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The main objective of this study is to build an artificial neural network
(ANN) model to predict warrant prices in Vietnam with data collected from
2019 to 2021 from nearly 300 different warrants. The ANN model is applied
on a case-by-case basis depending on the status of the ITM or OTM warrants
to examine further the model’s pricing performance of the proposed model’s
price relative to the actual warrant’s price. In addition, to compare with the
ANN model, the Black Scholes Merton (BS) model is also used for warrant
pricing. The ANN model is built with structure of 3 hidden layers using
ReLU activation and 1 hidden layer using Softplus activation. The research
results show that the ANN model has a more significant error performance
in the case of more significant data than in the other two cases. BS model,
there is no specific conclusion that applying the model, in any case, will be
more effective. Regarding performance comparison between the two models,
the ANN model outperforms both the BS model.
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1 Introduction

1.1 The urgency of the topic

Options or covered warrants have only been widely traded as an investment or hedging
instrument in Vietnam from 2018 to the present. Usually, securities companies often
issue warrants to promote securities trading between investors and securities companies.
The form of warrants is similar to stock options with similar parameters such as exercise
price, conversion rate, and time to maturity. In Vietnam, warrants have a reasonably
short maturity, usually less than a year, and the price of warrants can vary from a few
thousand to a few tens or even a few hundred thousand dongs. Moreover, like options,
the leverage ratio of warrants is substantial. With just a tiny amount of capital, we can
get a similar return as investing in stocks.

The problem is how to quickly and accurately value the warrant’s value to the observed
price in the market for investors. Here, valuation is understood as the model will try to
learn the patterns of the market in giving the value of that warrant at a particular time
and try to give the closest approximation to the market. The valuation of a home, for
example, will include the home’s intrinsic value and market fluctuations at that time.
For traditional valuation models, although many different formulas exist for the type
of financial asset that is warranted, the author has reviewed several previous research
papers and decided to use Black Scholes as a reference for the ANN model. According
to Abd Aziz et al. (2020), Black Scholes is a well-known and commonly used model
in valuing assets such as warrants or options. This model has existed for a long time,
around 1960-1970, and is still widely used and developed today in terms of research and
actual trading in options pricing. Other assets are similar to warrants. In addition,
the study of Aziz et al. (2015) shows the model’s effectiveness for both European and
American style options, so this is also one of the reasons why Black Scholes is currently
the model. Taking the lead in valuing warrants in Vietnam when this asset class being
traded in our country is of the European type.

At the same time, the Black Scholes model is said to be easier to use and has fewer
computational resources than other models (Wu et al., 2012). In a recent paper, Frino
et al. (2019) have shown insufficient evidence that the Black Scholes model is mispricing
or that there are market biases in the pricing of options in Australia. Despite its success,
the model still has some flaws in being constrained by assumptions such as constant
volatility, which leads to bias when applying Black Scholes to different markets where
volatility Implied volatility usually has a skew or smile-shape distribution (Funahashi,
2021). Therefore many experimentalists have used other models related to local volatility
(LVM) and stochastic volatility (SVM) to overcome this, such as Cox and Ross (1976) for
LVM or Heston’s (1993) model for LVM. SVM. However, much analysis and computation
are often required under these models because the computational cost is explosively
significant (Funahashi, 2021).

From some stated assumptions of the Black Scholes formula, the author finds that this
limitation can reduce the performance of the traditional model when valuing warrants
in a highly volatile trading market. As well as, there always exist other external factors
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such as transaction fees,... Therefore, along with the development of technology and
computers with higher computing capabilities and the increasingly available financial
data sets and machine learning algorithms, the author is confident about building a
guaranteed warrant pricing model with higher efficiency than the Black Scholes pricing
model, specifically. An ANN machine learning model aims to provide another frame of
reference for warrant investors in the market to refer to. Among the valuation models,
the neural network model is considered a highly efficient model. Liu et al. (2019) have
developed an artificial neural network model solution - ANN, to reduce the computation
time of options pricing, especially for multi-dimensional financial models. The authors
test the ANN method in three different solvers, including the closed-form solution for the
Black-Scholes equation, the COS (Fourier-cosine series) method for the Heston model,
and the Brent root method for degrees rough seas imply. Their numerical results show
that ANN can efficiently and powerfully calculate options prices and implied movements.
Culkin and Das (2017) show that a simple deep learning model can value options with
low error. The grid architecture of this deep learning model can easily be extended to
real-world pricing options without knowing the option pricing theory. New technology
has popularised deep learning, so it is effortless for an investment manager or trader to
implement these models.

Therefore, the ANN machine learning model and the traditional Black Scholes formula
are the two objects studied and used in this study by the author. After going through the
training process in the ANN model and conducting the warrant pricing in both models,
the author will compare the results of the predicted warrant prices from ANNs and Black
Scholes. Furthermore, this study provides a discussion of the differences between factors
such as the average performance, error, or how well each model performs on each case
of disaggregated warrant data.

1.2 The purpose of the topic

1.2.1 General objective

The main objective of this study is to build a warrant pricing model based on the
ANN machine learning algorithm. Also, compare the performance between the two
traditional and machine learning models to discuss further each model’s effectiveness
and appropriateness in each warrant state case. Investors can make accurate and faster
reference prices and keep pace with the market.

1.2.2 Detailed objectives

From the general objective, the authors have determined the detailed objectives that
need to be done as follows:

• Built an ANN machine learning model to quickly value warrants and give approx-
imate results to market prices

• Compare the average performance of two ANN models and BS models based on
error indexes. Then, continue to compare the performance of two ANN models
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and BS models in three cases (complete data, ITM and OTM state)

• Evaluate the ANN model’s effectiveness from the results compared with the BS
model. Discuss the advantages and limitations of the ANN model. From there,
propose new research directions in the future.

