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The accelerated life testing is the key methodology of assessing product

reliability rapidly. This type of life testing is more efficient with low cost

than the classical reliability testing. For this, estimating of the underlying

model and predicting the future failure times are issues deserve the atten-

tion and follow-up. In this paper, a simple step-stress testing experiment is

considered when the lifetime data comes from a proportional hazard family

under Type-II censoring. We discuss frequentist and Bayes estimators of the

underlying model parameters. Prediction of unobserved or censored lifetimes

is also tackled here, and frequentist and Bayesian predictors are developed.

An algorithm is presented to generate ordered lifetime data from the propor-

tional hazard family under the simple step-stress accelerated lifetime testing.

Two numerical examples are also provided to illustrate the estimation and

prediction methods presented in this paper. Finally, a Monte Carlo simu-

lation experiment is performed to evaluate the performance of the various

estimation and prediction methods developed in this paper. The results show
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that the Bayesain estimation and prediction under the informative prior per-

form better than the ones obtained based on frequentist methods. Also, the

maximum likelihood method does not work well for predicting future failure

times.

keywords: Accelerated life testing, Bayes methods, Frequentist methods,

Monte Carlo simulation, Prediction, Proportional hazard rate family.

1 Introduction

Due to advanced technology, competitive markets, and consumer demand, most products

are highly reliable as these products may work properly for years or even decades. In this

spirit, if these products are exposed to life-testing experiment under normal levels, the

experiment may take a long time and it is almost impossible to get enough information

about the failure times and reliability of these products. In addition, the life-testing

experiment of these products may take a long time under censoring schemes. Alterna-

tively, the experimenters tend to expose these products to accelerated life tests (ALTs)

so that their failure times can be observed sooner. In ALTs, the products are exposed

to higher stresses than normal conditions. These stresses may be temperature, voltage,

pressure, vibration, and so on. The information obtained from such ALTs is later used

to estimate the failure times and reliability of the products under normal conditions, see

Nelson (1982).

One of the most common types of ALTs is the step-stress ALT (SSALT). In this test,

the components are constantly exposed to higher than normal stress levels. Hence, a

random sample of n identical units (components) are placed on a life test under an

initial stress level s1. Then, the stress levels are increased to s2, . . . , sm+1 at fixed times

τ1, τ2, . . . , τm respectively. Therefore, the stress in the sample increases until all products

fail or the test is terminated under a censoring scheme. In this paper, we consider a simple

SSALT with only two stress levels. This model has been widely used in the literature,

e.g., Miller and Nelson (1983), Bai et al. (1989) and DeGroot and Goel (1979).

For modeling structure, we also consider the popular proportional hazard rate (PHR)

model for the common lifetime distribution of the units. That is, we assume that the

common cumulative distribution function (CDF) of the units is

F (t) = 1− [F̄0(t)]
θ, (1)

where θ > 0 is an unknown parameter and F̄0(t) = 1 − F0(t) is the baseline survival

function with support [0,∞) being completely known and but it does not include the
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parameter θ. The probability density function (PDF) is given by

f(t) = θf0(t)[F̄0(t)]
θ−1,

where f0(t) is the PDF of F0(.). Its hazard rate function (HRF) is given by

h(t) =
f(t)

F̄0(t)
=

θf0(t)

F̄0(t)
= θh0(t),

where h0(t) is the baseline HRF. Several well-known lifetime distributions belong to

this model, see for example, Marshall and Olkin (2007). It has received a considerable

attention for modeling failure time data since it is flexible to accommodate monotonic

and non-monotonic failure rate models. For inferences involving the PHR model, one

may refer to Asgharzadeh and Valiollahi (2009), Asgharzadeh and Valiollahi (2010),

Basirat et al. (2015), Chaturvedi et al. (2019) and Basiri and Asgharzadeh (2021).

The following commonly used lifetime distributions are members of the PRH model:

(i) Exponential distribution. Taking F̄0(t) = e−t, we have F0(t) = 1 − e−θt, which

is equivalent to assuming that the lifetime distribution of the items is an exponential

distribution with the rate parameter θ.

(ii) Rayleigh distribution. Taking F̄0(t) = e−t2 , we have F (t) = 1 − e−θt2 . This is

equivalent to assuming that the lifetime distribution of the items is a Rayleigh distribu-

tion with the parameter θ.

(iii) Pareto distribution. Considering F̄0(t) = (1+ t)−1, we have F (t) = 1− (1+ t)−θ,

which is equivalent to assuming that the lifetime distribution of the items is a Pareto

distribution with shape parameter θ.

Moreover, we can also consider two-parameter PHR model. For example, the Weibull

WE(λ, θ) and Burr Type XII, BUR(β, θ) distributions are members of PHR family of

distributions with corresponding baseline cdfs F̄0(t) = e−λt and F̄ (t) = (1 + tβ)−1.

Inferences for a simple step-stress test under Type-II censoring have been discussed

in the literature. Balakrishnan et al. (2007) considered point and interval estimation

for a simple SSALT test under Type-II censoring exponential lifetimes. They derived

the maximum likelihood estimators (MLEs) of the exponential parameters using a cu-

mulative exposure model and proposed several confidence intervals for the model pa-

rameters. Basak and Balakrishnan (2018) discussed prediction problem for exponential

step-stress test with Type-II censoring assuming the cumulative exposure model and

presented several point and interval predictors of future lifetimes. Xiong (1998) dis-

cussed the statistical inference for a simple step-stress model under Type-II censoring
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when the lifetimes of the items is distributed exponentially. Exact inference for a simple

step-stress model with competing risks for failure from exponential distribution under

Type-II censoring was presented by Balakrishnan and Han (2008). Xiong and Milliken

(2002) provided some prediction limits for a step-stress model in accelerated life test-

ing. Basak and Balakrishnan (2017) and Basak and Balakrishnan (2018) considered

the problem of predicting the failure times of censored items for a simple step-stress

model from exponential distribution under progressive Type-II censoring and Type-II

right censoring, respectively. Prakash (2018) obtained the Bayes estimators under the

first-failure progressive censoring scheme based on constant-stress partially ALT when

the lifetime distribution is Gompertz distribution. Dey and Nassar (2020) considered

different classical methods of estimation under constant stress ALT for the exponenti-

ated Lindley distribution. The meta-analysis of Type-II censored step-stress experiment

under the two parameter Weibull distribution was discussed by Samanta and Kundu

(2021). Most recently, Amleh and Raqab (2021) discussed the prediction of censored

Weibull lifetimes in a simple step-stress plan under Khamis-Higgens model.

In this paper, our goal is to consider statistical inferential problems including the estima-

tion and prediction for a simple step-stress test under Type-II censoring when the test

units belongs to the PHR family. The model parameters are estimated using the maxi-

mum likelihood and Bayesian methods. Further, prediction problem of the unobserved

or censored lifetimes is tackled. An algorithm for generating the simple step-stress or-

dered lifetimes is also proposed. The main difference of our work with the other existing

works is that we have considered a more general cumulative exposure model which has

not been considered before. The exponential cumulative exposure model is considered

as a special case of this general model. Moreover our methods are also quite general

involving frequentist and Bayesian methods.

