144 | 0.237709 || 1.7 | 1.5 | 0.982293 | 0.936350 | 0.244093
1.5 | 1.6 | 1.126939 | 0.604046 | 0.227685 || 1.7 | 1.6 | 0.999768 | 0.782616 | 0.239076
1.5 | 1.7 | 1.118160 | 0.464769 | 0.211046 || 1.7 | 1.7 | 1.005328 | 0.638762 | 0.230578
1.5 | 1.8 | 1.094222 | 0.334162 | 0.184319 || 1.7 | 1.8 | 0.998537 | 0.503634 | 0.216654
1.5 | 1.9 | 1.054891 | 0.211261 | 0.142615 || 1.7 | 1.9 | 0.979019 | 0.376268 | 0.194500
1.5 | 2.0 | 0.999986 | 0.095252 | 0.079207 || 1.7 | 2.0 | 0.946442 | 0.255850 | 0.160157
1.6 | 0.5 | 0.354189 | 3.503154 | 0.250000 || 1.8 | 0.5 | 0.283177 | 3.730095 | 0.250000
1.6 | 0.6 | 0.452087 | 3.049472 | 0.249999 || 1.8 | 0.6 | 0.364576 | 3.273274 | 0.249999
1.6 | 0.7 | 0.548482 | 2.668336 | 0.249994 || 1.8 | 0.7 | 0.446270 | 2.888366 | 0.249998
1.6 | 0.8 | 0.640891 | 2.351131 | 0.249979 || 1.8 | 0.8 | 0.526249 | 2.556112 | 0.249991
1.6 | 0.9 | 0.727316 | 2.064087 | 0.249935 || 1.8 | 0.9 | 0.602838 | 2.286075 | 0.249973
1.6 | 1.0 | 0.806134 | 1.808886 | 0.249820 || 1.8 | 1.0 | 0.674623 | 2.026066 | 0.249924
1.6 | 1.1 | 0.876018 | 1.579398 | 0.249549 || 1.8 | 1.1 | 0.740391 | 1.791655 | 0.249807
1.6 | 1.2 | 0.935871 | 1.371097 | 0.248962 || 1.8 | 1.2 | 0.799096 | 1.578356 | 0.249547
1.6 | 1.3 | 0.984785 | 1.180545 | 0.247776 || 1.8 | 1.3 | 0.849828 | 1.382763 | 0.249010
1.6 | 1.4 | 1.022006 | 1.005068 | 0.245513 || 1.8 | 1.4 | 0.891788 | 1.202226 | 0.247961
1.6 | 1.5 | 1.046907 | 0.842549 | 0.241404 || 1.8 | 1.5 | 0.924270 | 1.034644 | 0.246014
1.6 | 1.6 | 1.058962 | 0.691282 | 0.234258 || 1.8 | 1.6 | 0.946648 | 0.878325 | 0.242550
1.6 | 1.7 | 1.057733 | 0.549873 | 0.222285 || 1.8 | 1.7 | 0.958364 | 0.731884 | 0.236618
1.6 | 1.8 | 1.042858 | 0.417168 | 0.202876 || 1.8 | 1.8 | 0.958915 | 0.594176 | 0.226786
1.6 | 1.9 | 1.014031 | 0.292200 | 0.172315 || 1.8 | 1.9 | 0.947852 | 0.464240 | 0.210963
1.6 | 2.0 | 0.971002 | 0.174156 | 0.125434 || 1.8 | 2.0 | 0.924766 | 0.341266 | 0.186159

Table 2 shows the numerical results for Shannon, Rényi and Tsallis entropies for LBBD using
different values of o of 1.5, 1.6, 1.7 and 1.8 and values of 3 of 0.5-2.0 (step=0.1). Based on this
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table, it is possible to see that the Rény, Tsallis and Shannon entropy values are increasing as
the values of « increase and they are decreasing as the values of 8 are increasing. The Shannon
entropy values are increasing as the values of « increase. They are decreasing as the values of 3
increase. The Tsallis entropy values are increasing as the values of « increase. These values are
decreasing as the values of 8 increase.