1.2.3 Research question

After considering the possible aspects and issues of the topic of the study, the authors
posed the following questions:

• Question 1: Why choose the ANN model and the BS model for warrant pricing
for the Vietnamese market?

• Question 2: Can the results of the ANN model show better performance than that
of the BS model?

• Question 3: In each case of different data, is the performance of the ANN model
and the BS model different?

1.3 Research subjects

The subjects of this study include: (i) ANN model and BS model when applying warrant
pricing in Vietnam. (ii) The students of the University of Economics - Law, investors
need to value warrants. (iii) The effectiveness of the warrant pricing model by ANN
helps students and investors who want to price warrants in Vietnam.

1.4 Research scope

In terms of spatial scope, the research carried out is limited to the territory of Vietnam.
Regarding the time range, the research data is collected over two years from 2019 - the
time warrants are launched in Vietnam’s stock market - to 2021. In this study, the
data set for analysis, evaluation and model running will be collected from reliable and
specialized information sites in the financial sector in general and securities in particular.
At the same time, there are references from relevant documents and research articles of
precise and scientific origin.

1.5 Research methods

The research is carried out using the ANN model and BS model and random parameters
of the ANN model for warrant pricing. Methods of information collecting: including
reading documents and collecting data from financial data sources. To evaluate the
model’s performance on the training set, the author uses indexes to measure the accuracy,
such as MSE (loss function), RMSE, MAE, and MAPE, between the difference between
the given model results and the actual historical price of warrants. To evaluate the
model’s performance on the test set, the author uses RMSE, MAE, MAPE, and R2.
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Regarding the performance comparison on the test set, there will be two parts, the
first part will compare the average performance of the two models, and the second
part will compare the performance of each model in each case. Finally, the group will
compare and conclude. The data includes price movement data for more than 294
covered warrants in Vietnam and warrant pricing parameters for 2019-2021. Data is
collected from finance.vietstock.vn.

1.6 Research structure

This study is organized into five sections: Chapter 1 serves as the Introduction. Chapter
2 lays down the theoretical groundwork, encompassing the theory of option pricing, the
principles behind the Black Scholes Merton model and the artificial neural network
model, and an overview of past research. Chapter 3 discusses the data used in the
study and the research methodology. Chapter 4 presents the findings and facilitates a
discussion on them. Finally, Chapter 5 provides the conclusion and outlines potential
avenues for future research.

2 Literature Review

2.1 Theorical framework

2.1.1 Option pricing theory

Options pricing theory estimates the fair value of an option that traders combine with
their strategies to maximise profits or hedge risk. The main goal of option pricing theory
is to calculate the probability that an option will be exercised when the option expires.
Louis Bachelier first developed the theory in 1900. A payoff chart depicts the profit and
loss position of a call option. Accordingly, an alternative will have two primary states:
out-of-the-money (OTM) and in-the-money (ITM) status. An OTM position where the
underlying asset price (S) is below the strike price (K) and the call option holder will
not exercise their right. ITM state or a state where S is greater than (K) and the option
is exercised. If S equals K plus the cost of buying the call (B), the investor will be in
a breakeven position. And finally, if S is greater than B, then the investor will start to
make a profit.

1.jpg

Figure 1: Bachelier’s payoff chart for call options.
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Bachelier needs to describe the distribution of the underlying asset’s price to describe
how options are priced. By modelling successive price changes in a particular way, he
used the central limit theorem to determine the normal distribution of price movements.
About sixty years later, Osborne (1959) produced similar results. Although subsequent
studies by Mandelbrot (1963), Fama (1965), Brealey (1970), and others began to grad-
ually reject the assumption of a normal distribution of stock prices, Bachelier’s basic
premise was conserved by Black and Scholes (1973) in their model with the belief that
stock returns are log-normally distributed. Bachelier’s description of the underlying
asset’s price assumed those price movements were similar and independent over time.
This is an essential assumption in the basic formulation of the efficient market theory –
if the prices of assets are priced efficiently. When prices change, it will also fully reflect
new and independent information through time. This implies that stale information is
useless in predicting the asset’s price. From the above, we conclude that the factors that
can affect the options price are the current price of the underlying asset and the exercise
price, also known as the option’s intrinsic value.

In the years that followed, many more studies on option pricing and the theory and
model of Black and Scholes introduced in their research are still valid and famous today.
According to Black and Scholes, in addition to the price of the underlying asset and the
strike price, other factors can influence the price of an option, which we now call the
option’s time value. An option’s time value includes time to maturity, annual fluctuations
in the underlying asset’s price, and the risk-free rate. Time to expiration is the number of
days remaining for the option to expire, and it is proportional to the value of the option.
Because the longer the option’s expiration time, the longer the option will stay out of the
market and the more likely it is that the underlying asset’s price will exceed the strike
price. The annual volatility of the underlying asset will be directly proportional to the
value of the option because the higher the volatility of the underlying option, the more
likely the underlying asset’s price will exceed the strike price level is more extensive.
Regarding the risk-free rate, it usually affects an option if the time to maturity is long
otherwise the risk-free rate often acts as the discount rate on the option’s strike price
to the present to subtract the portion the investor receives from the underlying asset’s
price.

To sum up, option pricing theory has existed for a long time, researched and developed.
The value of an option can be divided into two parts: intrinsic value and time value.
The factors that make up the two parts of an option’s value can affect the value of the
option, but not the value of the option. The intrinsic value consists of the underlying
asset’s price and the option’s exercise price. Time value includes factors such as the time
to expiration of the option, the volatility of the underlying asset, and the risk-free rate.

