
Electronic Journal of Applied Statistical Analysis
EJASA, Electron. J. App. Stat. Anal.
http://siba-ese.unisalento.it/index.php/ejasa/index

e-ISSN: 2070-5948
DOI: 10.1285/i20705948v16n3p694

On the Distribution of the Sum of Independent
Exponential-Geometric Random Variables
By AL-Zaydi

15 December 2023

This work is copyrighted by Università del Salento, and is licensed un-
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In this article, we derive exact expressions for the probability density func-
tion and cumulative distribution function of the sum of independent and
non-identical exponential-geometric random variables. Then we discuss the
corresponding result for independent and identically distributed exponential-
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approximate the derived distribution. Finally, numerical simulations are used
to investigate the precision of the saddlepoint approximation.

Keywords: Exponential-geometric distribution, Divided differences, Inde-
pendent and non-identically distributed random variables, Saddlepoint ap-
proximation.

1 Introduction

The exponential-geometric (EG) distribution is a two-parameter distribution with a
decreasing failure rate, was proposed by Adamidis and Loukas (1998) to model life-time
data. This distribution is used in the latent competing risk scenario (Louzada-Neto,
1999), where the lifetime associated with a specific risk is not observable and only the
minimum lifetime value among all risks is observed. The probability density function
(PDF) and the cumulative distribution function (CDF) of the EG distribution are given
as

f(x) =
β(1− p)e−βx

(1− p e−βx)2
, x > 0, β > 0, 0 < p < 1, (1)
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F (x) =
1− e−βx

1− p e−βx
, x > 0, β > 0, 0 < p < 1, (2)

where β is the scale parameter and p is the shape parameter. When p approaches zero,
this distribution tends to an exponential distribution with the parameter β.
Using the series expansion

(1− z)−k =
∞∑
j=0

Γ(k + j)

Γ(k)j!
zj , |z|< 1, k > 0,

we can rewrite (1) as

f(x) = (1− p)
∞∑
j=0

pjβ(j + 1)e−β(j+1)x. (3)

According to (3), the EG distribution is an infinite mixture of the exponential distribu-
tion. The moment generating function (MGF) of the EG distribution can be derived by
integration as

MX(t) = (1− p)B(1− t

β
, 1) 2F1(2, 1−

t

β
; 2− t

β
; p), (4)

where B(. , .) is the beta function. We know that 2F1(a, b; c; x) is the hypergeometric
function defined by

2F1(a, b; c; x) =
∞∑
j=0

(a)j(b)j
(c)j

xj

j!
,

where (v)j = v(v + 1) · · · (v + j − 1) denotes the ascending factorial (Gradshteyn and
Ryzhik, 2014).
Therefore, we can write Equation (4) as

MX(t) = (1− p)

∞∑
j=0

pj
(

β(j + 1)

β(j + 1)− t

)
. (5)

For more details on the EG distribution, see Adamidis and Loukas (1998) and Balakr-
ishnan et al. (2015).
Sums of random variables appear naturally in many applied fields, including commu-

nications and computer science, insurance and reliability, and performance evaluation,
to name a few. Numerous researchers have derived and approximated the distribution of
the sum of random variables for different distributions. For example, Mathai (1982) ob-
tained the distribution of the sum of independent and non-identically distributed gamma
random variables. Moschopoulos (1985) provided the expression of a single gamma
series whose coefficients are computed using simple recursive relations. Additionally,
Van Khuong and Kong (2006) obtained the PDF of the sum of independent exponential
random variables using the characteristic function. Sadooghi-Alvandi et al. (2009) ob-
tained the distribution of the sum of independent and non-identically distributed uniform
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random variables using a relatively simple approach. Recently, Kitani and Murakami
(2020) obtained the exact distribution of the sum of independent and non-identically
distributed extended exponential random variables. Levy (2021, 2022) used a divided
difference perspective to find the density for the sums of independent Mittag-Leffler,
exponential, Erlang, and gamma variates. Furthermore, Kitani et al. (2023) derived
the distribution of the sum of independent and non-identically distributed generalized
Lindley random variables. The PDFs for the sum of n independent random variables
for Shanker, Akash, Ishita, Pranav, Rani, and Ram Awadh distributions were derived
by Yaghoubi (2022) using the change-of-variables technique.