The paper is organized as follows. In Section 2, we first discuss the model description and

likelihood function. In Section 3, we derive the maximum Likelihood and Bayes estimates

(BEs) of the model parameters. In Section 4, the prediction of censored lifetimes is

considered, and different prediction methods including the maximum Likelihood, best

unbiased, conditional median and Baysian methods are developed. In Section 5, an

algorithm to generate the simple step-stress ordered lifetimes is proposed. Two numerical

examples are also presented to illustrate the procedures proposed and a Monte Carlo

simulation is performed to assess the methods of estimation and prediction developed

here.
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2 Model description and likelihood function

Let us assume that the component lifetimes at stress levels s1 and s2 follow the PHR

model in (1) with the baseline HRF h0(t) and parameters θ1 and θ2, respectively. To

connect the distribution functions at the two stress levels, we assume that the HRF,

when stress changes at the pre-fixed time τ , is of the form

h(t) =

θ1h0(t) 0 < t ≤ τ

θ2h0(t) τ < t < ∞.

So, the cumulative HRF becomes

H(t) =


∫ t
0 θ1h0(u)du = θ1H0(t) 0 < t ≤ τ∫ τ
0 θ1h0(u)du+

∫ t
τ θ2h0(u)du = θ1H0(τ) + θ2[H0(t)−H0(τ)] τ < t < ∞,

where H0(t) =
∫ t
0 h0(u)du is the baseline cumulative HRF. Hence, the CDF of the

lifetime is

G(t) = 1− e−H(t) =

G1(t) = 1− e−θ1H0(t) 0 < t ≤ τ

G2(t) = 1− e−θ1H0(τ)−θ2[H0(t)−H0(τ)] τ < t < ∞,
(2)

and the corresponding PDF is

g(t) =

g1(t) = θ1h0(t)e
−θ1H0(t) 0 < t ≤ τ

g2(t) = θ2h0(t)e
−θ2H0(t)+(θ2−θ1)H0(τ) τ < t < ∞.

(3)

Note that for the exponential case, we have H0(t) = t and h0(t) = 1. In this case, the

exponential cumulative exposure model with the CDF

G(t) =

1− e−θ1t 0 < t ≤ τ

1− e−θ2t+(θ2−θ1)τ τ < t < ∞,

and PDF

g(t) =

θ1e
−θ1t 0 < t ≤ τ

θ2e
−θ2t+(θ2−θ1)τ τ < t < ∞,

is obtained as a special case.

Assume a sample of n identical components are placed on the simple SSALT at an initial

stress level of s1 and the stress level is changed to s2 at the pre-fixed time τ . Under

Type-II censoring, the experiment ends as soon as r-th failure (1 ≤ r ≤ n) is observed.
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The advantage of Type-II censoring in accelerated life-testing experiment is that it saves

the experiment time. It also saves the budget and keeps some products (or components

) under experiment. If r = n, we observe a complete sample in the simple SSALT and

therefore all the products will be lost. For the simple SSALT under Type-II censoring,

suppose we observed the ordered failure times

t = {t1:n < · · · < tn1:n < τ < tn1+1:n < · · · < tr:n},

from

T = {T1:n < · · · < Tn1:n < τ < Tn1+1:n < · · · < Tr:n},

as the r Type-II right censored order statistics from a population with PDF g(t) in (3).

Here n1 is the number of failures that occurred before τ , and r − n1 is the number of

failures that occurred after τ . Throughout this paper, we will only consider the main

case when r > n1. In this case, there will be observations at both stress levels s1 and s2

( for the case r = n1, there will be only observations at the stress level s1 and the stress

level will not reach s2). So, the likelihood function of the observed failure times is

L(θ1, θ2|t) = c

n1∏
i=1

g1(ti:n)

r∏
i=n1+1

g2(ti:n) [1−G2(tr:n)]
n−r,

where c is a constant factor. From g1(.) and g2(.) in (3), the likelihood function is

obtained as

L(θ1, θ2|t) = c θn1
1 θr−n1

2

r∏
i=1

h0(ti:n) e
−θ1

[ n1∑
i=1

H0(ti:n)+(n−n1)H0(τ)

]

× e
−θ2

[
r∑

i=n1+1

(
H0(ti:n)−H0(τ)

)
+(n−r)

(
H0(tr:n)−H0(τ)

)]
. (4)

3 Estimation methods

In this section, we derive the MLEs and BEs of the model parameters of θ1 and θ2.

3.1 Maximum likelihood estimation

The log-likelihood function without considering constant factor is given by

logL(θ1, θ2|t) = n1 log θ1 + (r − n1) log θ2 − θ1

(
n1∑
i=1

H0(ti:n) + (n− n1)H0(τ)

)

− θ2

(
r∑

i=n1+1

[
H0(ti:n)−H0(τ)

]
+ (n− r)

[
H0(tr:n)−H0(τ)

])
. (5)
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It follows from (5) that the likelihood equations are given by

∂ logL(θ1, θ2|t)
∂θ1

=
n1

θ1
−

n1∑
i=1

H0(ti:n)− (n− n1)H0(τ) = 0,

and

∂ logL(θ1, θ2|t)
∂θ2

=
(r − n1)

θ2
−

r∑
i=n1+1

[H0(ti:n)−H0(τ)]

− (n− r)[H0(tr:n)−H0(τ)] = 0.

The MLEs of θ1 and θ2 are immediately, obtained as

θ̂1ML =
n1

n1∑
i=1

H0(ti:n) + (n− n1)H0(τ)

, (6)

and

θ̂2ML =
r − n1

r∑
i=n1+1

[H0(ti:n)−H0(τ)] + (n− r)[H0(tr:n)−H0(τ)]

. (7)

Example 1: (i) (Exponential distribution). For the exponential distribution with the

baseline cumulative HRF H0(t) = t, the MLEs are obtained to be

θ̂1ML =
n1

n1∑
i=1

ti:n + (n− n1)τ

,

and

θ̂2ML =
r − n1

r∑
i=n1+1

(ti:n − τ) + (n− r)(tr:n − τ)

.

(ii) (Rayleigh distribution). For the Rayleigh distribution, the baseline cumulative HRF

is H0(t) = t2 and the MLEs are given by

θ̂1MLE =
n1

n1∑
i=1

t2i:n + (n− n1)τ2
,

and

θ̂2MLE =
r − n1

r∑
i=n1+1

(t2i:n − τ2) + (n− r)(t2r:n − τ2)

.
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(iii) (Pareto distribution). For the Pareto distribution, the baseline cumulative HRF is

H0(t) = log(1 + t) and the MLEs are given by

θ̂1ML =
n1

n1∑
i=1

log(1 + ti:n) + (n− n1)log(1 + τ)

,

and

θ̂2ML =
r − n1

r∑
i=n1+1

log

(
1 + ti:n
1 + τ

)
+ (n− r) log

(
1 + tr:n
1 + τ

) .