2.1.2 Black Scholes Merton model

Different options pricing models were developed from Louis Bachelier’s option pricing
theory. Standard valuation models include the Black-Scholes-Merton model, the Monte
Carlo simulation, and the binomial model. In particular, the current Black-Scholes-
Merton model is still popularly and widely used.
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Black-Scholes or Black-Scholes-Merton (BS) is a mathematical model applied to the
pricing of several financial products, typically European-style options. The model was
developed by Fischer Black and Myron Scholes and published in a 1973 paper (Black and
Scholes, 1973). The model is considered an essential milestone in derivatives trading and
the development of hedging strategies. It provides investors with safety with properly
structured financial asset portfolios. Initially, the BS model was widely used to price
European-style options and was widely accepted as a mathematical formula for option
pricing. Before that, options traders used different and inconsistent formulas. The
BS pricing model has been empirically analysed that the formula gives a value close
to the observed values of the option price. Black and Scholes provided the first form
of the model as individual differential equations. Robert Merton published a more
mathematical method for easier understanding and deeper understanding of the model.
And the formula after his research has the following form:

C(S0, t) = S0N(d1)−Ke−rTN(d2) (1)

Where:

• S0 is the current price of the underlying asset.

• C(S0, t) is the price of the call option at S0 and time t.

• K is the strike price of the option.

• T is the expiration time of the option.

• r is the annual risk-free rate.

• N(d1) and N(d2) are cumulative distribution functions for a random variable of a
normal distribution.

The parameters d1 and d2 are calculated according to the following formulas:
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Where σ is the annual volatility of the stock.
The usefulness of the Black-Scholes formula is based on several assumptions about

ideal market conditions as follows: Short-term interest rates are known in advance and
do not change over time; The stock price follows a log-normal distribution; Because it is
a European-style option, it can only be exercised at expiration; There are no transaction
costs and taxes when buying or selling stocks or options; Short-selling is allowed to use
the proceeds; No dividends are paid during the derivatives implementation; The process
of securities trading is taking place continuously.
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An option is theoretically priced according to the parameters of the stock price, the
exercise price, the volatility of the underlying asset, the interest rate, and the time
remaining to the option’s expiration date. According to research by Black and Scholes
(1973), in terms of stock prices and exercise prices, the fair value of a call option at a
critical point in time is equal to the stock price minus the discounted value of the strike
price at that time. Theoretically, the lower the current stock’s price, which is lower than
the strike price, the more likely that the call will not be exercised at expiration, and thus
the value of the call will be zero. When assuming other factors such as stock prices remain
unchanged, the longer the expiration date, the higher the actual value of the call option.
The Black-Scholes model evaluates the likely price range of an option at expiration
based on the current price of the underlying asset, the strike price, and other factors.
It calculates two distinct probabilities - S0N(d1) and Ke−rTN(d2). S0N(d1) represents
the current price of the stock multiplied by the probability distribution function. The
function returns zero if the stock price is below the strike price. If the stock price exceeds
the strike price, the function returns a value representing the stock’s potential value at
the time of expiration. Ke−rTN(d2) represents the strike price of the option adjusted
for the time value of money (discounted to present value), multiplied by the probability
distribution function for scenarios where the option’s price exceeds the strike price at
the time of expiration. In essence, the Black-Scholes model is designed to calculate the
potential profit from an option, factoring in the cost of the option itself.

However, things will become relatively more complicated when valuing warrants for
various reasons such as price adjustment from dividends, from company mergers, the
company issuing more shares, or volatility is not uniform over the life of the warrant
(Black and Scholes, 1973). The above problems have now been solved through adjusted
formulas from the Black Scholes formula by subtracting the discounted dividend stream
at the time i from the stock price or the diluted Black Scholes formula from stocks
(Galai and Schneller, 1978), constant elasticity of variance (CEV) (Cox, 1975), Longstaff
Extendible-Warrant formula (Lauterbach and Schultz, 1990). In addition to options, the
Black Scholes formula is also widely used in pricing warrants. Among them, there are
research papers by Lauterbach and Schultz (1990); Kremer and Roenfeldt (1992).

2.1.3 Artificial neural network model- ANN

Deep Learning is becoming more and more popular and vital in the financial sector.
Deep Learning tools are supported in many programming languages, notably Python
and R. As a result, the tools have enabled financial applications to achieve high levels of
responsiveness thanks to viable trading algorithms. And it is often used to train models
to predict outputs, classify securities or build credit risk models. One of the most widely
applied models is its feasibility. and precisely the artificial neural network (ANN) model.

Over the historical periods, ANN has had many development steps based on the in-
fluences of the human brain structure. A human brain contains billions of neurons, and
they are linked together to form a giant network known as a neural network. ANN is a
mathematical model that simulates structure. In the 1940s, scientists initially mimicked
the most straightforward neuronal modes to establish primitive ANNs. Neurophysicist
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Warren McCulloch and mathematician Walter Pitts (1943) proposed a simple mathe-
matical model of neurons to simulate the computing power of the human brain. Later,
Rosenblatt (1958) presented a perceptron. This is the simplest model of an artificial
neuron, but his approach can only solve the linear problem because the expression of
the two layers is relatively poor. To overcome this limitation, Rumelhart et al. (1986)
extended it to many classes, which can be learned by back-propagation to solve problems
considered indivisible linear.

The model of an artificial neural network with more than two layers is called a multi-
layer perceptron or multi-layer perceptron (MLP) model. In particular, MLP was devel-
oped based on one of the simplest and first machine learning models, the perceptron - a
model used to solve binary classification problems. A general perceptron has the basic
structure shown in figure 2.

2.jpg

Figure 2: Components of an artificial neuron.

The above model is represented by the formula y = f(z). In which, z =
∑n

i=0wixi is
the composite function, f is the activation function, n represents the number of input
variables, xi are the input values, y is the unique output value, wi are the association
weights, usually initialized randomly according to some distribution and are continuously
updated during the learning process. At the first link weight w0 the bias is given with
x0 = 1.

A feedforward neural network is an ANN model in which information moves only in
the forward direction, i.e. from input nodes through hidden nodes to output nodes. The
neurons in each layer will have corresponding weights fully connected to the neurons
in the next layer. Each neuron in any network layer is connected to all neurons in
the preceding layer to refine and optimise the prediction or classification. This type of
network consists of many layers and is shown in Figure 2.