Saddlepoint approximation (SA) is an efficient method for approximating the distri-
bution of a random variable if its cumulant generating function (CGF) is known. Several
researchers have used the SA with great success. For example, Murakami (2014) and
Nadarajah et al. (2015) considered the use of the SA for the sum of independent and
non-identically distributed uniform and beta random variables, respectively. Murakami
(2015) discussed the use of the SA for the sum of independent and non-identically dis-
tributed gamma random variables. More recently, Kitani and Murakami (2020) and
Kitani et al. (2023) gave the approximation for the distribution of the sum of inde-
pendent and non-identically distributed extended exponential and generalized Lindley
random variables, respectively.

In this paper, we present the distribution of the sum of independent EG random
variables with distinct parameters as well as identical parameters. We use a similar
procedure to that used in Levy (2022) to determine this distribution. The distribution
of the sum of independent exponential random variables is also discussed as a special
case. In addition, we discuss the approximate distribution using the SA. Furthermore,
we compare the findings of a SA against those of a normal approximation (NA) to
determine the best method to use for the distribution function.

The remainder of this paper is organized as follows: In Section 2, we provide some
preliminaries that are required in the subsequent sections. In Section 3, we derive the
exact PDF and CDF of the sum of independent and non-identically distributed EG
random variables. Section 4 provides the exact PDF and CDF of the sum of independent,
identically distributed EG random variables. The MGF for the sum of independent EG
random variables is obtained in Section 5. In Section 6, we discuss the SA and present
numerical results. Finally, a conclusion is given in Section 7.

2 Preliminaries

2.1 Newton’s divided differences

For a function f(.) defined at distinct points a1, ..., an, the (n − 1)th-order divided dif-
ference is denoted by f [a1, ..., an] and is defined by the recurrence relation:

f [a1, ..., an] =
f [a2, ..., an−1, an]− f [a1, ..., an−2, an−1]

an − a1
, (6)
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with f [a] = f(a).
If a1 = ... = an = a, f [a1, ..., an] is interpreted by its confluent form:

f [a, ..., a] =
1

(n− 1)!
f (n−1)(a),

assuming the derivative exists.
The divided difference f [a1, ..., an] can be expressed using Lagrange polynomials as fol-
lows:

f [a1, ..., an] =

n∑
j=1

f(aj)∏n
κ=1,κ̸=j(aj − aκ)

. (7)

Examining (7) demonstrates that f [a1, ..., an] is a symmetric function of its arguments,
and thus the calculations are invariant to permutations in the order of its arguments; for
example, f [a1, a2, a3] = f [a2, a3, a1]. For a good introduction to the divided difference,
see, for instance, Atkinson (1991).

2.2 Lemmas

We shall use the following lemmas to prove some of the paper’s findings.

Lemma 1. For any n > 1 distinct points a1, ..., an we have

n∑
j=1

1∏n
κ=1,κ ̸=j(aj − aκ)

≡ 0. (8)

Lemma 2. For distinct values a1, ..., an and t ∈ ℜ, the decomposition of the rational
function,

U(t) =
1∏n

κ=1(aκ − t)
,

as a sum of partial fractions, gives

1∏n
κ=1(aκ − t)

=

n∑
j=1

1

(aj − t)
∏n

κ=1,κ̸=j(aκ − aj)
.

(See Levy (2022), Lemma 3.1, and Lemma 3.2.)

