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This paper proposes the use of the adaptive estimation method for esti-
mating the periodic regression parameters in short panel data. This will go
through three phases. The first phase aims to show that the periodic re-
gression model verifies the Uniform Local Asymptotic Normality (ULAN),
the second phase focuses on constructing the local asymptotically Minimax
(LAM) estimators, and the last phase deals with constructing the Adaptive
Estimators (AE) of the periodic regression model using the results of phase
one and phase two. The results obtained in the simulation show that the
Adaptive Estimator is always better than the Least Squares Estimator. The
AE is more efficient in the case of an asymmetric score function. Real data
are used to compare the two methods and show that the periodic coeffi-
cient regression model outperforms both traditional regression and random
regression models.

keywords: Periodic regression model, Panel data, Locally asymptotically
minimax estimators, Uniform local asymptotic normality, Adaptive estima-
tors.

1 Introduction

The adaptive estimation method has been treated and used by many authors. Kreiss
(1987) has got adaptive estimators for the autoregressive moving average (ARMA)
model. Linton (1993) has dealt with adaptive estimators for a regression model with the
errors following the ARCH process. Ling (2003) constructed adaptive estimators for the
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ARFIMA model with GARCH errors. Allal and El Melhaoui (2006) proposed adaptive
rank tests for linear regression models with autoregressive moving average errors. Ben-
tarzi et al. (2009) gave adaptive estimators for the periodic autoregressive (PAR) model.
The construction of the adaptive estimator relies on the derivation of the local asymp-
totically Minimax estimator. This was adopted by Fabian and Hannan (1982), who
established a sufficient condition that Kreiss (1987) used in his derivation of LAM esti-
mators in the ARMA model.

The application of periodic models in econometric modeling is also demonstrated by
their excellent performance in a variety of applications. Environmental and meteorol-
ogy studies are other application areas where periodic models show great promise, see
Ghysels (1994); Franses and Paap (1994). In some real data, the periodic models may
be suited better than random models which proposed by many authors such as, Beran
et al. (1996); Akharif et al. (2020); Ou Larbi et al. (2021); Goto et al. (2023); Regui
et al. (2024).

The present paper focuses on obtaining, using the ULAN property satisfied by a periodic
regression model, an adaptive estimator of the parameters of a periodic regression model
in short panel data.

This article is organized as follows. In the next section, we introduce notations, defini-
tions, and assumptions, which we need for the following sections. In section 3, we show
that the periodic regression model satisfies the Uniform Local Asymptotic Normality
(ULAN) property, see Fihri et al. (2020); Lmakri et al. (2020); Regui et al. (2024). In
section 4, we derive Locally Asymptotically Minimax (LAM) estimators. All of these
results are used in section 5 for getting the Adaptive Estimator (AE) of parameters of
the periodic regression model. Section 6 shows the performance of the adaptive esti-
mation method and compare it with the Least Squares Estimation (LSE) method. The
final section studies two real data sets to compare the adaptive estimation method with
the least squares estimation method and to compare periodic coefficient regression with
traditional regression and random regression models.

2 Notations, Definitions and main assumptions

2.1 Definitions and notations

We consider the following periodic regression model with period S in short panel data:

1
Vit = o+ Bsit + €it, i1=1,..,n, t=1,...T, s=i—.8 [S] , (1)

where [x] denotes the largest integer less than or equal tox and {€;¢, i =1,...,n,t =1,...,T}
are independent and identically distribution, f, with mean zero and variance o,2. The
regression parameters f3;, i = 1,...,n and the variance o;? are periodic in i, with period

S ie. /Bz = ,BZJF[%]S ar.ld.af.: 0’2i+[é]$ for i = 1,...,77,. .