Typically, an ANN model will consist of three layers:

• The input layer will provide and receive input data to the network in vector form;
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2.jpg

Figure 3: The basic structure of the ANN model.

• The hidden layer is in charge of processing the input data by performing multipli-
cations with weights and summing the products, and then sending the results to
the activation function;

• The output layer will return the output data and pass the information to the user.

In it, the activation function determines whether a particular neuron is active or not
to decide whether to continue transmitting data and, if active, how much to transfer.
In addition, the activation function limits the output of a neuron to a specific range of
values. There are two types of activation functions f : linear and nonlinear functions.
Because when MLP uses a linear process, there is always a single-layer network that
is entirely equivalent. It is necessary to use a nonlinear function to take advantage of
the multilayer network so that the model can be adapted to many types of data and
generalizations. This is the difference between single-layer perceptron and multilayer
perceptron.

The data is divided into two parts: training data and test data. The training set is the
data on which the algorithms are applied to train the machine learning model. The test
set is the data used to evaluate the model’s accuracy and has a smaller amount of data
than the training set. If the output of the ANN does not fit the test set, the weights
will be adjusted using gradient descent. This method changes the weights iteratively
through each training data to minimize the loss function. To apply the above method,
it is necessary to calculate the derivative of the loss function according to each weight
matrix w and deviation vector b. The process of adjusting the weights in each layer is
repeated through the formula:

xt+1 = xt − ηf ′(xt) (4)

where xt is the point found after loop t, xt+1 is the point found after loop t+1, η is the
learning rate and f ′(xt) is the derivative at xt. The sign (−) here represents the opposite
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direction of xt+1 compared to the sign of f ′(xt). It is very important to determine the
input data xt and the convergence rate η.

Besides, estimating the derivative value directly requires a lot of computational re-
sources. This harms the algorithm’s performance as it increases the time needed to
process the data, especially with large data sets and high complexity. Therefore, most
algorithms with artificial neural networks use backpropagation to overcome this prob-
lem. Suppose the feedforward process goes in one direction from left to right. In that
case, the backpropagation helps calculate the derivative in the opposite direction from
the last layer to the first layer. The previous layer gets the first derivative because it’s
closest to the output prediction and the loss function. The derivative of the weight
matrices between the aforementioned classes and the deviation vector of the last layer
will be calculated according to the normal series rule for the derivative of the composite
function.

2.2 Research model review

2.2.1 BSM model

The valuation of warrants is a relatively widely studied topic, but the approaches of the
studies are not uniform. The authors have used various models such as GARCH, Black–
Scholes Merton, Brownian, Binomial, etc. Wu et al. (2012) proposed a method for valuing
warrants when the underlying asset follows the GARCH dispersion model. However,
because the GARCH dispersion model is non-linear, it consumes many computational
resources when all must use simulation methods or numerical methods on differential
equations. These processes are computationally intensive, and it is not feasible for
large transaction books to be evaluated quickly and frequently. Therefore, the study
had to use the perturbation method for the partial differential equation (PDE) of the
characteristic function for the underlying asset price, transforming the non-linear PDE
into an approximate linear PDE. An analytical approximation to the European option
price is then derived using the Fourier transform. To estimate the parameters for the
model, the study used the maximum likelihood estimation (ML) method, in which the
likelihood function is determined by using a range-efficient importance sampling (EIS)
Richard and Zhang (2007). Experimental results show that the GARCH dispersion
model has higher initial accuracy than the Black–Scholes model. However, the GARCH
dispersion model consumes too much time and resources in the computation process
compared to the Black–Scholes model.

Aziz et al. (2015) discussed warrant pricing in Malaysia using the Black–Scholes model.
Then, a new study on warrant pricing by binomial model and implied volatility was
further developed by Abd Aziz et al. (2020). Both studies used warrant data listed on the
Bursa Malaysia Exchange and randomly selected from the Mara University of Technology
(UiTM) data line. The parameters related to warrant pricing covered in both papers
are exercise price, interest rate, expiration date and volatility. After the experiment, the
warrant price obtained from the model is compared with the actual price to check the
accuracy and consistency of the model. The mean square values (MSE) obtained from
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the valuation summary table of 4 American-style warrants randomly selected to test the
model are relatively low (0.074% - 0.98%). Abd Aziz et al. (2020) have shown that the
warrant price from the Binomial model is almost the same as the actual price. Therefore,
the Binomial model is one of the methods used for default warrant pricing, although it
was developed for option pricing. In addition, Segara and Sagara (2007) argue that the
basic features of warrants are similar to the options and obligations of the issuer for each
share. Therefore, options pricing models can also calculate warrant prices because of
their similar characteristics. However, the authors do not use the binomial tree model in
this study because the model has some limitations in valuation. A binomial tree model is
only helpful when valuing American-style warrants, while the author’s research object is
European-style warrants (Vietnamese warrants). Moreover, in the binomial tree model,
the underlying property is only likely to be one of two outcomes, but in reality, the value
of that property at any point in time can be any number.

Inheriting the results from previous studies, the authors decided to continue using
the traditional Black–Scholes model to perform the warrant valuation in the Vietnamese
market because this is a popular and variable model for option pricing. Moreover, the
model can be used to price European or American options Aziz et al. (2015). Addi-
tionally, it can be seen that the Black–Scholes model is easier to use and requires fewer
computational resources than other methods.

2.2.2 Machine learning model

Given the sensitive and volatile nature of financial market externalities, using non-
parametric models that do not depend on pre-existing assumptions, such as machine
learning, is expected to increase accuracy when determining the prices of financial prod-
ucts. Since the late 20th century, there have been many studies choosing machine learn-
ing models to evaluate or compare the performance from theoretical point of view (Poo-
jary et al., 2023)and when predicting the prices of different asset classes from crude oil
(Gabralla et al., 2013), real estate (Li et al., 2009), stocks (Kohara et al., 1997; Gururaj
et al., 2019) or closest to the existing research are options prices (Hutchinson et al., 1994;
Garcia and Gençay, 2000).