2.3 The distribution of the sum of independent exponential random
variables

The sum of n independent exponential random variables with pairwise distinct param-
eters, βi, i = 1, ..., n, respectively, has the hypo-exponential density, fn(s), given by

fn(s) =

(
n∏

i=1

βi

)
n∑

j=1

e−βjs∏n
κ=1,κ ̸=j(βκ − βj)

, s ≥ 0, (9)
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see, for example Ross (2014).
Levy (2022) demonstrates that Equation (9) can be determined and expressed more
succinctly using a divided difference interpretation, as shown below:

fn(s) =

(
n∏

i=1

βi

)
e[−β1, ...,−βn], s ≥ 0, (10)

where e[−β1, ...,−βn] is the (n−1)th-order divided difference for the function e(a) = eat

at points −β1, ...,−βn.
When n independent exponential random variables have identical parameters, their sum
has the Erlang distribution with parameters (n, β); see Akkouchi (2008).

3 The distribution of the sum of independent EG variables
with different parameters

In this section, we derive the exact distribution of the sum of n independent and non-
identically distributed EG random variables.
Assume that X1 and X2 are independent EG random variables with parameters (pi, βi),
i = 1, 2 and where βi ̸= βj , pi ̸= pj when i ̸= j. Then the density function for the sum
S2 = X1 +X2, f2(s), can be found as follows:

f2(s) =

∫ s

0
fX1(x1)fX2(s− x1)dx1

=

(
2∏

i=1

1− pi

) ∞∑
j1=0

∞∑
j2=0

(
2∏

i=1

pjii βi(ji + 1)

)

×
∫ s

0
e−β1(j1+1)x1e−β2(j2+1)(s−x1)dx1

=

(
2∏

i=1

1− pi

) ∞∑
j1=0

∞∑
j2=0

(
2∏

i=1

pjii βi(ji + 1)

)

×e−β2(j2+1)s

∫ s

0
e−(β1(j1+1)−β2(j2+1))x1dx1

=

(
2∏

i=1

1− pi

) ∞∑
j1=0

∞∑
j2=0

(
2∏

i=1

pjii βi(ji + 1)

)

×

(
e−β2(j2+1)s − e−β1(j1+1)s

β1(j1 + 1)− β2(j2 + 1)

)
,
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by using (7), we get

f2(s) =

(
2∏

i=1

1− pi

) ∞∑
j1=0

∞∑
j2=0

(
2∏

i=1

pjii βi(ji + 1)

)
×e[−β1(j1 + 1),−β2(j2 + 1)], (11)

where e(a) = eas at points −β1(j1 + 1),−β2(j2 + 1).

Proposition 1. Let X1, · · · , Xn be independent EG random variables with parameters
(pi, βi), i = 1, · · · , n, and where βi ̸= βj , pi ̸= pj when i ̸= j. Then, the density function
of Sn =

∑n
i=1Xi is given by

fn(s) =

(
n∏

i=1

1− pi

) ∞∑
j1=0

∞∑
j2=0

· · ·
∞∑

jn=0

(
n∏

i=1

pjii βi(ji + 1)

)
×e[−β1(j1 + 1), · · · ,−βn(jn + 1)], s > 0. (12)

Proof. We prove it using mathematical induction. For n = 1, Equation (12) is trivially
true. Assuming that (12) at n− 1 is true, we examine the density for Sn = Sn−1 +Xn,

fn(s) =

∫ s

0
fn−1(s− xn)fXn(xn)dxn. (13)

Using Equation (3) and Equation (12) in Equation (13), we get

fn(s) =

(
n∏

i=1

1− pi

) ∞∑
j1=0

∞∑
j2=0

· · ·
∞∑

jn=0

(
n∏

i=1

pjii βi(ji + 1)

)

×
∫ s

0
e[−β1(j1 + 1), · · · ,−βn−1(jn−1 + 1)]e−βn(jn+1)xndxn. (14)

Now using (7), we obtain

fn(s) =

(
n∏

i=1

1− pi

) ∞∑
j1=0

∞∑
j2=0

· · ·
∞∑

jn=0

(
n∏

i=1

pjii βi(ji + 1)