3.2 Bayesian Method

Here, we formulate the posterior density of the parameters θ1 and θ2 based on Type-II

censored sample and then obtain the corresponding BEs of these unknown parameters

under a squared error loss (SEL) function, with respect to independent Γ(α1, β1) and

Γ(α2, β2) priors for θ1 and θ2 with PDFs as

p1(θ1) ∝ θ1
α1−1e−θ1β1 , α1 > 0, β1 > 0,

p2(θ2) ∝ θ2
α2−1e−θ2β2 , α2 > 0, β2 > 0,

respectively. Therefore, the joint prior distribution for θ1 and θ2 is

p(θ1, θ2) = p1(θ1) p2(θ2) ∝ θ1
α1−1e−θ1β1 θ2

α2−1e−θ2β2 , (8)

and the posterior PDF of θ1 and θ2 given the data can be obtained using (4) and (8) as

p(θ1, θ2|t) ∝ L(θ1, θ2|t)p(θ1, θ2)

∝
r∏

i=1

h0(ti:n) θ
n1+α1−1
1 θr−n1+α2−1

2

× e
−θ1

( n1∑
i=1

H0(ti:n)+(n−n1)H0(τ)+β1

)

× e
−θ2

(
r∑

i=n1+1
[H0(ti:n)−H0(τ)]+(n−r)[H0(tr:n)−H0(τ)]+β2

)
. (9)

Clearly, the posterior PDF of θ1 and θ2 can rewritten as

p(θ1, θ2|t) ∝ D1(θ1)D2(θ2),

where D1(θ1) and D2(θ2) are, respectively, the PDFs of

Γ

(
n1 + α1,

n1∑
i=1

H0(ti:n) + (n− n1)H0(τ) + β1

)
,
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and

Γ

(
r − n1 + α2,

r∑
i=n1+1

[H0(ti:n)−H0(τ)] + (n− r)[H0(tr:n)−H0(τ)] + β2

)
,

distributions. Under a SEL function, the BE is the posterior mean. Therefore, the BEs

of θ1 and θ2 under SEL function are given by

θ̂1BS =
n1 + α1

n1∑
i=1

H0(ti:n) + (n− n1)H0(τ) + β1

, (10)

and

θ̂2BS =
r − n1 + α2

r∑
i=n1+1

[H0(ti:n)−H0(τ)] + (n− r)[H0(tr:n)−H0(τ)] + β2

. (11)

In the case that the information prior is not available, one may assume improper gamma

priors by considering α1 = α2 = β1 = β2 = 0, the BEs coincide with the MLEs.

Example 2: (i) (Exponential distribution). For the exponential distribution with the

baseline cumulative HRF H0(t) = t, we derive the BEs as

θ̂1BS =
n1 + α1

n1∑
i=1

ti:n + (n− n1)τ + β1

,

and

θ̂2BS =
r − n1 + α2

r∑
i=n1+1

(ti:n − τ) + (n− r)(tr:n − τ) + β2

.

(ii) (Rayleigh distribution). For the Rayleigh distribution, we have H0(t) = t2 and the

BEs are

θ̂1BS =
n1 + α1

n1∑
i=1

t2i:n + (n− n1)τ2 + β1

,

and

θ̂2BS =
r − n1 + α2

r∑
i=n1+1

(t2i:n − τ2) + (n− r)(t2r:n − τ2) + β2

.

(iii) (Pareto distribution). For the Pareto distribution, the baseline cumulative HRF is

H0(t) = log(1 + t) and the BEs are

θ̂1BS =
n1 + α1

n1∑
i=1

log(1 + ti:n) + (n− n1) log(1 + τ) + β1

, (12)
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and

θ̂2BS =
r − n1 + α2

r∑
i=n1+1

log

(
1 + ti:n
1 + τ

)
+ (n− r) log

(
1 + tr:n
1 + τ

)
+ β2

. (13)

4 Prediction Methods

The prediction of future censored observations based on the observed failure times is a

fundamental problem and it is widely used in survival, medical and engineering studies.

In engineering studies, one may be interested in predicting the time at which the current

system might fail in order to have resources available for future purposes. Interested

readers may refer to Kaminsky and Nelson (1998), Gulati and Padgett (2003), and

Raqab et al. (2018) for details on these developments. In our set-up, let us observe the

Type-II censored sample of the form:

t = {t1:n < · · · < tn1:n < τ < tn1+1:n < · · · < tr:n},

taken from T = (T1:n, · · · , Tn1:n, Tn1+1:n, · · · , Tr:n) with {T1:n < · · · < Tn1:n < τ <

Tn1+1:n < · · · < Tr:n} as the r Type-II right censored order statistics from a population

with PDF g(t) in (3). The aim is to predict the future failure time Y = Tr+j:n(j =

1, 2, . . . , n − r) based on T = t. Again, we will only consider the main case of r > n1.

Due to the Markovian property of Type-II right-censored order statistics, the conditional

pdf of Y given T = t is just the conditional PDF of Y given Tr:n = tr:n. That is,

gY |T(y|t) = gY |Tr:n
(y|tr:n).

It follows that the density of Y given T = t is the same as the density of the jth order

statistic of a sample of size (n − r) from the population with the right truncated PDF

g2(y)/(1−G2(tr:n)), y > tr:n. Hence, the conditional PDF of Y given T = t is

gY |T(y|t) = gY |Tr:n
(y|tr:n) = j

(
n− r

j

)
g2(y) [G2(y)−G2(tr:n)]

j−1 [1−G2(y)]
n−r−j

× [1−G2(tr:n)]
−(n−r), y > tr:n.

(14)

4.1 Maximum likelihood predictor

Here we consider the predictive likelihood function (PLF) of the future observation

Y = Tr+j:n and the parameters θ1 and θ2 having observed T = t. The maximum

likelihood predictor (MLP) of Y is derived by maximizing the PLF with respect to Y ,
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θ1 and θ2 simultaneously (Kaminsky and Rodhin (1985)). The estimators of θ1 and θ2

obtained here are called the predictive maximum likelihood estimators (PMLEs). The

PLF of Y , θ1 and θ2 is

L∗ = L∗(y, θ1, θ2; t) = gY |T (y | t, θ1, θ2) L(θ1, θ2 | t)

= gY |Tr:n
(y | tr:n; θ1, θ2) L(θ1, θ2 | t)

= gY |Tr:n
(y | tr:n) L(θ1, θ2 | t), (15)

where L(θ1, θ2 | t) is the likelihood function of the observed failure time t. Therefore,

the PLF without considering the constant factor is given by

L∗ =

n1∏
i=1

g1(ti:n)

r∏
i=n1+1

g2(ti:n)g2(y)[1−G2(y)]
n−r−j [G2(y)−G2(tr:n)]

j−1. (16)

From (2) and (3), the PLF without considering the constant factor is obtained to be

L∗ = c θn1
1 θr−n1+1

2 h0(y)
r∏

i=1

h0(ti:n) e
−θ1

[ n1∑
i=1

H0(ti:n)+(n−n1)H0(τ)

]

× e
−θ2

[
r∑

i=n1+1
H0(ti:n)−(n−n1)H0(τ)+(n−r−j+1)H0(y)+(j−1)H0(tr:n)

]

×
[
1− eθ2[H0(y)−H0(tr:n)]

]j−1
. (17)

The logarithm of the PLF (log PLF) is obtained as

logL∗ = n1 log θ1 + (r − n1 + 1) log θ2 + log[h0(y)] +

r∑
i=1

log[h0(ti:n)]

− θ1

[
n1∑
i=1

H0(ti:n) + (n− n1)H0(τ)

]
+ (j − 1) log[1− e−θ2[H0(y)−H0(tr:n)]]

− θ2

[
r∑

i=n1+1

H0(ti:n)− (n− n1)H0(τ) + (n− r − j + 1)H0(y) + (j − 1)H0(tr:n)

]
.