Choosing a suitable machine learning model is essential to improve the use-value of the
property valuation formula that this thesis is building. It also depends on the efficient
database, the ability to collect relevant information and the auxiliary algorithm used for
the model (Alpaydin, 2020). In this study, in parallel with the traditional Black–Scholes
valuation formula, the authors decided to use the artificial neural network (ANN) model
to build and evaluate the performance when warrant pricing through the data of the
Vietnamese stock market. Some studies show the potential computational efficiency of
ANN compared to other types of machine learning algorithms. The research results
of Kara et al. (2011) show that both models can be considered valuable predictors in
predicting stock price movement, but ANN is superior with an average performance
higher than 75.74% of the Support Vector Machine - SVM algorithm. Madhu et al.
(2021) also used two models, SVM and ANN, to compare the performance of these
algorithms when predicting SPY option prices from the 2015 training dataset. The
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results still favor the ANN model as more optimal than SVM, with minor RMSE error
and predictions closer to the observed market price. In the same year, Ivas,cu (2021)
published a study on call option pricing performance among machine learning models
including ANN, Support Vector Regression, Genetic Algorithms, Decision Tree variant
models Random Forest, XGBoost, LightGBM with two classical methods Blackscholes
and Corrado-su according to historical volatility and implied volatility. The results show
that the machine learning models are better than the traditional models. ANN is only
behind XGBoost and LightGBM overall, with not much difference.

As one of the most commonly used algorithms in machine learning, ANN has been
chosen for use in many valuation performance evaluation studies. Hutchinson et al.
(1994) researched to realize the ability of non-parametric network model training for
option pricing. The same author has compared 3 ANNs algorithms, including Multi-
layer Perceptron (MLP), radial-basis function network (RBF) and projection pursuit
(PPR) regression, with the traditional Black–Scholes formula. Using two input data
variables, the underlying asset’s price normalized to the option’s exercise price and the
expiration time, the ANN artificial neural network model gives a prediction result closer
to the option’s price. The observed market and absolute error are lower than the Black–
Scholes formula with historical volatility. According to Yao et al. (2000), using a back-
propagation neural network to price options on the Nikkei 225 index is more optimal than
Black–Scholes because financial markets are always volatile and changing and not the
same as the specific assumptions made. Estimating a general option pricing formula with
a functional shape similar to the conventional Black–Scholes formula using a feedforward
neural network model is the work of (Garcia and Gençay, 2000). They used two input
variables similar to Hutchinson et al. (1994) for ANN but divided into two variants: the
original ANN and the other is a modified model with a calculation formula called ANN
With Hint.

Besides, instead of choosing another machine learning model as a comparison reference
system, some studies choose to exploit the ANN algorithm more deeply and then make
post-improvement conclusions. Amilon (2003) relied on the MLP model from Hutchinson
et al. (1994) and further developed it compared with the Black–Scholes formula with
historical and implied volatility. Also, they used both the bid and ask price of the call
option on the Swedish stock exchange as input variables instead of the closing price
or the average price. The original MLP model of Guresen et al. (2011) was compared
with two mixed versions called Dynamic Artificial Neural Networks (DAN2) and Hybrid
Neural Networks, which further incorporated the GARCH formula. The conclusion
shows that MLP has more reliable predictive results when predicting stock prices with
minor absolute deviation MAD and mean error MSE than the two models.

Overview of the reviewed studies, the author found that the ANN artificial neural net-
work model is a widely used machine learning algorithm in the topics of asset valuation.
The model’s price prediction results are better than the traditional parameter formulas.
Thanks to its ability to make predictions based on training from real historical data sets,
ANNs do not have to depend on a definite number of variables. They can better adapt
to changes in the market. Moreover, the ability to learn, process and compute data of
ANN has shown superiority compared to other machine learning algorithms. This net-



102 Tam et al.

work formula is constantly being improved in training methods model training, so this
is also a potential model used by the author to evaluate warrant pricing performance.

2.2.3 Comparison of ANN and BS models

For option pricing, it has become quite common to use the ANN model to compare with
a benchmark such as the Black Scholes formula. Theoretically, artificial neural networks
are believed to overcome the characteristic depending on certain variables or specific
assumptions of the parameter formula (Hutchinson et al., 1994). The author finds that
the assumptions made make the Black Scholes formula less applicable in fundamental
financial markets with high volatility. The research results of Yao et al. (2000) also
highlight the possibility of Black Scholes option pricing in a stable and relatively perfect
market, while ANN has more potential for the market and lots of volatility as well as
options with an extensive range of price movements. Therefore, ANNs are increasingly
used to evaluate when the predictions are the result of training the model from the actual
data in the past to find the non-parametric relationship between the models’ input and
output variables so that errors are significantly reduced, and a more accurate pricing
formula is obtained for a volatile market (Obthong et al., 2020).

Recent studies have also shown the advantages of the ANN machine learning model
compared to the traditional Black Scholes model. According to Hutchinson et al. (1994),
although the difference is not too clear, the results of ANN networks, especially MLP,
are closer to the actual observed price. The error when predicting the risk performance
is also smaller than Black Scholes. The author argues that network formulas are a more
practical alternative when the price dynamics of the underlying asset are unknown, or
it is not known exactly what factors will lead to the price difference. Network models
will have several significant advantages over traditional parametric models because they
do not rely on restrictive parametric assumptions such as predictability or sample-path
continuity. Second, they adapt and react to structural changes during data generation
in a way that parametric models do not. Finally, they are flexible enough to include
various derivatives and underlying asset price dynamics.