Assume that n multiplications of S i.e. n = Sm. Let i = s+ Sr, s = 1,...,5 and
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r =0,...,m — 1. The model (1) takes the following form:

yWe =t Bl el s =108 r=0,om—1, t=1,...T. (2

We consider § = (,u,oj,ﬁ,) where 02 = (02, ...,O‘%)/ and 8 = (B, ..., Bs) and let IP’(}

the probability distribution of (yﬁ), - ynnl), e ygnr}, - yfln:)r)

)

—1
Let K(n) = (M(n)> P fors=1 ,eeey S With

I
/

n n 712/ n’ n n n/ n/
Ms( )_mT Z E$3+Srtv ) = <1u( )70-() 7B( )) ,7_( ) = ()\( ),’Y(),h( )) where

r=0 t=1

A1) = (7("), ,72”)) , h(™ (hgn), ...,hgn)>/, 7 70 < 00 and

1 01><S 01><S

v = | 0gx1 Isxs Osxs
Osx1 Osxs Kggs
with
K" 0 0
(n)
Kgys = 0 0
0 K

Note that the density of {es15r¢t s =1,...,5, r=0,...m—1, t =1,...,T}is f(esysrt) =
1 f (55+S7‘t)

Os

2.2 Main assumptions

Assumption(A)

Aa) ¢f = —ﬁ with f; € C! and f{ the first derivative of fj.

A.b) Assume that I4(f1) = fqbfl z) fi(x)dr < oo, Ju(f1) : fa:2¢f1 z)fi(z)dr < oo

and Ky(f1) : fa:qﬁf fi(z)dz < .

Assumption(B)

-1
B.a) lim M(n) M for s =1,..., S, note that lim Ks(n):Ks:MSZ.

n—>-+o0o n—>-+o0o

m T
B.b) For s =1,...,5, 75 = # >3 ZTsysrt = 0.

r=0 t=1
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3 Uniform Local Asymptotic Normality

Let P}T) = {P(H)Q, g : (u,B) e RSt and 02>0s=1, ...,S} be a sequence of hy-
[ 221V AR B}

potheses under which we suppose that {ygi)sm’ t=1,...,T,r=0,...m—1,s=1, ...,S}

verifies (2).
(n)

Let A™ 1 be the logarithm of the likelihood ratio for dP,;, . against
00 402 () r(n) Jg(n); f ot f
ap™ 1 . So we obtain that
9 g p(m) (0.
) m—1 T S .
AR - 1 ( —nz (\™ L ) ) )
o) 4 oo 2 ;; og ( fesysre —n= A +hVK™Mey 1))
m—1 T S
=) D log (flestsr)) - (3)
r=0 t=1 s=1

Putting Z the standardized residuals as Zgig,¢ = Ystsra=h=BeZstsre g1 g)] 5 =

1,8 t=1,..Tandr=0,....m—1. ”

Proposition 1. Let assumption(A) and assumption(B) hold. Then, the family 73}?)

is ULAN at any 6 = <,u,02,,ﬁ/) with

. A‘{%w)
5 0) =1 Ay (0) (4)
Al (0
and
T F/ll I'i2 O1xs
FS‘T)W) =3 | Tz (Pa2)sus  Oixs , (5)
Osx1 Osxs  (Fs3)gs (25+1)x(25+1)
n) LT S om-1

where Al?fl(g) =nz2 > > (715 &1 (Zsysrt),

t=1s=1 r=0

T
> (D5, (Z145rt) Z145rp — 1)

W
Il
—
.
Il
o

-1 T
Zf Z (¢f1(ZS+Sr,t)ZS+Sr,t - 1)
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Tl T m—1 (n)
= Z Z ¢f1(Z1+Sr,t)x1+Sr,tK1

t=1 r=0
Ag’?‘l (0) = )
-1 T m—1 "
0'; tZ:l Z fi (ZS—I-Sr,t)xS-l-Sr,tKé)
> Ky(f1) (1 1
NP I¢(f1) Z o2’ ' = 2 (;%7 7%);
J, -1 1 1
Iy = sl/1) diag <4, ,4> ,
o] og
and
r L,(f1)di 1 1
33 p\J1 g a%’ ag
Under 779((”) , for any 0™ such that \f( 0) = Op(1) and for any bounded se-
quence 7 RQS‘H, we have
ap™

p(n) ()7 o(n).
+n2 v(n)r(n)/ f1 9(") h

M) — 7Ty (O)r™ 4 0,(1), (6)

l\.')\r—l

A;?) (6™) converge to N (o 25+1)x1: L'y (0)) when n — oo and A;?) (6™) converge to