By differentiating the log PLF with respect to y and θ2, we derive the predictive likeli-

hood equations (PLEs) as

∂ logL∗

∂y
=

h′0(y)

h0(y)
− θ2(n− r − j + 1)h0(y)

+ θ2(j − 1)h0(y)
e−θ2[H0(y)−H0(tr:n)]

1− e−θ2[H0(y)−H0(tr:n)]
= 0, (18)
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∂ logL∗

∂θ2
=

r − n1 + 1

θ2
−

r∑
i=n1+1

H0(ti:n) + (n− n1)H0(τ)

− (n− r − j + 1)H0(y)− (j − 1)H0(tr:n)

+ (j − 1)[H0(y)−H0(tr:n)]
e−θ2[H0(y)−H0(tr:n)]

1− e−θ2[H0(y)−H0(tr:n)]
= 0. (19)

It is important to point out that
∂ logL∗

∂θ1
does not depend on y and therefore it is no

longer necessary for obtaining the MLP of Y . By solving (18) and (19) with respect to y

and θ2 simultaneously, we can compute the MLP of Y , ŶMLP , and PMLE of θ2, θ̂2PMLE .

Example 3: (i) (Exponential case). For the case of exponential distribution, we have

H0(t) = t, h0(t) = 1 and h′0(t) = 0. In this case, the PLEs are given by

∂ logL∗

∂y
= −θ2(n− r − j + 1) + θ2(j − 1)

e−θ2(y−tr:n)

1− e−θ2(y−tr:n)
= 0,

and

∂L∗

∂θ2
=

(r − n1 + 1)

θ2
−

r∑
i=n1+1

ti:n + (n− n1)τ − (n− r − j + 1)y

− (j − 1)tr:n + (j − 1)(y − tr:n)
e−θ2(y−tr:n)

1− e−θ2(y−tr:n)
= 0.

By solving these PLEs, we derive the MLP of Y as

ŶMLP = tr:n +

log(
n− r

n− r − j + 1
)

θ̂2PMLE

, (20)

where

θ̂2PMLE =
r − n1 + 1

r∑
i=n1+1

(ti:n − τ) + (n− r)(tr:n − τ)

, (21)

is the PMLE of θ2.

(ii) (Rayleigh case). For the case of Rayleigh distribution, H0(t) = t2, h0(t) = 2t and

h′0(t) = 2 and the PLEs can be written as

∂ logL∗

∂y
=

1

y
− 2(n− r − j + 1)θ2 y + 2(j − 1)θ2 y

e−θ2(y2−t2r:n)

1− e−θ2(y2−t2r:n)
= 0,
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and

∂ logL∗

∂θ2
=

(r − n1 + 1)

θ2
−

r∑
i=n1+1

y2i:n + (n− n1)τ
2 − (n− r − j + 1)y2

− (j − 1)t2r:n + (j − 1)(y2 − t2r:n)
e−θ2(y2−t2r:n)

1− e−θ2(y2−t2r:n)
= 0.

In this case, closed-form expressions for the MLP of Y and the PMLE of θ2 are not

available, and they must be obtained numerically by solving the above PLEs.

(iii) (Pareto case). For the case of Pareto distribution, H0(t) = log(1 + t), h0(t) =

(1 + t)−1 and h′0(t) = −(1 + t)−2. The PLEs reduce to

∂ logL∗

∂y
= −(1 + y)−1 − θ2(n− r − j + 1)(1 + y)−1

+ θ2(j − 1)(1 + y)−1 (1 + y)−θ2

(1 + tr:n)−θ2 − (1 + y)−θ2
= 0,

∂ logL∗

∂θ2
=

r − n1 + 1

θ2
−

r∑
i=n1+1

log(1 + ti:n) + (n− n1) log(1 + τ)

− (n− r − j + 1)log(1 + y)− (j − 1)log(1 + tr:n)

+ (j − 1)log

(
1 + y

1 + tr:n

)
(1 + y)−θ2

(1 + tr:n)−θ2 − (1 + y)−θ2
= 0.

Hence again, the MLP of Y and the PMLE of θ2 must be obtained by solving these

PLEs numerically.

4.2 Conditional median predictor

Raqab and Nagaraja (1995) used the median of the conditional distribution of Y = Tr+j:n

given Tr:n = tr:n as a predictor of Tr+j:n and called it the conditional median predictor

(CMP). The CMP of Y , denoted by YCMP , is such that

P (Y ≤ YCMP | Tr:n = tr:n) = P (Y ≥ YCMP | Tr:n = tr:n).

From the conditional distribution of Y given Tr:n = tr:n in (14), it follows that the

conditional distribution of

U =
1−G2(Y )

1−G2(Tr:n)
= e−θ2[H0(Y )−H0(Tr:n)],

given Tr:n = tr:n is a beta distribution with parameters (n − r − j + 1) and j (denoted

as Beta(n− r − j + 1, j)). Using the relation

P (Y ≤ YCMP | Tr:n = tr:n) = P

(
1−G2(Y )

1−G2(Tr:n)
≥ 1−G2(YCMP )

1−G2(Tr:n)
| Tr:n = tr:n

)
,
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we readily have

1−G2(YCMP )

1−G2(tr:n)
= e−θ2[H0(YCMP )−H0(tr:n)] = Med(U),

where Med(U) is the median of U . So, we find the CMP of Y as

YCMP = H0
−1

(
H0(tr:n)−

1

θ2
log[Med(U)]

)
.

When θ2 is not known, it can be replaced by its MLE θ̂2 and we can obtain an approxi-

mate CMP of Y .

Example 4: (i) (Exponential case). For the case of exponential distribution, H0(t) = t

and H0
−1(t) = t. In this case, the approximate CMP of Y is

YCMP = tr:n − 1

θ2
log[Med(U)].

(ii) (Rayleigh case). For the case of Rayleigh distribution, H0(t) = t2 and H0
−1(t) =

√
t

and the approximate CMP is obtained to be

YCMP =

√
t2r:n − 1

θ2
log[Med(U)].

(iii) (Pareto distribution). For the Pareto distribution, H0(t) = log(1+t) and H0
−1(t) =

et − 1 and the approximate CMP is found to be

YCMP = (1 + tr:n)[Med(U)]
−
1

θ2 − 1 .

4.3 Best unbiased predictor

A predictor Ŷ is a best unbiased predictor (BUP) of Y = Tr+j:n if its mean prediction

error is zero and its prediction variance is less than or equal to the prediction variance of

any other unbiased predictor of Y . The mean of the conditional distribution of Y given

Tr:n = tr:n is the BUP of Y . Therefore, the BUP of Y takes the form:

ŶBUP = E(Y |Tr:n = tr:n) =

∫ ∞

tr:n

y gY |Tr:n
(y|tr:n)dy.