Amilon (2003) show that the ANN model, specifically MLP, has higher performance in
valuation and hedging. Compared with Black Scholes with historical volatility, MLP’s
RMSE is consistently lower across price segments. For OTM options, Black Scholes
often overvalues the actual price, deviating wildly from the observed data in the market.
Compared with Black Scholes with implied volatility, neural networks typically price
ITM options slightly higher, while Black Scholes price them lower. In general, except
for ITM bids, the mean squared error of ANNs is lower than that of Black Scholes.

The overall results are similar to the study by Gençay and Salih (2003). They demon-
strate that Black Scholes is not suitable for pricing in highly volatile markets, especially
for predicting prices for options, both buy and sell options in the OTM group. Accord-
ing to Stark (2017), although the ANN is not over-predictive for short-term options,
the longer the expiration time, the more stable the prediction results. The prediction
results of ANN in this study are the best in all long-term options. When divided by
moneyness, the group with the slightest error is OTM, then ITM. Whereas Black Scholes
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is only more effective in valuing short-term options and is very likely to overvalue OTM
options, this is the same result of some of the studies mentioned, such as Gençay and
Salih (2003); Amilon (2003).

From the results of the above studies, the artificial neural network model has shown
a superior predictive potential compared to the Black Scholes model. The author can
build a model to predict the warrant price with a minor error, thanks to ANN. Compared
to Black Scholes, ANN ensures a more stable long-term accuracy for prediction results,
avoiding maximally over-priced prediction cases, especially for OTM warrants. Through
judgments based on finding out the relationship between variables, ANN can be devel-
oped into a formula for valuing contracts with a more accurate and faster reference price.
To improve the objectivity of the comparison, the research team uses the input data of
the ANN model similar to the data variables in the formula of the Black Scholes model,
including stock price (S), stock price exercise (K), volatility of the underlying (σ), the
risk-free rate (r), and the time remaining to the expiration date of the warrant (T). After
going through the training process from the given data, the model will provide outputs,
including the forecasted warrant prices, and then evaluate the error of the ANN model
and the Black Scholes formula when comparing the same actual price on the data set.

3 Methodology

3.1 Data

This study uses data on Vietnam warrants collected from finance.vietstock.vn for valua-
tion by machine learning model and compares with the traditional Black Scholes method.
The dataset includes 31,497 observations. Table 1 provides information on descriptive
statistics of 294 warrant codes collected from October 6, 2019, to June 7, 2021, with
different maturities from 3 months to 11 months. And The number of trading days
(TradingDays) is at least 39 days, at most 214 days. Data used for the warrant pricing
machine learning model and the Black Scholes model

Table 1: Description of warrant data

Maturity (Months) TradingDays

No of obs 294 294

Mean 5.629 102.031

Standard Deviation 2.039 43.161

Min 3 39

Median 6 103

Max 11 214
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3.2 Model building

Many empirical studies have shown the effectiveness of random search in optimising
parameters in artificial neural network models (Bergstra and Bengio, 2012; Greff et al.,
2017; Wang et al., 2019). The parameters in a neural network model include the number
of times the data is passed through the network to optimise the loss function (epoch),
about 10 to 1000; neuron activation functions; the number of hidden layers; the number
of neurons in each layer from 2 to 1000. In the backpropagation process to optimise the
loss function, Adam’s algorithm - an optimisation algorithm that combines RMSprop
(friction) and Momentum (momentum), was used (Kingma and Ba, 2014). The Adam
algorithm is widely used and proven to be quite effective with deep learning network
models (Kingma and Ba, 2014; Reimers and Gurevych, 2017; Wang et al., 2019). With
the support of TensorFlow and Keras - popularly used open-source Machine Learning
libraries, the model is built by the team according to the following structure.

The model consists of 1 input data layer (input layer) with some data features of
6, including features taken from the BS model and adding a conversion rate; 4 hidden
layers; and an output layer. Each hidden layer contains 512 neurons, and the team uses
the Rectified Linear Unit - ReLU activation function to transform the calculated result
data. The ReLU function is very effective in training neural network models because
it helps the model train and optimise the loss function faster (Krizhevsky et al., 2012).
Mainly, the output data of the hidden layer is finally used with the Softplus activation
function referenced from Itkin (2019) to produce results in the form of real numbers
greater than 0, ensuring compliance with the warrant price conditions is not negative.
The ReLU and softplus functions have the following formula:

ReLU: y = max(0, z) (5)

where z = wT .X and w is the weight matrix and X is the feature matrix.

Softplus: y = log(1 + ez) (6)

The data will be divided into two parts, the data part for training and the data
part for testing after training is complete (test). During the training process, to avoid
overfitting the model, the group also divides the training set into two more small sets,
the leading training set and the validation set at the rate of 10% training set and the
Early Stopping technique. Early Stopping technique is used to monitor the loss value on
the reinforcement set to avoid the model learning too deeply on the training set (the loss
value is minimal) while on the reinforcement set, what has been known is applied false
again (loss value increases). Suppose it finds that the loss value on the reinforcement
set does not tend to decrease after a few epochs. The model will automatically stop
training and save the weighting value between the classes, making the loss function on
the reinforcement set the minimum to a file for later use on the test set. In addition,
in each iteration (epoch), putting too much data in at the same time will lead to a
significant slowdown in the computational model, so the team uses a smaller number of
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4.jpg

Figure 4: Artificial neural network model .

random samples taken from the training set (batch size) in each epoch to include in the
model is 64.

To construct the loss function between the model output versus the actual value of the
warrant price, the team decided to use Mean square error (MSE) in the back-propagation
process. This loss function is commonly used with many problems, especially with
valuation problems, value prediction, or regression problems. The MSE formula is given
below.

MSE =

∑n
i=1(Predictedi −Actuali)

2

n
(7)

where n is number of observations.