(n)
N (T, (0)7,Tf,(0)) when n — oo under Pg(n>+n7,,(n>7<n) "

Proof. See Appendix. O

4 Locally Asymptotically Minimax (LAM) Estimators

Definition 1 (LAM estimator). Using LAN property and under Assumption(A),
the sequence estimator {W,} is LAM if

V(Wi = 0) = T5(6) " AYY(6) = op, (1).
Definition 2. A sequence of estimators 0,, of 0 is called :
i) \/n-consistent if \/n(6, — 0) = Op(1).
i) Discrete if there exists k € N such that Vn € N, 0,, takes at most k different values

m
= {6 e R* " /n||6 — 0] <c}, c>0.
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The +/n-consistent condition is satisfied by least squares and maximum likelihood
estimators, and the local discreteness condition goes back to LeCam (1960) and has

become an important technical tool in the construction of efficient estimators.

_ ;=N\ m—1 T
For the model (1), we have 6,, = (ﬂ,62 ,B) , where 2 = W Zo tzl éz+5r,t for
r= =

s=1,..., 5, with

és—i—S’r,t = ygz)sm o Bsxsjr)Sr,t (7)
and _ _
7
B1
_ . / -1
7,y = _ (X X) X'y,
L _S
where
1, X; O 0
1,7 0 Xy 0
X == 9
0 0

1,7 0 0 0 Xg

T / ANV
Xs = (xs,la coy Lo (m—1)8,15 =3 Ls,T5 -+ str(mfl)S,T) Y = (Y17 -~-7YS) and
YS = (ys,b sy y(m—l)S—f—s,l; 3 Ys, Ty eeey y(m—l)S—i—s,T .
We have

B, y) = (X’X)_1 X'E(Y)=0, 4

and

Var(G, ) = (X' X)X Be)x (x'x)

/
/

. ’ !
with e = (&q,...,€5) where g5 = (53,1, s €t (m=1)8,15 -} €5, T "7€s+(m—1)S,T) and

[0, 0 0 ]

0 o3, 0 ... O

E(ee') = : 0o . 0
0 | s

Theorem 1. Assume that {H_n} is discrete and \/n — consistent of estimators 6, then

1 - n), =
Ty (0,) A (0,)

Hfzen"‘%
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is LAM estimator.

Proof. See Appendix. O

5 Adaptive Estimation of Periodic Regression

The estimator 6 ¢ depends on the density f, which is unknown. In this section, we will
estimate the density f using the Kernel method. We estimate the score function ¢, and
the Fisher information I4(f1) using the Gaussian Kernel function to obtain the adaptive
estimator similar to 6 , see Bentarzi et al. (2009); Ling (2003). We consider the following
notations

)
A
3
I
o
vl
I
U

S
Z (55 - Zs+Sr,t) h(.’E - ZerSr,t; bn)

Definition 3. The estimation of ¢y is a(m) = —fbnijx) where a, — 0 and b, — 0
Qn + fbn (I‘)
when n — 00.
. 1 m—lTA2A _ N~ 1 m—lTA2A -
Let In(en) = a7 Z 4] (5s+Sr,t§0n)a Kn(‘gn) = nT Z Z Z ¢ (5s+5r,t§9n)5s+5r,t
s=1 r=0 t=1

=1
I 22 n 2
> O (Esysnts On )t sr -

3

Definition 4. The estimator of I,(f1), K4(f1) and Js(f1) are respectively I,(0,),
K. (0,) and J,(0,).