)

×
∫ s

0

(
n−1∑
ν=1

e−βν(jν+1)(s−xn)∏n−1
κ=1,κ̸=ν βκ(jκ + 1)− βν(jν + 1)

)
e−βn(jn+1)xndxn

=

(
n∏

i=1

1− pi

) ∞∑
j1=0

∞∑
j2=0

· · ·
∞∑

jn=0

(
n∏

i=1

pjii βi(ji + 1)

)

×
n−1∑
ν=1

e−βν(jν+1)s

∫ s

0

e−(βn(jn+1)−βν(jν+1))xn∏n−1
κ=1,κ̸=ν βκ(jκ + 1)− βν(jν + 1)

dxn. (15)
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By integration and simplifying the resulting expression, we find that

fn(s) =

(
n∏

i=1

1− pi

) ∞∑
j1=0

∞∑
j2=0

· · ·
∞∑

jn=0

(
n∏

i=1

pjii βi(ji + 1)

)

×

{
n−1∑
ν=1

e−βν(jν+1)s∏n
κ=1,κ ̸=ν βκ(jκ + 1)− βν(jν + 1)

−
n−1∑
ν=1

e−βn(jn+1)s∏n
κ=1,κ̸=ν βκ(jκ + 1)− βν(jν + 1)

}
.

(16)

From Lemma 1, we have

n∑
ν=1

1∏n
κ=1,κ ̸=ν βκ(jκ + 1)− βν(jν + 1)

=
n−1∑
ν=1

1∏n
κ=1,κ̸=ν βκ(jκ + 1)− βν(jν + 1)

+
1∏n−1

κ=1 βκ(jκ + 1)− βn(jn + 1)
= 0.

(17)

Using (17) in (16), we obtain

fn(s) =

(
n∏

i=1

1− pi

) ∞∑
j1=0

∞∑
j2=0

· · ·
∞∑

jn=0

(
n∏

i=1

pjii βi(ji + 1)

)

×

{
n−1∑
ν=1

e−βν(jν+1)s∏n
κ=1,κ ̸=ν βκ(jκ + 1)− βν(jν + 1)

+
e−βn(jn+1)s∏n−1

κ=1 βκ(jκ + 1)− βn(jn + 1)

}
.

fn(s) =

(
n∏

i=1

1− pi

) ∞∑
j1=0

∞∑
j2=0

· · ·
∞∑

jn=0

(
n∏

i=1

pjii βi(ji + 1)

)

×

(
n∑

ν=1

e−βν(jν+1)s∏n
κ=1,κ̸=ν βκ(jκ + 1)− βν(jν + 1)

)
, (18)

now, using (7) in (18), we get

fn(s) =

(
n∏

i=1

1− pi

) ∞∑
j1=0

∞∑
j2=0

· · ·
∞∑

jn=0

(
n∏

i=1

pjii βi(ji + 1)

)
×e[−β1(j1 + 1), · · · ,−βn(jn + 1)], s > 0.

Thus, fn(s) is true whenever fn−1(s) is true. Hence, by the principle of mathematical
induction, fn(s) is true for all n ≥ 2.
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Remark 1. When pi = 0, i = 1, · · · , n, Equation (12) is reduced to the density for
the sum of independent exponential random variables with distinct parameters, βi, i =
1, · · · , n, which is equivalent to Levy (2022) as in Equation (10).

Proposition 2. The CDF of the sum of independent and non-identically distributed EG
random variables is given by

Fn(s) = 1−

(
n∏

i=1

1− pi

) ∞∑
j1=0

∞∑
j2=0

· · ·
∞∑

jn=0

(
n∏

i=1

pjii

)

×

(
n∑

ν=1

ψν,n e−βν(jν+1)s

)
, (19)

where ψν,n =
∏n

κ=1,κ ̸=ν
βκ(jκ+1)

βκ(jκ+1)−βν(jν+1) .