3.3 Research process

Split the dataset: Then divide the above data into two parts, ITM and OTM. The
data section at ITM has 13,953 observations. The data section at OTM has 17,433
observations. Each data set will then be divided into two random training and testing
sets (train and test) with a training rate of 70% and a test rate of 30%. A reinforcement
data set will be extracted a small part from the training set to help the model check
again to avoid overfitting. The training set will include the input variables x of the
machine learning model: the risk-free rate, the closing price of the underlying asset, the
option strike price, the number of days remaining, and the annual stock volatility. Daily
stock price volatility, warrant conversion rate, HOSE matching volume. And an output
variable y is the closing price of the warrant. The test set also has the same input and
output variables.

Standardize the data: During training, the model will use algorithms in the Gra-
dient branch to optimise the weights between classes in the model, thereby minimising
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the loss function. The general Gradient algorithm is to calculate the derivative of the
loss function, then let the variable x go in the opposite direction to the derivative sign
to move towards 0. However, in machine learning models, activation functions are often
used. Machine learning models have high derivative sensitivity for data with too large
numbers. When the data exceeds a specific limit, the derivative will be zero, the Van-
ishing Gradient phenomenon will occur, and the model will not learn well. So before
putting data into the model, we need to structure and normalise the data using different
methods. In this article, my team used Standard Scaler. Before entering the model,
the team used a standardisation technique called Standard Scaler. Standard Scaler is a
method of normalising data. It will recalculate that observation by subtracting it from
the data set’s mean and dividing it by the standard deviation. The formula is given by:

Z =
χ− µ
σ

(8)

Where,

µ =
1

N

N∑
i=1

Xi (9)

and,

σ =

√√√√ 1

N

N∑
i=1

(Xi − µ)2 (10)

Train the model: Next, the research team will use the Early Stopping technique to
prevent the model from overfitting, causing the model to learn by rote and make incor-
rect predictions on the validation data set. After training the machine learning model,
the model’s weight will be saved for evaluation on the test set. After the training is com-
plete, the training set results will be evaluated using the functions MSE, RMSE, MAE,
and MAPE. Use the functions RMSE, MAE, MAPE, and R2 to evaluate the results for
the test set.

Valuation of warrants by machine learning model and BS. Performance eval-
uation: The saved model will evaluate the CW on the test set and compare the results
for y of the test set and y of the Black Scholes model using indicators like RMSE, MAPE,
MAE, and R2. In which RMSE and MAE have units of Vietnam dong (VND), MAPE
and R2 have units of percentage. Accordingly, the model with lower RMSE, MAPE,
MAE and higher R2, that model is better. The formula are as followed:
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Root Mean Squared Error (RMSE): RMSE =

√√√√ 1

N

N∑
i=1

(
Actuali − Predictedi

Actuali

)2

Mean Absolute Percentage Error (MAPE): MAPE =
1

N

N∑
i=1

∣∣∣∣Actuali − Predictedi
Actuali

∣∣∣∣
Mean Absolute Error (MAE): MAE =

1

N

N∑
i=1

|Actuali − Predictedi|

R-squared (R2): R2 = 1−
∑N

i=1(Actuali − Predictedi)
2∑N

i=1(Actuali −Meani)2

4 Results & Discussion

4.1 Descriptive statistics

Table 2 provides descriptive statistics about the independent variables, dependent vari-
ables and control variables for the valuation machine learning model and the Black
Scholes model, including risk-free interest rate (r), the closing price of the asset under-
lying asset (S0), the option strike price (C(S0, t)), days remaining (T ), annual stock
volatility (σ), warrant conversion rate (CR - conversion rate), the closing price of the
warrant (C).

Table 2: Summary of variables used in the model

Mean Standard deviation Min Median Max

r (%) 0.833 0.756 0.259 0.413 3.217

S0 (VND) 57,739.292 37,555.921 2,090 48,150 176,600

K (VND) 56,373.955 39,277.572 7,227 42,000 173,137

T (day) 85.228 62.429 2 72 308

σ 0.322 0.070 0.147 0.326 0.610

CR 4.721 4.475 0.820 3 20

C (VND) 3,752.569 5,251.150 10 1,950 51,400

In addition to the variables available in the Black Scholes model, such as the risk-
free rate, the closing price of the underlying asset, the option strike price, the option’s
expiration date, and the annual stock volatility, the group’s study uses the conversion
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rate variable of warrants to apply to the machine learning model. Since the warrant’s
price is after multiplying the conversion rate, if this variable is missing, the model will
not recognise it and lead to errors in the prediction process.

The dataset consists of 31,197 observations. The risk-free rate ranges from 0.259% to
3.217%. The closing price of the underlying asset with the minimum price from 2,090
(VND) to 176,600 (VND). The exercise price of the call option ranges from 7,227 (VND)
to 173,137 (VND). The number of days waiting to maturity ranges from 2 to 308 days.
The stock fluctuates in a range of 14.7% to 61% annually. The warrant conversion rate
is from 0.82 (times) to 20 (times). The closing price of warrants ranges from 10 (VND)
to 51,400 (VND).

Table 3: Correlation matrix between variables

r S0 K T σ CR C

r 1

S0 -0.046 1

K 0.057 0.920 1

T 0.064 -0.061 0.017 1

σ -0.567 -0.309 -0.377 -0.071 1

CR -0.176 0.649 0.666 0.027 -0.130 1

C -0.081 0.133 -0.066 -0.077 0.060 -0.296 1

Table 3 reflects the correlation of variables through the correlation coefficient. The
analysis results show that the correlation between the warrant closing price variable
ranges from -0.081 to 0.133. The positive correlation between C and S0 shows that the
warrants will have a higher price when the price of the underlying asset increases. It
is worth noting that S0 is highly and positively correlated with K, indicating that the
underlying asset price will increase the exercise price.