Definition 5. The estimators of A;T)(G) and F(f?)(O) are respectively A (8,,) and
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'™ (8,,), where

_Tl T m—1 , .
23 Y ($(ZirsneiOn)Zissne — 1)

t=1 r=0
R B él(gn) _Tl T m—1 ,, _
A @) = | Ax@,) | = | 2 ; > <¢(Zs+sr,t;9n)Zs+sm - 1) . (8)
As(0n) 5L Lomel B )
ngl tzl — (b(Zl-l—Sr,t;an)xl—i-Sr,tKl

=1 T m—=1 _ _
e Z Z ¢(ZS+Sr,t;9n)$S+Sr,tKén)
Ts
L t=1 r=0 i
T | P O1xs
o T & <
r™@,) = 3 ISP <F22)st AOIXS , (9)
Osx1 Osxs <F33>
SxS
. . _ 5 R . R ——
Fll = In(gn) Z %7 F12 = %(%ﬁf) ceny %); F22 = %dzag(%v sy %)7 and
s=1 "%
- P 1 1
I35 = I,,(0n)diag( =, ..., = )-
o7 0g

Theorem 2. Under regularity conditions Assumption(A), the estimator 0, = 0, +
ﬁf(@n)*lA(”)(Qn) is LAM and we have
Y (n) -1
L (\/ﬁ (en - 9) /]P’W);fl) = N (o,rf1 0) ) .

Proof. See Appendix. O

6 Simulation

We estimate the parameters of the model (2) for showing the performance of the adaptive
estimators (AE) and compare these estimators with Least square estimators (LSE), for
a different size n, period S, and the white noise density f. We have got the following
results:

The densities of the white noise are estimated using the Kernel method. The first
simulation (table 1) shows that the Adaptive Estimator(AE) is more efficient than the
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Table 1: S = 2, T =10, p = 3, B = (2,4), x ~ 10N (0,1), 0 = (1,0.9), e§,., ~
N(0,02), €% ., ~ V2Laplace(0,02), €%, , ~ skew Normal(0,02,6 = 10

)8

€4rys ~ skew Students(0,02,6 = 10) for s =1,2.
n=20

f/6 j of o3 b B

fi  LSE 3.050919 1.203777 0.9675306 1.985747 4.005323
AE  3.073068 1.184051 0.9559971 1.870641 3.976649

fa LSE 2988219 1.231902 0.9961245 2.020256 3.994478
AE  3.128327 1.345157  1.028807 2.082048 3.966505

f3 LSE 2965729 1.369362 0.7514024 1.982971 4.004441
AE 3.02707  1.311004  0.745587  2.001936 3.994973

fa LSE 2.781497 0.9775358 0.8269645 2.009052 3.998216
AE 2904733 0.9643236 0.8199164 1.99059 3.978953

n=30

f/0 i a1 &3 B Ba

fi LSE 2995833 1.092605 0.9065589 2.007034 3.997423
AE  3.026603 1.075258 0.9006608 2.042606 3.962786

f2 LSE 3.098742 1.075586 0.9610971 2.032165 3.990511
AE 3.14614 1.07574  0.9969977 2.013062 3.908403

f3 LSE 2900636 1.166994 0.9080824 1.993763 4.004968
AE 2971603 1.151715 0.9062038 1.986187 4.029125

fa LSE 2945182 1.000806 0.9272752 1.997739 3.996383
AE 2956128 0.9837186 0.9124315 1.981714 4.079678