10 Parameters Estimation

Let X3, X, ..., X,, be a random sample from LBBD. By using (3.1), the likelihood function of
LBBD can be found as

B n a—lﬂx—l—ﬁ“"‘lx?‘*l) s
g H[ (@—B+afTa—1) ° ]

=1
6752{131‘ n ) .
B CEEETNCE [[I [al(a — 1) + 5+ }]

Thus, the log-likelihood function is

e~ Bl xi

Lo ln(L):ln{[(aﬂ+aﬂ) o 1T [H [l = 1) + 57 el JH

= Z ln al'(a—1) 5 i +Ba+1x?fl)] —nin[(a — 4+ af)T(a —1)] BZL
=1

The derivatives with respect to the parameters o and [, respectively, are

ot " [80g T (In(B) + In(w)) + Bri(al’(a — 1) + T(a = 1))
da ; [ 6%3;"_1 + afl(a—1)x; }

_n((a—ﬁ+aﬁ)F’(o¢—1)+(B+1)F(a—1))
(@a=f+abf)l(a—-1)

o < [BYa+1D)af !t +2ap0(a — 1) B a—1 B - _
G Z{ Bo+120T 1 af?T(a — 1)z ] n<a—6+a6> ;”

=1

The MLEs of o and 8 are the solutions of the nonlinear system of Equations ge =0 and aé =0,
which can be solved numerically as there is no exact solution. The Ordinary least square (OLS)
and weighted least square estimator (WLS) are two more techniques for estimating the model
parameters. They are defined as

n . 2
(3
Z[le() n+1]

S (@l =101 = (B + e ™0) + Brlafow) )
(a—B+aB)l(a—1) n+1

i=1

Rors

Thus, the OLS estimators of a and 6 are the solutions of the following equations

8ROLS aROLS

Oa =0 o0 =0
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The WLS of LBLD is defined as

< (al(a = 1)(1 — (Bagy + De—P0) ) :
== (n+1)2(n+2) +Bv(c, Br(iy) i
Wwrs = Z i(n+1—1) (a—B+af)(a—1) Cn+1

i=1

Again, the WLS estimators of a and 6 are the solutions of the following equations
Wwrs 0 Wwrs
da ’ a0
The MPS estimators, & ps and B Mmps, of a and 8 can be obtained by maximizing the geometric
mean of the spacings, that is,

\Ili(aaﬁ) = Fl(.’l}(l)|a,ﬁ)—E(x(171)|a76), 1= 17"'777"

n+1 ﬁ
FM(a,Bla) = (Hwa,ﬁ))
i=1

Now, the natural logarithm of (10.1) gives

=0

1 n+1

NL(a, Blx) = pan [—ln((a—ﬁJraﬁ)F(a—l))

+in al(a —=1)(1 = (Bzg) + 1)’ @) + By(a, Ba))
—B(e, Br(i—1)) — al(a — 1)(1 = (Bz(i_1) + 1))e P=6-n

Gnps and Barps can be obtained by solving the following nonlinear system of equations with
respect to the parameters a and S.

ONL(oBle) _ 1 i (o ) — As(rgplos ) _
da o+ l4 (o, B) -
8NL(O[,ﬁ‘J}) _ 1 Til A2($(k)‘aa6) - AQ(CL‘(}C,DIO{,6> -0
B o+l & V,(a, B -
where
oG ,
Ai(zyla, B) = 7@5;‘0‘ h) (10.1)
oG ,
Ag(zyla, B) = W (10.2)
The Cramer-Von Mises (CVM) estimators of o and 3 can be obtained by minimizing C'V M?2.
cvir = [ [Fua) - )P dF @)
- 2%i—-11> 1
= Filz _ =
|: l(x(z)vavﬁ) m :| + 12n

2
o n ( ol (o — 1)(1 = (Bzp) + 1)eP@) + By(a, Bi)) ) 2 —1
- ﬁ*? (o —B+af)T(a—1) 2