4.2 Model results

Between the ANN model and the BS model, we see that the ANN model gives a lower
error level than the BS model on all four indexes. Specifically, we see that ANNs with
RMSE are about 4-5 times lower than BS (400-500 compared to 1800-1900). ANN also
outperforms in MAE and MAPE compared to BS. When ANN’s MAE is only in the
range of 200 and BS is in the field of 900, ANN’s MAPE is less than 20%, while BS is
higher than 40%. ANN’s R2 also gives better results, explaining the volatility of warrant
prices at about 99% compared to only 86 to 89% of the BS model.

Table 5 on the next page shows the detailed results of the effectiveness of the ANN
model and the BS model in each case. Overall, we can see that the ANN model gives
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5.jpg

Figure 5: The average efficiency of the ANN model and BS model

better error results than the BS model. Specifically, in the case of all data, the ANN
model provides RMSE and MAE indexes of VND 417.24 and VND 208.23 compared to
VND 1,913.64 and 980.99 of the BS model. The other two indexes are MAPE and R2 of
the ANN model in case the whole data also gives better results when the MAPE of the
ANN model is only 18.92% while that of the BS model is 46.33%. And the coefficient
of determination R2 of the ANN model is 99.37% compared to only 86.73% of the BS
model. The remaining two cases of the ANN model also give similar results when the
error indexes at absolute values are 3-4 times lower, and the error indexes in percentage
form are also better than those of the other two cases with the BS model.

RMSE (VND) MAE (VND) MAPE (%) R2 (%)

ANN BS ANN BS ANN BS ANN BS

Complete data 417.24 1,913.64 208.23 980.99 18.92 46.33 99.37 86.73

ITM 513.69 1,870.61 283.36 965.30 7.87 45.59 99.32 89.15

OTM 569.89 1,855.55 292.65 973.53 7.91 45.71 99.17 89.32

Table 4: Evaluation results on the training dataset after training

We can see that the results are consistent with the pre-comparisons between the ANN
model and the BS model. Particularly in the pricing of warrants, the ANN model is
superior to the BS model in that it does not follow the assumption that the underlying
asset’s price movement is constant. Moreover, the ANN model can also learn those
volatility characteristics to adjust the model accordingly and provide a more accurate
valuation. In addition, for artificial neural network models in general, before applying
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the model to the test data to verify its effectiveness, the model must undergo training
on the training data trained to be able to adjust the model so that it fits the data the
best. The error is the smallest on the test data set. So that difference also helps the
ANN model give better results than the BS model.

6.jpg

Figure 6: Evaluation of the ANN model in 3 cases

After the training is complete, the model with the best results will be saved and used
on the test set of each warrant case that, according to the author, has divided all data
(case 1), the warrant has ITM status (case 2), and warrants have OTM status (case
3). When using the ANN model in case 1, we see that the error indexes are superior
and better than the other two cases except for MAPE and the reason explained in the
training results section. Specifically, the RMSE of the ANN model in case 1 is worth
about 400 VND, while case 2 is worth more than 500 VND and case 3 is nearly 600
VND. The MAE of the ANN model in the training case on the whole data is lower than
in the other two cases. The coefficient of determination R2 in all 3 cases is about 99%
equal.

Regarding the BS model on the test set divided from the data set according to 3 war-
rant cases, the error criteria of the BS when used in case 1 are lower than in the other
2 cases. Specifically, the RMSE of BS case 1 has an error of 1913.64 VND compared
to 1855.55 VND and 1870.61 VND of OTM and ITM. The MAE of BS case 1 has an
error of about 20-30 VND more than case 2 and case 3 (980.99 compared to 965.30 and
973.53). The MAPE and R2 of case 2 and case 3 are not much different at around 45%.
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7.jpg

Figure 7: Evaluation of BS model in 3 cases

5 Conclusions & Recommendations

This study embarked on this project to scrutinize the effectiveness of the Artificial Neural
Network (ANN) machine learning model and the traditional Black-Scholes (BS) model
in pricing warrants. Through our experiments, we observed that the ANN model outper-
forms the BS model in terms of the error metrics such as RMSE, MAE, MAPE, and R2,
thereby suggesting that the ANN model could serve as a more reliable tool for warrant
pricing.

A key attribute of our study was the decomposition of data into three distinct cases:
complete data, in-the-money (ITM), and out-of-the-money (OTM). This approach al-
lowed us to discern the performance of each model under these different scenarios, pro-
viding valuable insights for investors to make informed investment decisions.

The ANN model was chosen for its proven efficacy in asset valuation projects, superior
computational abilities, and the ability to handle highly variable data, particularly when
normalised. The BS model, on the other hand, is a commonly used method for warrant
pricing due to its simplicity and minimal computational demands.

While the ANN model showed promising results, it is essential to note its limitations.
The model’s performance was less consistent across different cases, which suggests the
need for caution when applying the ANN model to specific situations such as ITM or
OTM warrants. On the contrary, the BS model maintained steady results across all
cases, though its performance was generally inferior to the ANN model.

Despite the promising results, our study has its limitations. The data used was exclu-
sively from Vietnam, which could potentially bias the model’s performance when applied
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to other countries. Practical aspects such as transaction costs, hedging of financial in-
vestments, and additional variables were recognised but not resolved. Furthermore, the
focus was solely on the ANN algorithm, thereby neglecting other potential machine
learning models with superior performance.

Recommendations for future research include the exploration of other machine learn-
ing algorithms, expansion of the research data to encompass other countries, and the
incorporation of real-world factors such as transaction costs into the model. We believe
that these directions can yield further valuable insights and advances in the field of fi-
nance and warrant pricing. Ultimately, our hope is that this study forms a foundation
for more comprehensive and reliable models for warrant pricing in the future, assisting
investors in making informed decisions and mitigating financial risk.
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Gençay, R. and Salih, A. (2003). Degree of mispricing with the black-scholes model and
nonparametric cures. Economics and Finance. Annals, 4:73–101.
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