Proof. The CDF of Sn is easily derived from its PDF, which is given in (12) as

Fn(s) = P (Sn ⩽ s)

=

∫ s

0
fn(z)dz

=

(
n∏

i=1

1− pi

) ∞∑
j1=0

∞∑
j2=0

· · ·
∞∑

jn=0

(
n∏

i=1

pjii βi(ji + 1)

)

×

(
n∑

ν=1

∫ s
0 e

−βν(jν+1)zdz∏n
κ=1,κ̸=ν βκ(jκ + 1)− βν(jν + 1)

)

=

(
n∏

i=1

1− pi

) ∞∑
j1=0

∞∑
j2=0

· · ·
∞∑

jn=0

(
n∏

i=1

pjii

)

×
n∑

ν=1

ψν,n

(
1− e−βν(jν+1)s

)
. (20)

From Smaili et al. (2013), Corollary 2,

n∑
ν=1

ψν,n = 1. (21)

Now, using (21) in (20) and simplifying, we get (19).

4 The distribution of the sum of independent EG variables
with identical parameters

By substituting pi = p and βi = β, i = 1, · · · , n, into propositions 1 and 2, we obtain
the PDF and CDF of the sum of independent and identically distributed EG random
variables as shown in corollaries 1 and 2.
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Corollary 1. The PDF of the sum of independent and identically distributed EG random
variables is expressed as

fn(s) = (1− p)nβn
∞∑

j1=0

∞∑
j2=0

· · ·
∞∑

jn=0

pφ

(
n∏

i=1

(ji + 1)

)
×e[−β(j1 + 1), · · · ,−β(jn + 1)], s > 0, (22)

where φ =
∑n

i=1 ji.

Remark 2. For p = 0, we get the density for the sum of independent exponential random
variables with identical parameters as

fn(s) = βne[−β, · · · ,−β]

= βn
e(n−1)(−β)
(n− 1)!

=
βnsn−1e−βs

(n− 1)!
, (23)

as obtained by Levy (2022).

Corollary 2. The CDF of the sum of independent and identically distributed EG random
variables is expressed as

Fn(s) = 1− (1− p)n
∞∑

j1=0

∞∑
j2=0

· · ·
∞∑

jn=0

pφ

(
n∑

ν=1

ψν,n e−βν(jν+1)s

)
, (24)

where ψν,n =
∏n

κ=1,κ̸=ν
(jκ+1)

(jκ+1)−(jν+1) .

5 The MGF for the sum of independent EG random
variables

In this section, we obtain the MGF for the sum of independent EG random variables
with distinct parameters.

Proposition 3. Suppose Xi, i = 1, · · · , n are independent EG random variables with
parameters (pi, βi). Then, the MGF of Sn =

∑n
i=1Xi is given by

MS(t) =

(
n∏

i=1

1− pi

) ∞∑
j1=0

∞∑
j2=0

· · ·
∞∑

jn=0

(
n∏

i=1

pjii
βi(ji + 1)

βi(ji + 1)− t

)
. (25)

Proof. The MGF for the sum of independent and non-identically distributed EG random
variables is defined as

MS(t) = E[ets] =

∫ ∞

0
etsfn(s)ds. (26)



Electronic Journal of Applied Statistical Analysis 703

By substituting for fn(s) from (12) into (26), we get

MS(t) =

(
n∏

i=1

1− pi

) ∞∑
j1=0

∞∑
j2=0

· · ·
∞∑

jn=0

(
n∏

i=1

pjii βi(ji + 1)

)

×
∫ ∞

0
etse[−β1(j1 + 1), · · · ,−βn(jn + 1)]ds. (27)

Using (7) in (27), we obtain

MS(t) =

(
n∏

i=1

1− pi

) ∞∑
j1=0

∞∑
j2=0

· · ·
∞∑

jn=0

(
n∏

i=1

pjii βi(ji + 1)

)