Electronic Journal of Applied Statistical Analysis 269

These estimators are the solutions of the following system of nonlinear equations

n

Z |:2Fl(1'(i),04,ﬂ) -

=0

21 —1

}M(iﬂ(i)a,ﬁ) =0

n

2 1
EZPﬂ@wme%—l }Axn@aﬁ>:: 0,
1=0
where
OF, , OF (z(y|a,
Mi(z()la,B) = 71(966(';‘04 28 Az(x(,)m,ﬁ):l(”a(ga b

The Anderson-Darling (AD) estimators of « and 3 can be obtained by minimizing:

n

1 _
—n — E ;(22 - 1) {ln[Fl(l‘(k); (e 577)] + l?’LFl(CC(n+1,i); Q, ﬂ)}

AD(a, B)

In aF(afl)(lf([frciJrl)e*Bx"’)+ﬁ'¥(0‘1517‘,)

— (2i — 1) (a—A+aB)T(a=1)
= —n—E ) —Brg i1 .
(ol (a=1)(A=(Bxpt1—i+1)e” "" 1= )4 By(a,frnt1-4))
i—0 H”{ +(1(1—,r3+a[;e)r(a—1) = }

These estimators are the solutions of the following system of nonlinear equations

W—Q M—O
e’ - B -

11 Stress-Strength Reliability

Assume that X and Y are two independent random variables that are observed from the LBBD.
The life of a component with a random strength Y and a random stress X is explained by
stress-strength reliability.

Theorem 11.1 Let the random variables X and Y be independently selected from the LBBD.
The stress-strength reliability is given by

a?(T(a—1))%T(i+4)
i(i+2)
+aF(a71)ﬁF(a+i+2)
p(Y <X) = 2 al’ a—zl!(z—~l:2<)x+i+2
= (0= B+af)l(a—1)° |+ it
+ B2 (2041)
il (o)

3
\
—_
Nawt
<
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Proof 11.1
B (al'(a — 1)B2%z + patiaga—l)

PV <X) = / / (a—B+ap)T (a—l)

ar a71)52y+5a+1 a— 1)

(a — B+ ap)l (a—l

_ [ 1 ] 2 _ a+1 a—1
= [a—fFrafla-1) / / ofH (o= L)+ B )
< aDla =Dy + 97y~ Je e Wiy
— [ 1 ] 2 _ a+l, a—11 —pBx
= |G-FrepT@ 1) / / [af’T(a — Dz + BTz e

i+2 _ i+1 1 Qa+i+1, a+i—1
XZ( R CEL AR CL it i P

1!

e PTe Py dydx

1 & [ 2 +1 1
- [(a—5+aﬁ a—l};/o af (e = Do+ 5]

_1 T 1+2F — i+2 _ a+i+1 .o+
X ( )aﬁ ‘ ( ) ( )5 ‘x e‘ﬁrdm
Z'(Z+2) Z!(a—i—z)
o?(D(a=1))* o it
W!(i+2)
aF(a71)5a+i+31a+i+1

n ; 2
= (=1 e il(it+2 —Bx
B Z[a FrapT@-1] Jo | penesugtianee e

i=0 il(at1)
2a+z+2z2a+zfl
il(a+i)
n (=1D)'a?(T(a—1))2T(i4+4) |, (=1)'al(a—1)8T(a+it+2)
- YT ( e s | Cp >
2 —1)*al’(a—1)BT i+2 1 I'(2 3
= ((a=B+af)'(a—1)) e (3(041[3) et 4 & )Z{iaJr(z)a-‘rZ)

12 Harmonic Mean and Mode

This section introduces the harmonic mean and the mode of the LBBD in the following theorems.