From the conditional distribution of Y given Tr:n = tr:n, the BUP is

ŶBUP =

∫ ∞

tr:n

y gY |Tr:n
(y|tr:n)dy

=

∫ ∞

tr:n

y j

(
n− r

j

)(
1− eθ2[H0(y)−H0(tr:n)]

)j−1 (
e−θ2[H0(y)−H0(tr:n)]

)n−r−j

× θ2 h0(y)e
−θ2[H0(y)−H0(tr:n)] dy.
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By applying the transformation, u = e−θ2[H0(y)−H0(tr:n)], we can rewrite the BUP of Y

as follows.

ŶBUP =

∫ 1

0
H0

−1

(
− 1

θ2
log(u) +H0(tr:n)

)
un−r−j(1− u)j−1

B(n− r − j + 1, j)
du

= EU

(
H0

−1

(
− 1

θ2
log(U) +H0(tr:n)

))
, (22)

where EU (.) is the expectation under U ∼ Beta(n − r − j + 1, j) and B(a, b) =

Γ(a)Γ(b)/Γ(a+ b), for a, b ≥ 0. When θ2 is unknown, it can be replaced by its MLE θ̂2

and we obtain an approximate BUP of Y .

Example 5: (i) (Exponential case). For the case of exponential distribution, H0(t) = t

and H0
−1(t) = t. In this case, the BUP is

ŶBUP = − 1

θ2
EU [log(U)] + tr:n

(ii) (Rayleigh case). For the case of Rayleigh distribution,H0(t) = t2 and H0
−1(t) =

√
t,

the BUP is

ŶBUP = EU

(√
t2r:n − 1

θ2
log(U)

)
.

(iii) (Pareto distribution). For the Pareto distribution, H0(t) = log(1+t) and H0
−1(t) =

et − 1, the BUP is

ŶBUP = (1 + tr:n)EU (U
−
1

θ2 )− 1 .

4.4 Baysian prediction

In this section, our aim is to predict Y = Tr+j:n(j = 1, 2, . . . , n−r) based on the observed

data, t = (t1:n, t2:n, . . . , tr:n) using a Baysian approach. The Bayes predictive density

function of Y = Tr+j:n given t is

g∗(y | t) =
∫ ∞

0

∫ ∞

0
g(y | t; θ1, θ2) p(θ1, θ2 | t) dθ1 dθ2. (23)

Under the assumption of independent gamma priors Γ(α1, β1) and Γ(α2, β2) for θ1 and

θ2, the posterior PDF of θ1 and θ2 can be rewritten as

p(θ1, θ2|t) ∝ D1(θ1)D2(θ2),

where D1(θ1) and D2(θ2) are the updated gamma PDFs of θ1 and θ2, respectively.

Therefore,

g∗(y | t) ∝
∫ ∞

0

∫ ∞

0
g(y | t; θ1, θ2) D1(θ1) D2(θ2) dθ1 dθ2. (24)
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The Bayesian predictor (BP) of Y under a SEL is

ŶBP =

∫ ∞

tr:n

y g∗(y | t)dy. (25)

For exponential, Rayleigh and Pareto distributions, the BPs are obtained by substituting

h0(t) = 1, H0(t) = t, h0(t) = 2t,H0(t) = t2 and h0(t) = (1 + t)−1, H0(t) = log(1 + t),

respectively. Details for computing the BPs are given in Algorithm 1.

Algorithm 1: Algorithm for computing the BPs

Step 1: Generate θ1 from Γ (n1 + α1,
∑n1

i=1H0(ti:n) + (n− n1)H0(τ) + β1);

Step 2: Generate θ2 from

Γ

(
r − n1 + α2,

r∑
i=n1+1

H0(ti:n) + (n− r)H0(tr:n)− (n− n1)H0(τ) + β2

)
;

Step 3: Repeat Steps 1 and 2, M times and obtain (θ11, θ21), · · · , (θ1M , θ2M );

Step 4: Using (24), compute the simulation consistent estimator of g∗(y | t) as

ĝ∗(y | t) = 1

M

M∑
i=1

g(y | t; θ1i, θ2i); (26)

Step 5: Now, the BP of Y = Tr+j:n under SEL can be approximated as

ŶBP =

∫ ∞

tr:n

y

(
M∑
i=1

1

M
g(y | t; θ1i, θ2i)

)
dy =

1

M

M∑
i=1

(∫ ∞

tr:n

y g(y | t; θ1i, θ2i)dy
)

=
1

M

M∑
i=1

I(tr:n; θ1i, θ2i), (27)

where

I(tr:n; θ1, θ2) =

∫ ∞

tr:n

y
[
j

(
n− r

j

)
θ2h0(y)e

−θ2[H0(y)−H0(tr:n)]

× e−θ2(n−r−j)[H0(y)−H0(tr:n)]
(
1− e−θ2[H0(y)−H0(tr:n)]

)j−1 ]
dy,
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and using the binomial expansion

(
1− e−θ2[H0(y)−H0(tr:n)]

)j−1
=

j−1∑
k=0

(
j − 1

k

)
(−1)ke−θ2(j−1−k)[H0(y)−H0(tr:n)],

it can be written as

I(tr:n, θ1, θ2) = j

(
n− r

j

)
θ2

j−1∑
k=0

(
j − 1

k

)
(−1)j−k−1

×
∫ ∞

tr:n

y h0(y)e
−θ2(n−r−k)[H0(y)−H0(tr:n)] dy.

5 Numerical examples and comparative study

Here we conduct the analyses of two numerical examples with fitting model belonging

to PHR family and perform a simulation study to examine the performance of the

estimators and predictors developed in the previous sections. All the computations are

performed using R Software (R x64 4.0.3) and the R codes can be obtained upon request

from the authors.

Let’s first explain how we can generate a random sample from the PHR family under

the simple stress-stress model. For given (n, τ, θ1, θ2), Algorithm 2 is used to generate

the ordered lifetimes, t1:n, t2:n, . . . , tn:n, from the PHR family under the simple SSALT

model with the CDF (2).

Algorithm 2: Algorithm for generating ordered lifetimes from PHR distributions

Step 1: Generate u from the uniform distribution U(0, 1);

Step 2: If u < 1− e−θ1H0(τ), set

t = H0
−1

[
− 1

θ1
log(1− u)

]
;

Step 3: If u ≥ 1− e−θ1H0(τ), set

t = H0
−1

[
− 1

θ2
log(1− u) +

θ2 − θ1
θ2

H0(τ)

]
; (28)

Step 4: Repeat Steps 1− 3, n times to generate t1, t2, . . . , tn;

Step 5: Sort t1, t2, . . . , tn in ascending order to obtain t1:n, t2:n, . . . , tn:n.
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5.1 Numerical examples

In this subsection, the proposed methods are illustrated by two numerical examples.

For both data sets, we compute the MLEs, BEs as well as point predictors including

frequentist and Bayes predictors.

Example 1 (Rayleigh case). Here we consider a data set following Rayleigh distribu-

tion. In the following steps, we obtain different estimates and different predicted values

as described in Sections 3 and 4.