×

(
n∑

ν=1

∫∞
0 e−(βν(jν+1)−t)sds∏n

κ=1,κ ̸=ν βκ(jκ + 1)− βν(jν + 1)

)

=

(
n∏

i=1

1− pi

) ∞∑
j1=0

∞∑
j2=0

· · ·
∞∑

jn=0

(
n∏

i=1

pjii βi(ji + 1)

)

×

(
n∑

ν=1

1

(βν(jν + 1)− t)
∏n

κ=1,κ̸=ν βκ(jκ + 1)− βν(jν + 1)

)
. (28)

Now, using Lemma 2, we get the result.

Remark 3. When pi = 0, i = 1, · · · , n, the MGF (25) is reduced to the MGF for the
sum of independent exponential random variables with non-identical parameters.

6 Numerical results

In Section 3, we obtained the exact CDF of the sum of independent and non-identically
distributed EG random variables. However, as the number of random variables increases,
it becomes more difficult to calculate the exact probability. Hence, we need to estimate
the probability using an approximation method. In this section, we used the SA proposed
by Daniels (1954, 1987) and developed by Lugannani and Rice (1980).
Let Xi, i = 1, · · · , n be independent EG random variables with parameters (pi, βi), and
Sn =

∑n
i=1Xi denote the sum. The MGF and CGF of Sn are given by

MS(t) =
n∏

i=1

MXi(t), (29)

and

K(t) = logMS(t)

=

n∑
i=1

log(1− pi) +
n∑

i=1

logλ(t, pi, βi), (30)
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respectively, where λ(t, pi, βi) =
∑∞

j=0 p
j
i (1−

t
βi(j+1))

−1.

The first two derivatives of K(t) with respect to t are

K
′
(t) =

n∑
i=1

λ
′
(t, pi, βi)

λ(t, pi, βi)
, (31)

K
′′
(t) =

n∑
i=1

λ
′′
(t, pi, βi)

λ(t, pi, βi)
−

(
λ

′
(t, pi, βi)

λ(t, pi, βi)

)2
 , (32)

where λ
′
(t, pi, βi) =

∑∞
j=0

pji
βi(j+1)(1 −

t
βi(j+1))

−2, and λ
′′
(t, pi, βi) =

∑∞
j=0

2pji
(βi(j+1))2

(1 −
t

βi(j+1))
−3.

According to Lugannani and Rice (1980), the SA of the CDF of Sn is as follows:

FS(x) = Φ(ŵ) + ϕ(ŵ)(ŵ−1 − v̂−1) +O(n−
3
2 ), (33)

where ϕ(.) and Φ(.) are the PDF and CDF of a standard normal distribution, respec-
tively,

ŵ = sgn(ŝ){2[ŝ x−K(ŝ)]}
1
2 ,

v̂ = ŝ{K ′′
(ŝ)}

1
2 ,

where sgn(ŝ) = +1,-1 or 0, depending on whether ŝ is positive, negative or zero; and ŝ
is the root of K

′
(s) = x which is solved numerically by the Newton-Raphson algorithm.

Here, we assumed that pi and βi for n = 2, 3, and 5 as follows:
Case I: pi simulated from the beta distribution Beta(1.6, 2.1) and βi simulated from the
uniform distribution U(0, 3)

� n=2:
pi = (0.83622, 0.03969), βi = (2.29192, 2.41286).

� n=3:
pi = (0.35209, 0.16908, 0.45529), βi = (2.86754, 2.10982, 2.51217).

� n=5:
pi = (0.20888, 0.05032, 0.78634, 0.54273, 0.68281),
βi = (1.72461, 2.4519, 2.58802, 2.38057, 2.08476).

Case II: pi simulated from the beta distribution Beta(1.2, 2.3) and βi simulated from
the gamma distribution Gamma(2, 1.5)

� n=2:
pi = (0.06627, 0.22026), βi = (2.28903, 2.98899).