Theorem 12.1 The harmonic mean of the LBBD is given by

ap + B
Proof 12.1
(™1 (1 (ol (a — 1)z + potige—t)e=hr
ao= /0 Efl(””)dx_/o x( (a— B+ aB)(a—1) )dx

alie Er e ) A S e [
B : o o — = M
 (a—B+apf)T(a—1) [al(a— 1)+ BT (a—1)] = S

Theorem 12.2 The mode of the LBBD is the solution of the Equation
afl(a —1)(Bz — 1)+ % 2(fr —a+1) =0 (12.2)
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Proof 12.2
al(a —1)32%z + potiget)y
i) = ! ((a - B)—kaB)F(a —) et
1\ 42 at1,.a-1
Infi(r;a, B) = In <(ar((§_ ;)f cfﬁ—)i_l“foz _wl) )6_5””)
= In(al(a—1)3%x + pgotlzoh)
—In((a—p+af)l(a—1)) — px
dlnfi(z;a, B) _ ol (a—1)B% + (o — 1) ga—2 _ e
Ox ol (a — 1)f2x + potiga—l
5 = al(a —1)82 + (a — 1)t tga—2
al'(a — 1)B2z + patiga—1
al(a —1)%z + B>zt = al(a—1)B + (o —1)3%> 2
0 = afl(a—1)(Bz—1)+p%*2(Br—a+1)

Figure 4 shows the plot of Equation (12.2). It shows that there is one solution to this equation.
But it can not be found explicitly.

5000 10000 15000
I

Mode(X)

0

-5000
I

-10000

Figure 4: Mode Equation plot

13 Mean Absolute Deviations about Mean and Median

Theorem 13.1 Let X ~ fi(z;a, ), the mean deviations about the mean (MD,) and median
(MDp) are

2(a((a —1)B +2)(By(a, Bp) + al(a = 1)(1 — e~ *(Bu + 1))
—((a=1)B+ a)(By(a+1,8p) + al(a = 1)(e™#(=Bu(Bu + 2) — 2) +2)))

MDPa = Bl(a— DB + ) T(a—1)
(~27(a + 1,BM) + a((a — 1)8 + 2)T(a - 1)
+al (o — 1)e PM(2B8M (BM + 2) — 4ePM + 4))
MDp =

(B =1)B + a)I'(ar — 1))
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Proof 13.1

MDy = 2uF(u) 2/Ouxf(o:)dx
., (m 1 fafa - 1>> (arm S (1= (Bt et + ﬁw(mﬁu))
Bla— B+ apb) (a =B+ af)l(a—1)
B (ol (a — 1)B%x 4 gotige—1)ebe
-, ‘"”( (a=B+aB)l(a—1) >dz
2al(a — 18 +2)(B1(a, fr) + al(a — 1)(1 — B4 (B + 1))
—((a=1)B + a)(By(a+1,Bu) +al' (o — 1) (e~ (=Bu(Bp + 2) — 2) + 2)))
B(e=1)B + @)?I'(e — 1)

( (—2B7(a+ 1, BM) + a(a — 1) B + 2)T(a — 1) )

+al'(a — 1)e M (2BM (BM + 2) — 4¢PM + 4))

MbPp = Ba—D+aTa=1)

14 Simulation Study

In this section, a simulation study is performed to evaluate the efficiency and accuracy of the
methods applied for estimating the parameters of the LBBD distribution. We have used the R
software R Core Team (2021) to do this study. N = 1500 samples are generated for this purpose,
each of sizes 100, 200, 300, 400 and 500 for the values of (o, 8) = (2, 3). For each sample, the
estimates of the parameter space ¢ = («a, #), mean square error (MSE) and the bias are obtained.
Then, we calculate the average bias (AB) and the average of mean squares errors (AMSE) as

follows: AB(¢) = + Zi\;@ —¢), AMSE = % Zf\;l(é — ¢)2. The results of this simulation
are summarized in Table 3.

As it can be seen from Table 3, the estimates are approximately unbiased and consistent. It
shows that the OLS method is preferred to be uses for AMSE. The AD method is better to
estimate « for large sample sizes, where the OLS is better for small sample sizes. For estimating

B the CVM is preferred, in general.