(i) For given values of (α1, β1) = (2, 1) and (α2, β2) = (1.5, 2.5), we generated θ1 =

0.887 and θ2 = 0.162 from the gamma prior distributions Γ(2, 1) and Γ(1.5, 2.5),

respectively.

(ii) Using Algorithm 2 with H0(t) = t2 and based on the values θ1 = 0.887 and

θ2 = 0.162 obtained from step (i), we then generated a random sample of size

n = 30 from the Rayleigh model under the step-stress setting θ1 = 0.887, θ2 = 0.162

with τ = 0.5. The generated data are presented in Table 1.

Table 1: Step-stress simulated data from Rayleigh model.

Stress level Times to failure

θ1 = 0.887 0.361 0.417 0.443 0.496

θ2 = 0.162 0.765 0.940 1.013 1.016 1.037 1.103

1.239 1.332 1.421 1.601 1.653 1.709

1.855 1.884 1.988 1.991 2.252 2.368

2.487 2.568 2.584 2.745 3.370 3.752

4.521 6.137

(iii) By taking r = 25, the corresponding Type-II censored data t1:30, t2:30, . . . , t25:30
are:

0.361 0.417 0.443 0.496 0.765 0.940 1.013

1.016 1.037 1.103 1.239 1.332 1.421 1.601

1.653 1.709 1.855 1.884 1.988 1.991 2.252

2.368 2.487 2.568 2.584

(iv) Based on these data, we computed the MLEs and BEs of θ1 and θ2. The MLEs and BEs

are computed to be θ̂1ML = 0.551, θ̂2ML = 0.230 and θ̂1BS = 0.727, θ̂2BS = 0.239.
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(v) Based on the observed failure times, the predicted values of the censored lifetime T25+j:30

(j = 1, 2, . . . , 5) are computed and presented in Table 2.

Table 2: Predicted values of T25+j:30 (j = 1, 2, 3, 4, 5).

Actual observation MLP CMP BUP Bayesian

T26:30 2.745 2.58 2.69 2.74 2.75

T27:30 3.370 2.76 2.88 2.92 2.94

T28:30 3.752 2.99 3.11 3.16 3.18

T29:30 4.521 3.28 3.42 3.47 3.51

T30:30 6.137 3.74 3.94 4.02 4.07

From Table 2, it is easily checked that the different predicted values obtained are quite

close to the actual observations to be predicted.

Example 2 ( Exponential case). Xiong (1998) presented a simulated exponential

failure times data under the simple step-stress model. A random sample from the expo-

nential model under the step-stress setting θ1 = e−2.5, θ2 = e−1.5 and τ = 5, with n = 20

and r = 16 is generated. The simulated data are given in Table 3.

Table 3: The simulated data reported in Xiong (1998).

Stress levels Times to failure

θ1 = e−2.5 2.01 3.60 4.12 4.34

θ2 = e−1.5 5.04 5.94 6.68 7.09 7.17 7.49

7.60 8.23 8.24 8.25 8.69 12.05

Here n1 = 4 and n2 = r− n1 = 12. For this simulated step-stress data set, the MLEs of

θ1 and θ2 are computed to be θ̂1ML = 0.0420 and θ̂2ML = 0.197. For computing BEs,

since no information is available on prior distributions, we use the improper gamma

priors. Under the improper gamma priors, the BEs of θ1 and θ2 are obtained as θ̂1BS =

0.0420 and θ̂2BS = 0.197. Clearly, these estimates coincide with the MLEs values. The

predicted values of the censored lifetime, Tr+j:n = T16+j:20 (j = 1, 2, 3, 4) are presented

in Table 4.
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Table 4: Predicted values of T16+j:20 (j = 1, 2, 3, 4).

MLP CMP BUP BP

T17:20 12.05 12.92 13.31 13.41

T18:20 13.39 14.51 14.99 15.28

T19:20 15.28 16.86 17.52 18.02

T20:20 18.51 21.34 22.58 23.55

5.2 Comparative study

Here, a simulation study is mainly conducted to compare the performance of MLEs

and BEs of the model parameters as well as classical and Bayes predictors of future

failure times, discussed in previous sections. In this simulation study, the exponential

and Rayleigh distributions are considered as two special cases of the PHR family of

distributions. For different n, r and τ , we have randomly generated 1000 samples of

the Type-II censored lifetimes, T1:n, T2:n, . . . , Tr:n, from the exponential and Rayleigh

distributions in a simple SSALT model with the CDF (2). The MLEs and BEs of θ1 and

θ2 are then computed. For BEs, we have used two following priors:

1. P1: αi = βi = 0.0001, i = 1, 2

2. P2: αi = 1, βi = 4, i = 1, 2.

In fact, the prior P2 is more informative than the prior P1, which is almost a noninfor-

mative prior. Table 5 shows the simulated biases and MSEs of the MLEs and BEs for

exponential distribution. The biases and MSEs are computed as follows. Suppose θ̂i is

the estimate of θ obtained in i− th iteration of simulation, where i = 1, . . . , N = 1000,

then the bias and MSE of θ̂ are defined as

Bias(θ̂) =
1

N

N∑
i=1

(θ̂i − θ),

and

MSE(θ̂) =
1

N

N∑
i=1

(θ̂i − θ)2.

The results for Rayleigh distribution are presented in Table 6. From Tables 5 and 6, we

see that the BEs under Prior P2 perform better than the MLEs and the BEs under the
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prior P1. As expected, the results for MLEs and BEs under Prior P1 are approximately,

the same in terms of biases and MSEs. Also in most considered cases, as τ decreases,

the biases and MSEs of estimators of θ2 decrease, but the biases and MSEs of estimators

of θ1 increase. This is explained by the fact that if τ decreases, the sample size under

stress s1 (i.e., n1) decreases and vice versa, and then the sample size under stress s2 (i.e.,

n− r1) increases.

Based on the step-stress failure data T1:n, T2:n, . . . , Tr:n, we have also computed differ-

ent predicted values including MLP, BUP, CMP and BP for the jth future failure time

Y = Tr+j:n, (j = 1, 2, . . . , n− r). We then compared the performance of these predicted

values in terms of their biases and mean square prediction errors (MSPEs) over 1000

replications. Table 7 presents the results for the exponential distribution. The results for

the Rayleigh distribution are given in Table 8. From Tables 7 and 8, it can be observed

for both models that the BUP and BPs have the lowest MSPE values, which ensure

good performance of BUP and BPs. The MLP does not work well because it provides

the largest bias and MSPE. Comparing Priors P1 and P2, the BPs under Prior P2 per-

form better than the BPs under Prior P1. Further, for fixed sample size n, the MSPEs

decrease when r (the number of observed failure times) increases for both distributions.

On the other hand, the MSPEs increase for exponential and Rayleigh distributions when

the value of τ gets to be increased. Furthermore, it is clearly noticed that for fixed r and

n, as j gets large, the MSEs of Y = Tr+j tend to be increased. In fact, it is explained as

follows. As j increases, the variation of the variable to be predicted, Y = Tr+j:n tends

to be high and consequently the MSEs are getting large.

Finally, the results presented in this paper can be generalized in different directions.