� n=3:
pi = (0.64500, 0.05876, 0.30688), βi = (2.54877, 3.73808, 2.10423).
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� n=5:
pi = (0.47353, 0.72432, 0.59492, 0.09691, 0.22232),
βi = (1.19819, 1.86453, 3.06197, 1.82964, 2.48412).

Case III: pi simulated from the beta distribution Beta(1.6, 2.1) and βi simulated from
the Exponential distribution Exponential(0.13)

� n=2:
pi = (0.29076, 0.12463), βi = (30.347, 3.26497).

� n=3:
pi = (0.65733, 0.08973, 0.11112), βi = (14.8452, 5.98085, 4.92978).

� n=5:
pi = (0.19850, 0.17897, 0.12182, 0.32765, 0.34383),
βi = (5.71698, 6.13874, 12.2445, 8.26087, 10.1468).

In Tables 1-3, ŝ is a percentile derived from 106 random numbers generated by Sn,
and P is the corresponding probability. In the tables, r.e. represents the relative error
between the approximation and P , and FM is the approximate CDF, which is truncated
in the infinite series in Equation (19) after M + 1 terms. Moreover, FS and FN are
the saddlepoint CDF from (33) and the NA, respectively. All computations here were
conducted using Mathematica version 12. Tables 1, 2, and 3 demonstrate that the
relative error for SA is always less than that for NA and that the relative errors decrease
as P increases in general.

7 Conclusion

In this paper, we have obtained the exact distribution of the sum of independent and
non-identically distributed EG random variables. We have also discussed the case of
identically distributed EG random variables. Additionally, we have provided the ap-
proximate distribution by using the SA. Numerical results demonstrated that the SA
outperformed the NA in terms of accuracy, and the SA is suitable for the CDF. The
future challenge is to obtain the distribution of the sum of independent EG random
variables when some of the parameters are identical and others are not.
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Table 1: Numerical results for Case I

ŝ P FM FN FS r.e.FN r.e.FS

n = 2

0.5362 0.6000 0.6002 0.4796 0.6017 0.2006 0.0029

0.6750 0.7000 0.7006 0.5941 0.7012 0.1512 0.0018

0.8668 0.8000 0.8004 0.7383 0.8003 0.0772 0.0004

1.1904 0.9000 0.9002 0.9053 0.8997 0.0059 0.0004

1.5096 0.9500 0.9500 0.9760 0.9495 0.0274 0.0006

1.8260 0.9750 0.9749 0.9958 0.9745 0.0214 0.0005

2.2458 0.9900 0.9900 0.9998 0.9898 0.0099 0.0002

n = 3

1.0149 0.6000 0.6000 0.5097 0.6002 0.1505 0.0003

1.2043 0.7000 0.7002 0.6249 0.7002 0.1073 0.0002

1.4547 0.8000 0.7999 0.7602 0.7998 0.0497 0.0002

1.8588 0.9000 0.9000 0.9090 0.9000 0.0100 0.0000

2.2448 0.9500 0.9501 0.9734 0.9502 0.0247 0.0002

2.6199 0.9750 0.9752 0.9941 0.9753 0.0196 0.0003

3.0981 0.9900 0.9901 0.9994 0.9901 0.0095 0.0001

n = 5

1.6562 0.6000 0.6021 0.5227 0.6003 0.1288 0.0005

1.9088 0.7000 0.7011 0.6362 0.6998 0.0911 0.0003

2.2396 0.8000 0.8005 0.7673 0.7998 0.0409 0.0003

2.7592 0.9000 0.8997 0.9081 0.8994 0.0090 0.0007

3.2479 0.9500 0.9496 0.9708 0.9496 0.0219 0.0004

3.7175 0.9750 0.9747 0.9925 0.9748 0.0180 0.0002

4.3182 0.9900 0.9899 0.9991 0.9899 0.0092 0.0001
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Table 2: Numerical results for Case II