15 Real Data Applications

This section compares the proposed distribution’s goodness of fit to a few other existing distribu-
tions in order to demonstrate the flexibility of the proposed distribution utilizing three real-life
time data sets. The first data set represents the number of million revolutions before failure for
each of the 23 ball bearings in the life tests (Kalbfleisch and Lawless (1991)). The second data
set represents the survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli
(Bjerkedal (1960)). The third data set represents he number of cycles until failure of the yarn
(Picciotto (1970)). The following distributions are used for this comparison:

e Loai distribution (Alzoubi et al. (2022b)):

6 11 , 5
flx) = ) iaﬁx +

1

0+1(1—|—x) e % 2>0,60>0a>0

e Benrabia distribution (Benrabia and Alzoubi (2022)): (See (2.1))
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Table 3: Average bias and mean square error for estimated LBBD parameters

|Method | n | & | A | 4B(a) | AMSE@G)| AB(f) AMSE(p)
| MLE | | 2.55695 | 3.01929 | 0.55695 | 1.76421 | 0.01929  0.09229
| oLs | | 2.11667 | 3.04759 | 0.11667 | 0.06603 | 0.04759  0.03735
| wLs | | 2.34496 | 2.99241 | 0.34496 | 2.33594 | -0.00759 0.09359

| MPS | 100 | 3.17630 | 3.10356 | 1.17630 | 1.01587 | 0.10356  0.09948

| AD | | 2.38417 | 2.99048 | 0.38417 | 3.21017 |-0.00952 0.08365
| cvm | | 4.53127 | 2.99991 | 2.53127 | 6.1728 | -0.00009  0.10970
| MLE | | 2.17985 | 3.00584 | 0.17985 | 0.76408 | 0.00584  0.03779
| oLs | | 2.12727 | 3.03726 | 0.12727 | 0.04669 | 0.03726  0.01860
| WLs | | 2.13993 | 2.98850 | 0.13993 | 0.76580 | -0.01150  0.04122

| MPS | 200 | 2.36907 | 3.06118 | 0.36907 | 1.02837 | 0.06118  0.04375

| AD | | 2.15447 | 3.00078 | 0.15447 | 0.70978 | 0.00078  0.04122
| cvm | | 2.22862 | 3.00864 | 0.22862 | 1.02919 | 0.00864  0.04946
| MLE | | 2.09260 | 2.99793 | 0.09260 | 0.35633 | -0.00207  0.02674
| oLs | | 2.13118 | 3.03763 | 0.13118 | 0.04159 | 0.03763  0.01308
| WLs | | 2.07531 | 2.99080 | 0.07531 | 0.37224 | -0.00920  0.02997

| AD | | 2.07559 | 2.99265 | 0.07559 | 0.40528 | -0.00735  0.03004
| cvm | | 2.11640 | 3.00204 | 0.11640 | 0.47169 | 0.00204  0.03264
| MLE | | 2.09415 | 3.00858 | 0.09415 | 0.29036 | 0.00858  0.02045
| oLs | | 2.12877 | 3.04085 | 0.12877 | 0.03716 | 0.04085  0.01021
| WLs | | 2.07925 | 3.00207 | 0.07925 | 0.29721 | 0.00207  0.02177

| MPS | 400 | 2.18072 | 3.02941 | 0.18072 | 0.30833 | 0.02941  0.01878

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\ MPS \ 300 \ 2.19949 \ 3.03728 \ 0.19949 \ 0.46666 \ 0.03728  0.02875 \
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| AD | | 2.05881 | 2.99598 | 0.05881 | 0.26554 | -0.00402  0.01986
| cvm | | 2.07835 | 2.99973 | 0.07835 | 0.30427 | -0.00027  0.02406
| MLE | | 2.06812 | 3.00754 | 0.06812 | 0.23742 | 0.00754  0.01600
| oLs | | 2.12170 | 3.04268 | 0.12170 | 0.03396 | 0.04268  0.00905
| WLs | | 2.05706 | 3.00361 | 0.05706 | 0.23476 | 0.00361  0.01704
| MPS | 500 | 2.12846 | 3.02123 | 0.12846 | 0.24650 | 0.02123  0.01615
| AD | | 2.04539 | 2.99768 | 0.04539 | 0.21260 | -0.00232  0.01706
|

| 2.06695 | 2.99941 | 0.06695 | 0.25305

-0.00059 0.01967
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Lindley distribution (Ghitany et al. (2008)):