One possible work is to extend our results to 3 or more stress levels. Another possible

work is to extend the results to other censoring schemes such as progressive and hybrid

censoring schemes. But the generalization of the results is not simple because the like-

lihood function and the predictive likelihood function have complicated forms in these

cases. These extensions are in progress and will be reported later.
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Table 5: The biases and MSEs of the MLEs and BEs for exponential distribution with

θ1 = e−1.0 and θ2 = e−2.0.

θ1 θ2

(n, τ, r) MLE Bayes MLE Bayes

P1 P2 P1 P2

(70, 3.5, 64) Bias 0.0035 0.0035 0.0002 0.0863 0.0863 0.0856

MSE 0.0027 0.0027 0.0025 0.0158 0.0158 0.0133

(70, 3, 64) Bias 0.0046 0.0046 0.0007 0.0621 0.0621 0.0631

MSE 0.0029 0.0029 0.0027 0.0072 0.0072 0.0070

(70, 3.5, 67) Bias 0.0029 0.0029 0.0006 0.0378 0.0379 0.0398

MSE 0.0028 0.0028 0.0026 0.0043 0.0043 0.0039

(70, 3, 67) Bias 0.0045 0.0045 0.0004 0.0363 0.0363 0.0385

MSE 0.0035 0.0035 0.0032 0.0036 0.0036 0.0036

(40, 2.5, 34) Bias 0.0069 0.0069 0.0006 0.1262 0.1262 0.1172

MSE 0.0059 0.0059 0.0051 0.1382 0.1382 0.0282

(40, 2, 34) Bias 0.0050 0.0051 0.0034 0.0851 0.0851 0.0847

MSE 0.0067 0.0067 0.0057 0.0147 0.0147 0.0127

(40, 2.5, 37) Bias 0.0066 0.0066 0.0009 0.0490 0.0490 0.0050

MSE 0.0060 0.0060 0.0051 0.0067 0.0067 0.0060

(40, 2, 37) Bias 0.0058 0.0058 0.0027 0.0379 0.0380 0.0390

MSE 0.0002 0.0067 0.0067 0.0057 0.0006 0.0006
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Table 6: The biases and MSEs of the MLEs and BEs for Rayleigh distribution with

θ1 = e−.15 and θ2 = e−1.8.

θ1 θ2

(n, τ, r) MLE Bayes MLE Bayes

P1 P2 P1 P2

(70, 0.5, 64) Bias 0.0086 0.0086 0.0118 0.0322 0.0322 0.0320

MSE 0.0568 0.0568 0.0487 0.0024 0.0024 0.0023

(70, 1, 64) Bias 0.0066 0.0066 0.0042 0.0715 0.0716 0.0692

MSE 0.0189 0.0189 0.0171 0.0094 0.0094 0.0086

(70, 0.5, 67) Bias 0.0076 0.0076 0.0018 0.0170 0.0170 0.0171

MSE 0.0562 0.0562 0.0486 0.0014 0.0014 0.0013

(70, 1, 67) Bias 0.0099 0.0099 0.0068 0.0124 0.0124 0.0133

MSE 0.0563 0.0563 0.0481 0.0007 0.0007 0.0007

(30, 0.5, 24) Bias 0.0102 0.0102 0.0048 0.0673 0.0673 0.0674

MSE 0.1340 0.1339 0.0994 0.0080 0.0080 0.0077

(30, 1, 24) Bias 0.0219 0.0219 0.0092 0.4160 0.4043 0.2346

MSE 0.0461 0.0461 0.0358 0.7496 0.7564 0.0470

(30, 0.5, 27) Bias 0.0147 0.0147 0.0019 0.0455 0.0455 0.0441

MSE 0.1325 0.1325 0.0975 0.0059 0.0059 0.0053

(30, 1, 27) Bias 0.0163 0.0163 0.0097 0.0848 0.0848 0.0806

MSE 0.0455 0.0455 0.0364 0.0196 0.0196 0.0145
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Table 7: The biases and MSPEs of different point predictors under the exponential

model.

θ1 = e−1.0 θ2 = e−2.0

n τ r MLP CMP BUP Bayes

P1 P2

40 2.5 34 T35:40 Bias 1.195 0.680 0.425 0.167 0.091

MSPE 2.879 2.654 1.467 1.423 1.367

T36:40 Bias 1.365 1.179 0.920 0.419 0.233

MSPE 5.637 5.202 4.838 4.782 4.291

T37:40 Bias 2.328 2.544 0.251 0.550 0.302

MSPE 14.045 14.923 13.717 10.912 10.294

T38:40 Bias 2.938 3.670 3.279 0.422 0.070

MSPE 26.615 31.244 28.737 21.592 19.935

T39:40 Bias 3.830 5.133 4.596 1.002 0.225

MSPE 51.604 61.001 56.572 47.290 41.937

T40:40 Bias 6.463 7.729 7.492 2.567 1.022

MSPE 160.976 185.661 177.551 177.042 150.671

37 T38:40 Bias 2.441 1.363 0.860 0.272 0.341

MSPE 13.005 9.827 9.920 9.093 8.892

T39:40 Bias 3.726 2.425 1.627 0.240 0.110

MSPE 34.612 27.344 24.781 23.892 23.781

T40:40 Bias 5.029 3.780 2.273 1.781 1.070

MSPE 107.861 96.884 84.315 94.426 85.906

70 3.5 64 T65:70 Bias 1.980 0.701 0.443 0.065 0.008

MSPE 3.173 2.012 1.736 1.629 1.597

T66:70 Bias 1.183 1.193 0.805 0.211 0.094

MSPE 6.180 5.459 4.923 4.920 4.472

T67:70 Bias 1.923 0.917 1.603 0.229 0.033

MSPE 11.520 10.763 9.653 8.044 7.687

T68:70 Bias 3.142 3.560 3.117 0.484 0.145

MSPE 34.512 36.468 34.060 30.738 29.297

T69:70 Bias 3.357 4.282 3.715 0.822 0.302

MSPE 48.131 54.287 50.511 45.048 41.741

T70:70 Bias 5.728 6.812 5.652 1.844 0.853

MSPE 113.619 127.672 115.968 95.635 90.128

67 T68:70 Bias 2.586 1.224 0.620 0.375 0.299

MSPE 14.053 8.965 7.977 7.861 7.812

T69:70 Bias 3.164 1.50 0.657 0.789 0.563

MSPE 25.429 18.131 16.308 16.910 16.421

T70:70 Bias 6.680 4.596 3.056 0.387 0.072

MSPE 133.960 113.199 104.038 103.2357 100.226
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Table 7 (Continued).