) and

Least Square Estimator (LSE) for the densities f3 (skew normal) and f4 (skew student).
Even though the size n decreases, the AE is still more suitable. In addition, we generated
100 replications independent based on many samples of the same size, as shown in table
2. Table 2 confirms that, for the densities f2 (skew normal) and f3 (skew student), the
adaptive estimation method gives the efficient estimators of 8, as the Root Mean Square
(RMS) errors show. Moreover, simulation results (table 1 and table 2) show that even
when the size of samples decreases, the AE remains the most appropriate option.
Many replications are used for each simulation to get the adaptive estimator 6,, and the
least square estimator 6,,. We have used the Root Mean Square errors, which are defined
by: RMS errors = \/Variance + Bias? (table 2), to compare the AE and the LSE.
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Table2: S = 2, T = 10 p = 4, B = (2,1.5), = ~ 10N(0,1), o®> = (1,0.9),
€4rys ~ Normal(0,02), €%, ~ skew Normal(0,02,0 = 10) and & . ~
skew Student7(0,02%,§ = 10) for s =1,2.

n=20
f/0 fi 52 63 B Bo RMS
f LSE Mean 3.998957 1.230349  1.101603 1.999469 1.499308 0.1557777
AE Mean  4.000183  1.19524 1.075913  2.00546 1.489938 0.1359267
f2 LSE Mean 4.011263 1.133402  1.097992 2.000329 1.49992  0.5618598
AE Mean  3.996893 1.089179  1.052315 2.000244 1.504165 0.4681877
f3 LSE Mean 3.89535  1.329362  1.056403 2.000967 1.500932  0.7195472
AE Mean  3.803372 1.284293  1.032338  1.99637 1.487846  0.5595058
n=30
£/ i o1 &3 B Ba RMS
fi LSE Mean 3.995845 1.128235 1.033385 2.000869 1.50053 0.06875505
AE Mean  4.006002 1.109741  1.019394 2.001264 1.498373  0.0687399
fa LSE Mean 3.998353 1.016296 0.9603092 1.999799 1.500601  0.4969943
AE Mean  4.003026 0.9924481 0.934455 2.003751 1.505784  0.4483293
f3 LSE Mean 3.955123 1.413475 1.090372 1.999801 1.500141 0.4783673
AE Mean  3.883805 1.380217  1.074936 1.996667 1.507942  0.4559947

7 Real data

In examples 1 and 2, the adaptive estimation method will be compared to the least
squares estimation method. The periodic coefficient regression model will also be con-
sidered in comparison with the traditional regression and random regression models.

7.1 Example 1

The aim of this Subsection is to show that the regression model with periodic coeflicients
is more efficient than both the traditional regression and random regression models
for predicting monthly water temperature (Tyater) from air temperature (T;,) for the
Missouri River studied by Zhu et al. (2018). The estimated model is:

e For traditional regression:
Twater = 2.8364 + 0.2036T ajr + &,
with £ is estimated residual.

e For periodic coefficient regression using the LSE method:

TWater,s—l—lQr =u+ 5STAiI‘,S+12T + Est12r with r =0, ..., 6,
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where /i = 3.1664, Bi = 0.8151, B, = 0.2589, B3 = 0.5832, By = 0.7565, f5 =
0.8318, B¢ = 0.8396, B; = 0.9124, Bs = 0.9354, By = 0.9655, 1o = 0.9103,
B11 = 0.7423, and B2 = 0.4668.

e For periodic coefficient regression using the AE method:
TVVater,erer =p+ /BSTAir,erer + Est12r with r = 07 ey 67

where fi = 3.1681, i = 0.7706, B> = 0.2587, B3 = 0.5796, B; = 0.7394, f5 =
0.8249, B = 0.8343, By = 0.8994, Bs = 0.9301, By = 0.9632, By = 0.9073,
Br11 = 0.7381, and 312 = 0.4664.

Table 3: Root mean square errors (RMSE) for traditional regression, periodic regression
models using LSE and adaptive estimation methods, and random regression.

Model | Traditional regression | Periodic regression (S = 12) | Random regression
LSE Method | AE Method

| RMSE | 1.6702 0.7956 | 0.7766 | 1.4343

Table 3 shows that the value of RMSE for the periodic coefficient regression using the
adaptive estimation method is the smallest compared to traditional regression, random
regression, and periodic regression using the LSE method, and the periodic coefficient
regression model is more appropriate than the traditional regression and random regres-
sion models.