_ a’(l4z)e” "
f(;v)—%,m>07a>0
e Gamma distribution (?): f(x) = %, x>0,a,80>0

f(z)

Sameera distribution (Alzoubi et al. (2022a)):

_ ( 04262 xa—lﬁa

—Bz.
T+a25 (1+a2B)F(a)) ee>0a5>0

Exponential distribution (Kingman (1982)): f(z) = 0e=%; 2 > 0,0 > 0.

Table 4: The number of million revolutions before failure for each of the 23 ball bearings
in the life tests

17.88
51.960
93.120

28.920 33.000 41.520 42.120 45.600  48.800 51.840
54.120 55.560  67.800  68.440 68.640  68.880 84.120
98.640 105.120 105.840 127.920 128.040 173.40

Table 5: The survival times (in days) of 72 guinea pigs infected with virulent tubercle

bacilli

Table 6:

12
44
60
70
95
146

15 22 24 24 32 32 33 34 38 38 43
48 52 53 54 54 55 56 57T B8 B8 59
60 60 60 61 62 63 65 65 67 68 70
72 73 75 76 76 81 8 84 8 87 91
96 98 99 109 110 121 127 129 131 143 146
175 175 211 233 258 258 263 297 341 341 376

The data are the number of cycles until failure of the yarn

86
264
38
166
93
400
20
264

146 251 653 98 249 400 292 131 169 175 176 76
15 364 195 262 88 264 157 220 42 321 180 198
20 61 121 282 224 149 180 325 250 196 90 229
38 337 65 151 341 40 40 135 597 246 211 180
315 353 571 124 279 81 186 497 182 423 185 229
338 290 398 71 246 185 188 568 55 55 61 244
284 393 396 203 829 239 236 286 194 277 143 198
105 203 124 137 135 350 193 188

Table 7: Summary for data used for LBBD
‘ Min. ‘ 1st Qu ‘ Median ‘ Mean ‘ 3rd Qu ‘ Max. ‘

‘ 17.880 | 47.200 | 66.800 | 72.230 | 95.880 | 173.400
‘ 12.00 54.75 70.00 99.82 | 112.75 | 376.00
‘ 15.0 129.2 195.5 222.0 282.5 829.0
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Tables 8 - 10 clarify that the suggested distribution has the lowest values of —In(L), AIC,
CAIC, BIC, HQIC, and KS with the highest p-value. Therefore the suggested distribution is
preferred over the competence distributions. The 95% CIs of a and 3 are calculated in these
tables.

Table 8: Application I of LBBD

95% CI

Distr. -In(L) AIC CAIC BIC HQIC KS pv | Par Est SE | Lower | Upper
a 3.852 | 5.327 | -6.590 | 14.300
B8 0.028 | 0.004 | 0.019 0.036
o 0.014 | 0.003 | 0.008 | 0.019
&) 2.795 | 5.667 | -8.313 | 13.903
Lindley 114.736 | 232.489 | 232.681 | 233.634 | 232.078 | 0.193 | 0.314 @ 0.027 | 0.004 | 0.019 | 0.035
@ 0.171 | 0.051 | 0.071 0.270
B 12.075 | 3.511 | 5.194 | 18.955
Exponential | 129.037 | 260.198 | 260.401 | 261.405 | 250.051 | 0.307 | 0.020 4 0.014 | 0.004 | 0.006 | 0.022
a 1.142 | 0.508 | 0.147 2.137
B8 0.025 | 0.007 | 0.011 0.038