ŝ P FM FN FS r.e.FN r.e.FS

n = 2

0.7154 0.6000 0.6002 0.4990 0.6008 0.1684 0.0014

0.8707 0.7000 0.6999 0.6139 0.7004 0.1230 0.0006

1.0806 0.8000 0.7999 0.7531 0.8004 0.0587 0.0005

1.4232 0.9000 0.8999 0.9080 0.9003 0.0089 0.0003

1.7525 0.9500 0.9498 0.9743 0.9501 0.0256 0.0001

2.0759 0.9750 0.9749 0.9947 0.9751 0.0202 0.0001

2.5007 0.9900 0.9901 0.9996 0.9901 0.0097 0.0001

n = 3

0.8822 0.6000 0.6003 0.5038 0.6024 0.1603 0.0039

1.0513 0.7000 0.7003 0.6176 0.7019 0.1177 0.0026

1.2791 0.8000 0.8006 0.7547 0.8014 0.0566 0.0017

1.6504 0.9000 0.9003 0.9075 0.9005 0.0083 0.0006

2.0120 0.9500 0.9504 0.9741 0.9504 0.0254 0.0004

2.3608 0.9750 0.9750 0.9945 0.9750 0.0200 0.0000

2.8147 0.9900 0.9899 0.9995 0.9899 0.0096 0.0001

n = 5

1.9803 0.6000 0.6002 0.5180 0.6031 0.1366 0.0051

2.2854 0.7000 0.7002 0.6308 0.7032 0.0989 0.0046

2.6863 0.8000 0.8001 0.7622 0.8028 0.0472 0.0035

3.3326 0.9000 0.9004 0.9075 0.9021 0.0083 0.0023

3.9426 0.9500 0.9500 0.9715 0.9509 0.0226 0.0009

4.5500 0.9750 0.9753 0.9934 0.9757 0.0189 0.0007

5.3358 0.9900 0.9902 0.9994 0.9903 0.0095 0.0003
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Table 3: Numerical results for Case III

ŝ P FM FN FS r.e.FN r.e.FS

n = 2

0.2867 0.6000 0.6006 0.4635 0.6026 0.2275 0.0043

0.3708 0.7000 0.7006 0.5757 0.7011 0.1776 0.0015

0.4909 0.8000 0.8005 0.7239 0.7999 0.0951 0.0001

0.6989 0.9000 0.9003 0.9021 0.8994 0.0023 0.0006

0.9092 0.9500 0.9502 0.9773 0.9496 0.0287 0.0004

1.1182 0.9750 0.9749 0.9966 0.9746 0.0221 0.0005

1.4018 0.9900 0.9901 0.9999 0.9899 0.0100 0.0001

n = 3

0.3920 0.6000 0.6000 0.5059 0.6009 0.1569 0.0015

0.4680 0.7000 0.6997 0.6202 0.7004 0.1139 0.0005

0.5691 0.8000 0.7994 0.7563 0.7998 0.0546 0.0002

0.7333 0.9000 0.8994 0.9074 0.8996 0.0082 0.0004

0.8925 0.9500 0.9499 0.9736 0.9501 0.0248 0.0001

1.0454 0.9750 0.9748 0.9942 0.9749 0.0197 0.0001

1.2452 0.9900 0.9900 0.9995 0.9900 0.0096 0.0000

n = 5

0.5784 0.6000 0.6001 0.5293 0.6010 0.1179 0.0016

0.6591 0.7000 0.6998 0.6421 0.7006 0.0828 0.0009

0.7634 0.8000 0.7994 0.7701 0.8000 0.0373 0.0000

0.9275 0.9000 0.8995 0.9083 0.8999 0.0092 0.0001

1.0807 0.9500 0.9497 0.9701 0.9499 0.0211 0.0001

1.2299 0.9750 0.9751 0.9922 0.9752 0.0177 0.0002

1.4187 0.9900 0.9901 0.9990 0.9902 0.0091 0.0002
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