7.2 Example 2

We consider the data set, which exists in Newbold and Bos(1985), with variables Rate
of inflation (Rjfiation) and Rate on 3-month T-bills (Ry;s), and 110 observations.
The estimated model is:

e For traditional regression:

Rinfation = —2.067 4 1.388 Rpps + &,

e For periodic coefficient regression using the LSE method:
Rinfiation,s+4r = p + BsRpils,s+4r + Estar  With 7 =0,...,24,
where 7i = —2.4917, B = 1.4423, B, = 1.5341, B3 = 1.3619, and 8y = 1.3111.
e For periodic coefficient regression using the AE method:
Rinflation,s+4r = p + BsRpils,s44r + Esar  With 7 =0,...,24,

where 7i = —2.4715, B = 1.6234, B, = 1.6213, B3 = 1.3821, and (3 = 1.3625.
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Table 4: Root mean square errors (RMSE) for traditional regression, periodic regression
models using LSE and adaptive estimation methods, and random regression.

Model | Traditional regression | Periodic regression (S = 4) | Random regression
LSE Method | AE Method

| RMSE | 1.6978 0.4523 | 0.4521 | 0.4567

Table 4 shows that the adaptive estimation method outperforms the least squares esti-
mation method, and the periodic coefficient regression is the best model compared to
the traditional regression and random regression models.

Conclusion

The paper shows that the adaptive estimation (AE) method is better than the least
squares estimation (LSE) method. In addition, the periodic coefficient regression model
outperforms both the traditional regression and random coefficient regression models for
the real data studied.
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Appendix

1
Proof of Proposition 1. The main point is to show that qu s quadratic mean

,02,Bs; f
differentiability at any (,u, o2, BS) for s fixed. We have for s =1, ..., S:

X 1, (y—pu— B\
R 0 = (o (SEEEE))

s

1

2
q/"‘70-g7ﬁs;fl
vandt—0

is quadratic mean differentiability at (u, o2, 68) forall s =1,...,5. i.e. for w,
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8/1 ,UU /stfl (y)

1 1
/ Ui rworv ottty W)~ g2 pp W) — (0 1) aa2 q“ 02,8051 W) dy =
R
855 o2 Buify )
2
w
v )
t
with
o 2 1 1 y— 1= Bs
au M sastfl (y> 20-8(1/17037/35;]”1 (y)¢f1 < Os ?
0 1 I 3 y—p— Bz (n)
2 42 J s n
do? U102 e 1 (y) = 20 Up02,65:11 ¥)on ( o Kz,
and

o0 1 1 1 y—ﬂ—ﬁsx y—,u—Bsx
T&qﬁ’o—iﬁs;'ﬁ (y) 4 2 /jv saBs:fl (y) < (bfl - 1 .

Os Os

The problem here is reduced to the one discussed by Lmakri et al. (2020) with b = 0.
The proof of Proposition 1 is therefore complete. O

Proof of Theorem 1. We have

Vi (6= 0) =T5(0) A (0) = T4(@,) ' AT @ >—rf<e>—1A;"><e> +/n (B, 6)
= I;(6,) 7 (A} @
+ /L (0n) (0 —
=10 [Af (0.) - A7 (0)
+ (1=Ts@T5(0) 1) AT (0) + VAT 4(60) (B - 6)
Vi1 (T (@) = T1(0)) (B, — 6)]

= Ope(l).

Because Agc )(5 ) — Agc )( 9) + /nl'y(6) (6, —0) = op,(1) (Asymptotic linearity) and
Ly (0n) — Ls(0) = op, (1) O
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Proof of Theorem 2. We have

Because A (0) — Al (0) = op, (1) and T(0) " ~T(0)"" = op, (1).
So we get,

\/a(én —e) =T4(0)"" A (0) + oz, (1), (10)

which leads to

L (\/ﬁ (§n - 9)) — N (o,rﬁ (9)*1) .
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