LBBD 113.590 | 231.181 | 231.781 | 233.452 | 231.752 | 0.182 | 0.388

Benrabia 127.940 | 260.094 | 260.726 | 262.487 | 249.484 | 0.297 | 0.027

Gamma 119.060 | 241.959 | 242.534 | 244.138 | 245.359 | 0.239 | 0.121

Loai 121.697 | 257.395 | 247.632 | 253.213 | 247.536 | 0.285 | 0.038

Table 9: Application IT of LBBD

95% CI

Distr. -In(L) AIC CAIC BIC HQIC KS | p-Value | Par | Est. SE Lower | Upper
« | 7.357 | 10.700 | -13.698 | 28.412
£ 10.022 | 0.001 0.021 0.023
o |1.993 | 0.001 1.991 1.995
8 |0.010 | 2.726 | -5.334 | 5.354
Lindley | 197.260 | 394.580 | 395.520 | 396.658 | 395.973 | 0.129 | 0.159 o | 0.020 | 0.002 0.017 0.023
1.481 | 0.004 1.474 1.488
0.101 | 0.338 | -0.561 | 0.763
1.924 | 0.795 0.366 3.482
0.018 | 0.004 0.010 0.026
1.391 | 0.001 1.390 1.392
£ |0.026 | 0.117 | -0.204 | 0.256

LBBD | 156.440 | 312.880 | 627.759 | 630.364 | 628.813 | 0.109 | 0.355

Berabia | 201.714 | 403.487 | 405.427 | 407.704 | 406.334 | 0.241 0.006

Gamma | 197.147 | 394.353 | 396.293 | 398.570 | 397.200 | 0.205 | 0.026

Sameera | 201.403 | 402.866 | 404.806 | 407.083 | 405.712 | 0.136 | 0.140

(2 |@|R

=}

Loai 197.548 | 395.155 | 397.095 | 399.372 | 398.001 | 0.174 0.067

Table 10: Application IIT of LBBD

95% CI

Distr. -In(L) AIC CAIC BIC HQIC KS pv Par | Est. SE Lower | Upper
« 5.837 | 10.700 | -15.220 | 26.892
B 0.009 | 0.001 0.008 0.010
« 0.004 | 0.0004 | 0.004 0.005
16} 2.681 | 4.347 -5.839 | 11.201
Lindley | 314.636 | 630.671 | 630.795 | 639.881 | 632.429 | 0.110 | 0.182 « 0.009 | 0.001 0.008 0.010
a 2.189 | 0.282 1.636 2.742
B 0.010 | 0.001 0.007 0.013
« 4.367 | 0.447 3.491 5.244
B 0.018 | 0.002 0.015 0.021
« 0.012 | 0.001 0.010 0.014
B 1.601 | 1.491 -1.321 4.523

LBBD | 314.539 | 631.359 | 631.483 | 640.569 | 633.117 | 0.102 | 0.245

Berabia | 322.127 | 646.255 | 646.378 | 655.465 | 648.013 | 0.197 | 0.001

Gamma | 314.667 | 631.235 | 631.358 | 640.445 | 632.993 | 0.111 | 0.167

Sameera | 317.025 | 636.051 | 636.174 | 645.261 | 637.809 | 0.122 | 0.103

Loai 314.489 | 630.557 | 630.681 | 639.767 | 632.315 | 0.089 | 0.400
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16 Conclusions

This paper proposed the length biased of Benrabia distribution. The basic properties of this
distribution are derived, such as the moments and their related measures, the harmonic mean,
and the mode. In addition to the reliability analysis functions, the pdfs of the minimum, maxi-
mum and the k** order statistics are derived as well as the quantile function. The mean absolute
deviations about mean and median are, also derived. The MLE, OLS, WLS, MPS, CVM and
AD methods of estimating parameters are discussed, these methods are tested through a simu-
lation study shows that the estimators are unbiased and consistent. To prove the goodness of
fit for these distributions, three real data applications were illustrated compared to other distri-
butions showing that the suggested distribution fits the real data better than the competence
distributions.
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