n τ r MLP CMP BUP Bayes

P1 P2

40 2 34 T35:40 Bias 1.114 0.551 0.301 0.190 0.137

MSPE 2.425 1.529 1.449 1.432 1.398

T36:40 Bias 1.222 0.653 0.401 0.096 0.042

MSPE 8.198 7.252 6.493 5.270 5.241

T37:40 Bias 1.717 1.766 1.381 0.724 0.474

MSPE 13.320 13.468 12.473 12.878 11.999

T38:40 Bias 2.256 2.714 2.281 0.746 0.406

MSPE 23.650 25.804 24.139 22.796 21.493

T39:40 Bias 3.208 4.060 3.437 1.036 0.551

MSPE 34.566 39.510 35.591 33.029 30.222

T40:40 Bias 6.519 7.590 6.449 0.650 0.093

MSPE 126.702 142.451 129.787 104.817 99.146

37 T38:40 Bias 2.616 1.183 0.549 0.053 0.033

MSPE 13.291 7.871 6.865 6.646 6.615

T39:40 Bias 3.718 2.2291 1.467 0.371 0.201

MSPE 29.289 21.1415 18.401 17.260 17.091

T40:40 Bias 5.544 3.369 1.785 1.263 0.825

MSPE 101.452 85.783 80.5127 83.683 80.961

70 3 64 T65:70 Bias 1.167 0.542 0.266 0.147 0.105

MSPE 2.994 1.914 1.696 1.687 1.662

T66:70 Bias 1.689 1.274 0.944 0.056 0.149

MSPE 8.432 7.350 6.731 6.170 6.092

T67:70 Bias 1.586 1.418 1.061 0.279 0.161

MSPE 7.685 7.315 6.587 6.069 5.858

T68:70 Bias 2.664 2.802 2.349 0.248 0.090

MSPE 25.965 26.740 24.834 21.420 21.031

T69:70 Bias 2.944 3.363 2.708 0.821 0.471

MSPE 38.547 40.601 37.271 35.471 33.924

T70:70 Bias 4.899 5.390 4.159 1.796 1.235

MSPE 107.468 112.496 103.551 103.308 98.798

67 T68:70 Bias 2.538 1.001 0.321 0.146 0.079

MSPE 11.306 5.963 5.190 5.264 5.196

T69:70 Bias 3.391 1.738 0.808 0.366 0.193

MSPE 32.446 24.761 22.960 23.113 22.856

T70:70 Bias 6.185 3.725 2.059 0.443 0.086

MSPE 112.446 90.156 82.145 79.812 79.122
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Table 8: The biases and MSPEs of different predictors under the Rayleigh model.

θ1 = e−1.5 θ2 = e−1.8

n τ r MLP CMP BUP Bayes

P1 P2

30 0.5 24 T25:30 Bias 0.155 0.065 0.029 0.007 0.006

MSPE 0.055 0.033 0.028 0.029 0.028

T26:30 Bias 0.174 0.125 0.087 0.010 0.003

MSPE 0.133 0.120 0.113 0.107 0.107

T27:30 Bias 1.137 0.138 0.098 0.065 0.053

MSPE 0.096 0.096 0.088 0.0869 0.083

T28:30 Bias 0.314 0.358 0.317 0.111 0.100

MSPE 0.274 0.303 0.277 0.196 0.195

T29:30 Bias 0.330 0.428 0.377 0.087 0.079

MSPE 0.457 0.528 0.490 0.367 0.362

T30:30 Bias 0.392 0.525 0.445 0.010 0.019

MSPE 0.790 0.907 0.835 0.668 0.657

27 T28:30 Bias 0.281 0.104 0.035 0.009 0.004

MSPE 0.149 0.083 0.075 0.075 0.074

T29:30 Bias 0.268 0.126 0.050 0.047 0.037

MSPE 0.216 0.162 0.150 0.152 0.150

T30:30 Bias 0.420 0.277 0.172 0.014 0.003

MSPE 0.651 0.559 0.519 0.506 0.501

70 0.5 64 T65:70 Bias 0.135 0.050 0.015 0.009 0.007

MSPE 0.034 0.019 0.017 0.016 0.016

T66:70 Bias 0.138 0.069 0.032 0.002 0.001

MSPE 0.052 0.038 0.035 0.034 0.034

T67:70 Bias 0.135 0.079 0.040 0.015 0.012

MSPE 0.096 0.084 0.079 0.078 0.078

T68:70 Bias 0.164 0.120 0.076 0.003 0.001

MSPE 0.124 0.112 0.104 0.101 0.100

T69:70 Bias 0.179 0.141 0.088 0.025 0.020

MSPE 0.215 0.204 0.193 0.189 0.189

T70:70 Bias 0.377 0.313 0.227 0.060 0.060

MSPE 0.499 0.456 0.411 0.369 0.368

67 T68:70 Bias 0.252 0.095 0.032 0.018 0.017

MSPE 0.113 0.058 0.050 0.0499 0.049

T69:70 Bias 0.251 0.094 0.019 0.017 0.013

MSPE 0.194 0.141 0.133 0.134 0.133

T70:70 Bias 0.338 0.147 0.043 0.025 0.019

MSPE 0.462 0.374 0.357 0.357 0.355
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Table 8 (Continued).

n τ r MLP CMP BUP Bayes

P1 P2

30 1 24 T25:30 Bias 0.155 0.065 0.029 0.007 0.006

MSPE 0.054 0.034 0.031 0.032 0.031

T26:30 Bias 0.174 0.125 0.087 0.010 0.003

MSPE 0.133 0.120 0.113 0.107 0.106

T27:30 Bias 0.137 0.138 0.098 0.065 0.053

MSPE 0.096 0.096 0.088 0.086 0.083

T28:30 Bias 0.216 0.466 0.431 0.196 0.143

MSPE 0.277 0.444 0.417 0.348 0.312

T29:30 Bias 0.202 0.293 0.243 0.064 0.045

MSPE 0.400 0.443 0.420 0.379 0.369

T30:30 Bias 0.478 0.994 0.928 0.164 0.100

MSPE 1.585 2.184 2.073 1.907 1.631

27 T28:30 Bias 0.316 0.141 0.075 0.033 0.018

MSPE 0.169 0.089 0.076 0.073 0.070

T29:30 Bias 0.259 0.141 0.067 0.029 0.021

MSPE 0.249 0.190 0.175 0.174 0.172

T30:30 Bias 0.487 0.442 0.347 0.046 0.004

MSPE 0.960 0.938 0.873 0.764 0.738

70 1 64 T65:70 Bias 0.148 0.060 0.023 0.007 0.004

MSPE 0.055 0.037 0.035 0.035 0.035

T66:70 Bias 0.175 0.120 0.083 0.014 0.009

MSPE 0.090 0.075 0.067 0.061 0.061

T67:70 Bias 0.202 0.184 0.146 0.020 0.021

MSPE 0.120 0.115 0.103 0.082 0.081

T68:70 Bias 0.259 0.274 0.233 0.068 0.058

MSPE 0.201 0.210 0.190 0.142 0.140

T69:70 Bias 0.363 0.412 0.362 0.118 0.133

MSPE 0.379 0.414 0.376 0.272 0.272

T70:70 Bias 0.362 0.422 0.338 0.013 0.009

MSPE 0.585 0.634 0.573 0.465 0.461

67 T68:70 Bias 0.235 0.070 0.026 0.027 0.024

MSPE 0.117 0.069 0.065 0.066 0.065

T69:70 Bias 0.244 0.089 0.018 0.020 0.017

MSPE 0.180 0.130 0.124 0.123 0.123

T70:70 Bias 0.369 0.205 0.099 0.049 0.034

MSPE 0.599 0.511 0.483 0.486 0.482
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